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Abstract. In this work we study the maximum relative diameter functional dM in the class of
multi-rotationally symmetric planar convex bodies. A given set C of this class is k -rotationally
symmetric for k ∈ {k1, . . . ,kn} ⊂ N , and so it is natural to consider the standard ki -partition Pki

associated to C (which is a minimizing ki -partition for dM when ki � 3) and the corresponding
value dM(Pki) . We establish the relation among these values, characterizing the particular sets
for which all these values coincide.

1. Introduction

The class of rotationally symmetric planar convex bodies is an interesting family
of sets, which constitutes a suitable setting for studying different geometrical problems
(for instance, see [5] or [4, Th. 4]). Recall that a planar convex body (and so, con-
sequently compact) is rotationally symmetric if it is invariant under the rotation of a
certain angle centered at a point (called the center of symmetry of the set).

One of such problems, recently treated in some works (see [6, 2, 3]), is the fol-
lowing: given a k -rotationally symmetric planar convex body C , where k ∈ N , k � 2
(which indicates that C is invariant for the rotation of angle 2π/k ), we can consider
a decomposition P of C into k connected subsets C1, . . . ,Ck . Then, the maximum
relative diameter associated to the decomposition P is defined by

dM(P) = max{D(Ci) : i = 1, . . . ,k},
where D(Ci) denotes the classical Euclidean diameter functional. An interesting ques-
tion is investigating which decompositions of C give the minimal possible value for
the maximum relative diameter. In other words, we search for the subdivisions of C
providing the minimal largest distance in the corresponding subsets.

At this point, it is convenient to distinguish a specific type of subdivisions called
k -partitions: they are decompositions given by k simple curves, all of them meeting
in an interior point of C , and reaching the boundary of C at different points. The
fact that C has a remarkable interior point naturally leads to consider these particular
decompositions, originated from an arbitrary interior point, see Figure 1.
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Figure 1: Three different 3 -partitions for the circle

In this setting, the main result in [3] (see also [2]) states that the so-called standard
k -partition is a minimizing k -partition for the maximum relative diameter when k � 3.
In view of this result, we can reasonably think about the standard k -partition (precisely
described along Section 2) as the optimal k -partition associated to each k -rotationally
symmetric planar convex body, provided k � 3.

We shall here focus on multi-rotationally symmetric planar convex bodies, that
is, the planar convex bodies which are rotationally symmetric under the rotation of
several angles about the center of symmetry of the set (for instance, a regular hexagon
is rotationally invariant for angles π , 2π/3 and π/3, and a circle is invariant under
the rotation of any angle we consider). For a given multi-rotationally symmetric planar
convex body C , which is k -rotationally symmetric for k ∈ {k1, . . . ,kn} ⊂ N , ki � 2, it
is natural to consider the standard ki -partitions associated to C , and the corresponding
values dM(Pk1), . . . ,dM(Pkn) for the maximum relative diameter functional. The aim of
this paper is comparing these values, determining the relation among them.

A priori, the monotonicity property of the diameter functional may suggest that
the previous values satisfy

dM(Pk1) > .. . > dM(Pkn), (1.1)

for k1 < .. . < kn . However, we shall see that this is not true in general, since some
equality sign may appear in (1.1), and even a chain of equalities may occur. In fact, in
Lemma 3.1 we shall obtain that the general relation is

dM(Pk1) � . . . � dM(Pkn), (1.2)

and our main results will establish when (1.2) is a chain of equalities, under the hypoth-
esis that k1 � 3. More precisely, our Theorem 3.9 asserts the following:

Let C be a multi-rotationally symmetric planar convex body for {k1, . . . ,kn} ,
with k1 � 3 . Then, (1.2) is a chain of equalities if and only if k1 � 7 .

This result immediately yields our Theorem 3.10:

Let C be a multi-rotationally symmetric planar convex body for {k1, . . . ,kn} ,
with k1 � 3 . Then, (1.2) is a chain of equalities if and only if kn is a prod-
uct of prime numbers (possibly repeated), all of them greater than or equal
to 7 .
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We finish this paper by discussing the special case k1 = 2, which needs a particular
treatment as explained in Subsection 3.2. In this case, we prove in Lemma 3.13 that

dM(Pk1) > dM(Pk2) � . . . � dM(Pkn),

which differs from (1.2) in the first inequality, which is always strict.

2. Preliminaries

In this work we shall focus on rotationally symmetric planar convex bodies, as-
suming then the compactness of the sets. Recall that, given k ∈ N , k � 2, a planar
convex body C is said to be k -rotationally symmetric if there exists a point p ∈C such
that C is invariant under the rotation of angle 2π/k about p . In this setting, p will be
referred to as the center of symmetry of C . This notion naturally suggests the following
definition.

DEFINITION 2.1. Let C be a planar convex body. We will say that C is multi-
rotationally symmetric if it is k -rotationally symmetric for more than one value of k .

For instance, the circle is multi-rotationally symmetric since it is k -rotationally
symmetric for any k ∈ N , and the square is also multi-rotationally symmetric since it is
2-rotationally symmetric and 4-rotationally symmetric. Moreover, the regular decagon
is k -rotationally symmetric for k ∈ {2,5,10} , and so it is multi-rotationally symmetric.
We stress that any set of this class possesses a rich geometric structure, inherited by the
different existing rotational symmetries leaving invariant the set.

Figure 2: Some multi-rotationally symmetric planar convex bodies: the circle, the square and
the regular decagon

REMARK 2.2. Any regular polygon Em of m edges is k -rotationally symmetric
for any divisor k of m . Hence, if m is not a prime number, Em is multi-rotationally
symmetric.

REMARK 2.3. Examples of multi-rotationally symmetric planar convex bodies
can be constructed by the following procedure: for a given k ∈ N , k � 2, consider
the circular sector of angle 2π/k , modify the curved piece of the boundary and apply
successively k− 1 times the rotation of angle 2π/k , in such a way that the resulting
set C is convex, see Figure 3. In that case, if k is not a prime number, then C is
multi-rotationally symmetric.
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Figure 3: A modified circular sector of angle 2π/6 , and the resulting multi-rotationally sym-
metric planar convex body

The following definition concerns a remarkable natural number associated to a
given multi-rotationally symmetric planar convex body (different from a circle). We
shall see in Lemma 2.6 that this number determines the rotational properties of the set.

DEFINITION 2.4. Let C be a multi-rotationally symmetric planar convex body
different from a circle. The largest natural number k for which C is k -rotationally
symmetric will be called the maximal degree of C , and will be denoted by kC .

REMARK 2.5. Any circle C can be seen as a degenerate multi-rotationally sym-
metric set, since it is k -rotationally symmetric for any k ∈ N , k � 2, and so its associ-
ated maximal degree kC could be set as +∞ . In fact, the circles are the only sets with
this property.

LEMMA 2.6. Let C be a multi-rotationally symmetric planar convex body, with
maximal degree kC ∈ N . Then C is k -rotationally symmetric for k ∈ N if and only if k
is a divisor of kC .

Proof. It is clear that if k ∈ N is a divisor of kC , then C is k -rotationally symmet-
ric. Assume now that C is k -rotationally symmetric, but k is not a divisor of kC . Let
d = gcd(k,kC) . Then k = d m1 and kC = d m2 , for certain m1,m2 ∈ N . By Bezout’s
identity (see [1, Th. 1.7]), we can find a,b ∈ Z−{0} solving the diophantine equation
ka+ kC b = d , which gives

ϕb 2π
k
◦ϕa 2π

kC
= ϕ 2π d

kkC

= ϕ 2π
m1 kC

,

where ϕα denotes the rotation of angle α about the center of symmetry of C . Such an
equality implies that C is (m1 kC)-rotationally symmetric, which is contradictory since
m1 kC > kC , and kC is the maximal degree of C . �

We now define the minimal degree of a multi-rotationally symmetric planar convex
body, which will play an important role in Section 3.

DEFINITION 2.7. Let C be a multi-rotationally symmetric planar convex body.
The smallest natural number k for which C is k -rotationally symmetric will be called
the minimal degree of C , and will be denoted by χC .
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REMARK 2.8. We point out that for any multi-rotationally symmetric planar con-
vex body C , the minimal degree χC is a prime number, which will be equal to 2 if the
maximal degree of C is even, in view of Lemma 2.6.

REMARK 2.9. Given a planar convex body C , we have that C is k -rotationally
symmetric if and only if C is invariant under the action of the cyclic group generated
by the rotation ϕ2π/k of angle 2π/k . In addition, if C is multi-rotationally symmetric,
taking into account the previous definitions, the maximal degree kC and the minimal
degree χC will determine the cyclic groups of rotations with largest and smallest orders
leaving invariant C , respectively. This algebraic setting allows to obtain alternative
proofs for some results herein (for instance, Lemma 2.6 can be derived using these
equivalent formulations).

The following definition describes the decompositions we shall consider for multi-
rotationally symmetric planar convex bodies. Since this kind of sets have a special
interior point (which is the center of symmetry), it is natural to work with a particular
type of divisions called k -partitions, where k ∈ N , see [3].

DEFINITION 2.10. Let C be a k -rotationally symmetric planar convex body, whe-
re k ∈ N , k � 2. A k -partition of C is a decomposition of C into k connected subsets,
given by k simple curves starting at an interior point of C and meeting the boundary of
C at different points.

REMARK 2.11. We stress that, in the previous definition, the interior point of a
k -partition does not coincide, in general, with the center of symmetry of the set, and
moreover, the corresponding subsets need not enclose equal areas.

Figure 4: Three different 3 -partitions for the regular hexagon

We now recall the definition of the maximum relative diameter functional, which
is given by means of the classical diameter functional.

DEFINITION 2.12. Let C be a k -rotationally symmetric planar convex body, and
let P be a k -partition of C into subsets C1, . . . ,Ck . The maximum relative diameter
associated to P is given by

dM(P,C) = max{D(Ci) : i = 1, . . . ,k},

where D(Ci) = max{d(x,y) : x,y ∈Ci} denotes the Euclidean diameter of Ci .
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REMARK 2.13. We remark that the existence of the maximum relative diameter
dM(P,C) associated to a k -partition P of C is assured due to the classical Weierstrass
theorem. If no confusion may arise, we shall simply denote it by dM(P) .

Given a k -rotationally symmetric planar convex body C , an interesting question is
the study of the minimizing k -partitions for the maximum relative diameter dM . That
is, among all the k -partitions of C , we search for the ones providing the minimal pos-
sible value for dM . A complete characterization of a particular minimizing k -partition
has been recently obtained when k � 3 [3, Th. 4.5]. We shall describe the construction
of this remarkable minimizing k -partition, called standard k -partition, which can be
considered as the optimal and most appropriate k -partition for the maximum relative
diameter functional when k � 3.

Let C be a k -rotationally symmetric planar convex body, with k � 2, being p the
center of symmetry of C . Let x1, . . . ,xk be points in ∂C at minimal distance to p ,
symmetrically placed along ∂C . By considering the line segments pxi (joining p with
each point xi ) we will obtain a k -partition of C into k connected congruent subsets,
see Figure 5. This k -partition is called the standard k -partition associated to C , and
will be denoted by Pk(C) , or simply Pk . The points x1, . . . ,xk are called the endpoints
of Pk .

Figure 5: Standard 6 -partition and 3 -partition for the regular hexagon, standard 4 -partition
for the regular octogon, and standard 5 -partition for the circle

The following lemma allows to compute easily the maximum relative diameter
associated to any standard k -partition, when k � 3.

LEMMA 2.14. [3, Lemma 3.2] Let C be a k -rotationally symmetric planar con-
vex body, with k � 3 , and let Pk be its associated standard k -partition. Then,

dM(Pk,C) = max{R,2r sin(π/k)},
where R and r are the circumradius and the inradius of C , respectively.

We finish this section with the following result, which will be used later.

LEMMA 2.15. Let C be a k -rotationally symmetric planar convex body, being
p its center of symmetry, with k � 2 . Let x ∈ ∂C be an endpoint of the standard k -
partition associated to C. Let s be the line orthogonal to the segment px passing
through x . Then s is a supporting line of C .

Proof. Let s+ , s− be the (open) halfplanes determined by s , with p∈ s− . Assume
that there exists q∈ ∂C such that q∈ s+ . As x is an endpoint of the standard k -partition



MULTI-ROTATIONALLY SYMMETRIC PLANAR CONVEX BODIES 341

of C , we have that B ⊂C , where B is the ball centered at p with radius r = d(p,x) .
Notice that s is then the tangent line to ∂B at x .

Let B′ be the convex hull of B ∪{q} . Then B′ ⊂C , due to the convexity of C ,
and so int(B′)⊂ int(C) . On the other hand, the construction of B′ gives that x∈ int(B′)
(since q ∈ s+ ), which implies that x ∈ int(C) , a contradiction. �

3. Main results

In this section we shall prove the main results of the paper. First of all, we shall
state precisely our problem. Let C be a multi-rotationally symmetric planar convex
body, with associated maximal degree kC ∈ N . Unless explicitly indicated, R and r
will denote the circumradius and the inradius of C , respectively. In view of Lemma 2.6,
C will be k -rotationally symmetric for any divisor k of kC . Let {k1 = χC, . . . ,kn = kC}
be the set of divisors of kC , with k1 < .. . < kn .

In this setting, we shall consider the standard ki -partition Pki associated to C ,
i = 1, . . . ,n , which is the optimal ki -partition for the maximum relative diameter when
ki � 3 [3, Th. 4.5], and the corresponding value dM(Pki) . In this work we investigate
the relation among the values dM(Pk1), . . . ,dM(Pkn) .

At first glance, it could seem that

dM(Pk1) > .. . > dM(Pkn), (3.1)

with strict inequalities, since when ki < k j , each subset of C given by Pkj is strictly
contained, up to a proper rotation (if necessary), in a subset provided by Pki , see Fig-
ure 6.

Figure 6: For the regular hexagon, the subsets C1 , C′
1 and C′′

1 , determined by the standard
2 -partition, 3 -partition and 6 -partition, are related by strict inclusions

However, we shall see that the above strict inequalities in (3.1) do not hold in gen-
eral, and it is even possible a chain of equalities in (3.1) in some particular situations.
The case of equalities in (3.1) is especially interesting, since it implies that the consid-
ered set can be divided in different natural ways (into different numbers of connected
subsets), yielding the same value for the maximum relative diameter functional. In
other words, the number k of subsets given by an associated standard k -partition will
not have influence on this functional in such a case.

The following result establishes the general chain of inequalities satisfied in this
setting.
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LEMMA 3.1. Let C be a multi-rotationally symmetric planar convex body, with
maximal degree kC and minimal degree χC . Let {k1 = χC, . . . ,kn = kC} be the set of
divisors of kC , with k1 < .. . < kn . Then,

dM(Pk1) � . . . � dM(Pkn), (3.2)

where Pk denotes the standard k -partition associated to C.

Proof. If ki < k j , then any subset of C given by Pkj is contained in a subset given
by Pki (up to a proper rotation), and so the statement is clear due to the monotonicity of
the diameter functional. �

REMARK 3.2. There are examples where (3.2) holds with strict inequalities. For
instance, consider a regular hexagon E6 , which is k -rotationally symmetric for k ∈
{2,3,6} , with fixed circumradius R . By Lemma 2.14, we have dM(P3,E6) = 3/2R
and dM(P6,E6) = R , and straightforward computations give dM(P2,E6) =

√
13/2R ,

obtaining
dM(P2,E6) > dM(P3,E6) > dM(P6,E6).

An identical behavior occurs for E9 and E15 . On the other hand, (3.2) may combine
strict inequalities and equalities, as for the regular dodecagon E12 : it is k -rotationally
symmetric for k ∈ {2,3,4,6,12} , and straightforward computations give

dM(P2,E12) > dM(P3,E12) > dM(P4,E12) > dM(P6,E12) = dM(P12,E12).

The same happens for the regular polygons E20 and E45 .

In order to determine which are the multi-rotationally symmetric planar convex
bodies providing a chain of equalities in (3.2), we shall distinguish two cases, depend-
ing on the minimal degree of our set (the case k = 2 requires some special considera-
tions, as explained in Subsection 3.2).

3.1. Minimal degree greater than 2

If the minimal degree of our set is greater than 2, we can obtain the following
characterization result.

LEMMA 3.3. Let C be a multi-rotationally symmetric planar convex body, with
minimal degree χC � 3 . Then, we have a chain of equalities in (3.2) if and only if
dM(PχC) = R.

Proof. Let kC be the maximal degree of C , and let {k1 = χC, . . . ,kn = kC} be the
set of divisors of kC , with k1 < .. . < kn . Assume that dM(PχC) = R . Then, (3.2) turns

R = dM(Pk1) � dM(Pk2) � . . . � dM(Pkn) = max{R,2r sin(π/kn)} � R,

by using Lemma 2.14. Thus dM(Pki) equals R , for any i ∈ {1, . . . ,n} .
Assume now that we have a chain of equalities in (3.2). Due to Lemma 2.14,

we have that dM(Pki) = max{R,2r sin(π/ki)} , i = 1, . . . ,n . Taking into account that
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sin(π/k1) > sin(π/k2) > .. . > sin(π/kn) , the only admissible possibility in this case is
dM(Pki) = R , for any i ∈ {1, . . . ,n} . �

The previous Lemma 3.3 allows to find out the values of the minimal degree for
which all equalities hold in (3.2). The following result shows that the above condition
is satisfied when the minimal degree is greater than or equal to 6.

LEMMA 3.4. Let C be a multi-rotationally symmetric planar convex body. If the
minimal degree χC of C is greater than or equal to 6 , then dM(PχC) = R.

Proof. Since χC � 6, it is clear that sin(π/χC) � sin(π/6) = 1/2, and so we have
2r sin(π/χC) � r � R . Then, dM(PχC) = max{R,2r sin(π/χC)} = R , as stated. �

REMARK 3.5. The proof of Lemma 3.4 also shows that dM(Pk) = R for any k -
rotationally symmetric planar convex body with k � 6. This implies that equality signs
will appear in (3.2) when k j � 6.

We point out that, in view of Remark 2.8, the previous Lemma 3.4 applies in fact
to χC � 7, since 6 is not a prime number. On the other hand, when χC � 5, we only
have to analyze the cases χC = 3 and χC = 5, since 4 is not prime either. The following
results show that we do not have a chain of equalities in (3.2) in any of these two cases.

LEMMA 3.6. Let C be a multi-rotationally symmetric planar convex body, with
minimal degree χC equal to 3 . Then dM(PχC) �= R.

Proof. Recall that, by Lemma 2.14, dM(PχC) = max{R,2r sin(π/χC)} . Suppose
that dM(PχC) = R . Then R � 2r sin(π/χC) and so R/r �

√
3.

Fix two consecutive endpoints v1 , v2 of PkC , where kC is the maximal degree of
C , and let xR ∈ ∂C be a point with d(p,xR) = R , which can be assumed to lie in the
piece of ∂C delimited by v1 and v2 . Let α1 be the angle determined by the segments
pv1 and pxR , and α2 the angle determined by pxR and pv2 . Since α1 + α2 = 2π/kC

due to the existing rotational symmetry, we can assume without loss of generality that
α1 � π/kC .

Let us now consider the triangle with vertices p , v1 , xR , with associated angles
α1 , β , γ , which will add up to π radians, see Figure 7.

Figure 7: Triangle with vertices p, v1 , xR

By using the sine’s theorem we get

√
3 � R

r
=

sin(β )
sin(γ)

� 1
sin(γ)

,
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which gives sin(γ) � 1/
√

3, and so γ � arcsin(1/
√

3) . Moreover, from Lemma 2.15
we have that β � π/2. Then

π = α1 + β + γ � π/kC + π/2+ arcsin(1/
√

3),

yielding

kC � π
π/2− arcsin(1/

√
3)

< 4,

which is not possible, since there are no multiples of χC = 3 satisfying that condition.
Then dM(PχC) �= R , which finishes the proof. �

LEMMA 3.7. Let C be a multi-rotationally symmetric planar convex body, with
minimal degree χC equal to 5 . Then dM(PχC) �= R.

Proof. The proof is analogous to the one from Lemma 3.6, taking into account
that now, by assuming dM(PχC) = R , we shall get

R/r � 2sin(π/5) =

√
5−√

5
2

,

which finally yields kC < 6, a contradiction. �
REMARK 3.8. The previous Lemmata 3.6 and 3.7 only hold for multi-rotationally

symmetric sets. For an equilateral triangle T , which is only 3-rotationally symmetric,
it can be checked that dM(P3,T ) = R (the same happens for a regular pentagon).

The followingTheorem 3.9 summarizes the previous lemmata, characterizingwhen
(3.2) is a chain of equalities provided the minimal degree is greater than or equal to 3.

THEOREM 3.9. Let C be a multi-rotationally symmetric planar convex body with
minimal degree χC � 3 . Then (3.2) is a chain of equalities if and only if χC � 7 .

The characterization from Theorem 3.9 is stated in terms of the minimal degree.
Regarding the maximal degree, we immediately obtain the following Theorem 3.10.

THEOREM 3.10. Let C be a multi-rotationally symmetric planar convex body,
with maximal degree kC and minimal degree χC � 3 . Then, (3.2) is a chain of equalities
if and only if kC is a product of prime numbers (possibly repeated), all of them greater
than or equal to 7 .

EXAMPLE 3.11. For instance, if a multi-rotationally symmetric planar convex
body has minimal degree equal to 7, we will have a chain of equalities in (3.2), due
to Theorem 3.9, and the admissible values for its maximal degree will be 7 · 7 = 49,
7 ·11 = 77, 7 ·13 = 91, and so on, in view of Theorem 3.10. Notice that, in particular,
Theorem 3.10 implies that (3.2) will be a chain of equalities only for relatively large
values of the associated maximal degree.
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We finish this Subsection 3.1 by studying the following related question. Let C
be a multi-rotationally symmetric planar convex body, with maximal degree kC and
minimal degree χC � 3. Denote by {k1 = χC, . . . ,kn = kC} the set of divisors of kC . In
this setting, we can search for the minimal value in {dM(Pk1), . . . ,dM(Pkn)} , where Pki

is the standard ki -partition associated to C , which represents the global minimal value
for the maximum relative diameter, taking into account [3, Th. 4.5]. Additionally, this
will give, in some sense, a comparison among the optimal ki -partitions of C in terms
of our functional. From Lemma 3.1, it clearly follows that

min{dM(Pk1), . . . ,dM(Pkn)} = dM(Pkn),

but we can consider a further question: is there any other standard ki -partition, apart
from Pkn , attaining also that minimum value? The following lemma answers this ques-
tion.

LEMMA 3.12. Let C be a multi-rotationally symmetric planar convex body, with
maximal degree kC and minimal degree χC � 3 . Let {k1 = χC, . . . ,kn = kC} be the set
of divisors of kC , with k1 < .. . < kn , and denote by Pki the standard ki -partition of C ,
i = 1, . . . ,n. Then, the minimal value in

{dM(Pk1), . . . ,dM(Pkn)}
is uniquely attained by dM(Pkn) if and only if dM(Pkn−1) �= R.

Proof. Taking into account Lemma 3.1, the considered minimal value is unique-
ly attained by dM(Pkn) if and only if dM(Pkn−1) > dM(Pkn) . Recall that dM(Pk) =
max{R,2r sin(π/k)} , for any k ∈ {k1, . . . ,kn} , due to Lemma 2.14.

Assume firstly that dM(Pkn−1) �= R . Then dM(Pkn−1) = 2r sin(π/kn−1) > R . Since
2r sin(π/kn−1) > 2r sin(π/kn) , both inequalities yield that

dM(Pkn−1) = 2r sin(π/kn−1) > max{R,2r sin(π/kn)} = dM(Pkn),

as desired.
Assume now that dM(Pkn−1) = R . Then R � 2r sin(π/kn−1) > 2r sin(π/kn) , and

so dM(Pkn) = max{R,2r sin(π/kn)} = R , which implies that the referred uniqueness
does not hold. �

3.2. Minimal degree equal to 2

If we consider a multi-rotationally symmetric planar convex body C with minimal
degree equal to 2, the situation is different from the one corresponding to Subsection
3.1. The reason is that C is, in particular, 2-rotationally symmetric, and so the optimal
2 -partition for the maximum relative diameter is not completely characterized in this
case. It is proved in [6] that a minimizing 2-partition (into two subsets of equal areas)
will consist of a line segment passing through the center of symmetry of the set, but a
more precise description is not known. In fact, the corresponding standard 2-partition
is not minimizing in general, see Figure 8.
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Figure 8: An example where the standard 2 -partition P2 is not minimizing for dM , since
dM(P2) > dM(P) , where P is obtained by a slight rotation of P2

Therefore, in this case we cannot make the discussion on the best values for the
maximum relative diameter functional, as in Subsection 3.1. At least, we can study our
problem partially, investigating the relation among the values

{dM(Pk1), . . . ,dM(Pkn)},

where {k1 = 2, . . . ,kn} is the set of divisors of the associated maximal degree of C ,
taking into account that dM(Pk1) is not optimal in general, and cannot be computed
using Lemma 2.14. The existing relation is given by the following result.

LEMMA 3.13. Let C be a multi-rotationally symmetric planar convex body, with
maximal degree kC ∈ N and minimal degree χC = 2 . Let {k1 = χC,k2, . . . ,kn = kC} be
the set of divisors of kC , with k1 < k2 < .. . < kn . Then

dM(P2) > dM(Pk2) � . . . � dM(Pkn),

where Pk is the standard k -partition associated to C.

Proof. It suffices to prove that dM(P2) > dM(Pk2) , in view of Lemma 3.1. Let
v1 , v2 be the endpoints of the standard 2-partition P2 . Recall that, by Lemma 2.14,
dM(Pk2) = max{R,2r sin(π/k2)} . We shall distinguish two cases:

If dM(Pk2) = R , call xR ∈ ∂C such that d(p,xR) = R , which can be assumed to
be different from an endpoint of P2 (otherwise R = r , being C a circle, for which the
maximal degree is not formally defined). Let α1 be the angle at p determined by the
line segments pv1 and pxR , and α2 the angle determined by pxR and pv2 . Clearly
α1 + α2 = π , and so we can assume that α1 � π/2. Then

d(v1,xR)2 = d(p,xR)2 +d(p,v1)2 −2d(p,xR)d(p,v1)cos(α1) > d(p,xR)2,

yielding

dM(P2) � d(v1,xR) > d(p,xR) = dM(Pk2),

as desired.
On the other hand, if dM(Pk2) = 2r sin(π/k2) , since k2 > 2, we have that

dM(Pk2) = 2r sin(π/k2) < 2r sin(π/2) = 2r = d(v1,v2) � dM(P2),

which proves the statement. �
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REMARK 3.14. As a consequence of Lemma 3.13, we have that for any multi-
rotationally symmetric planar convex body C with minimal degree equal to 2, the
corresponding values

{dM(Pk1), . . . ,dM(Pkn)},
where {k1 = 2, . . . ,kn} is the set of divisors of the associated maximal degree of C ,
will not all coincide in any case. In fact, it follows from the proof of Lemma 3.13 that
dM(P2) > R , and so the previous Lemma 3.3 cannot be applied in this situation.

REMARK 3.15. For a circle C , whose minimal degree is equal to 2, straightfor-
ward computations using Lemma 2.14 give that

dM(P2) > dM(P3) > dM(P4) > dM(P5) > dM(P6) = dM(Pk),

for any k ∈ N , k � 7.

REMARK 3.16. For a given set C of our family, with minimal degree equal to
2, we cannot discuss which is the global minimum value for the maximum relative
diameter in this setting, as in Subsection 3.1, since we cannot estimate

min{dM(P,C) : P is a 2-partition of C}.

Recall that such a minimum is not necessarily provided by the standard 2-partition, as
the example from Figure 8 shows.
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