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Abstract. In this paper, we consider a fractional boundary value problem including the Prabhakar
fractional derivative. We obtain associated Green function for this fractional boundary value
problem and get a Lyapunov-type inequality for it.

1. Introduction

In year 1893, the Russian mathematician Aleksandr Mikhailovich Lyapunov ob-
tained a nontrivial solution for the following boundary value problem with the real and
continuous function ¢(z), [20]

Y'(1)+qt)y(t) =0, a<t<b, (1

y(a) =y(b) =0,

and get its corresponding inequality that was called the Lyapunov inequality after him

b 4
| lawlau> = e

Later, with developments in theory of fractional calculus many authors tried to express
the differential inequalities with fractional derivatives [2, 3, 8, 4, 14, 24, 29, 30]. For
the Lyapunov inequality in fractional differential equations, Ferreira [6, 7] showed for
the fractional differential equations

@D*y) () +4q(t)y(t) =0,  y(a)=y(b)=0, 1<u<2, 3)
@D'y)() +q)y(6) =0,  y(a)=y(b)=0, 1<pu<2, “)
in the sense of Riemann-Liouville and Caputo derivatives the following inequalities

hold, respectively

[t (G2 ®
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b J I ‘uﬂ
| latwlan> T
Also, Jleli and Samet modified the above inequalities for fractional differential equa-
tions with mixed boundary conditions [15, 16]. Now in this paper, as a generalization
of fractional derivatives, we consider the following fractional boundary value problem
including the Prabhakar fractional derivative

(6)

(D) hwary))+q)y()=0, a<i<b, 1<u<2,y,p,0eR", (7

with the boundary conditions

y(a) =y(b) =0, (8)
where y € C[a,b] (the class of all continuous functions). For this purpose, we intend
to find the associated Green function of the fractional boundary value problem (7) in
terms of the generalized Mittag-Leffler functions Eg# (z). We state some properties
of this Green function and obtain the Lyapunov inequality for the fractional boundary
value problem (7). In particular case, we reduce the Green function and the Lyapunov
inequality of the fractional boundary value problem (7) to the Green function and Lya-
punov inequality of fractional boundary value problem (3).

2. Preliminaries

2.1. The generalized Mittag-Leffler function

In year 1971, Prabhakar introduced the generalized Mittag-Leffler function (Mittag-
Leffler function with three parameters) on his study on singular integral equations as
follows [25]

k

Ey <) = > LZ_’ ] 667% >0a (9)
pu(?) k:zg)l"(pk—f—u)k! VPl (P)

where (7); is the Pochhammer symbol [5]

Mo=1,  We=ry+1)---(y+k=1), k=12,
For y =1, we get the two-parameter Mittag-Leffler function E, ,(z) defined by

k

Epu(®) = ELu) = 3

- ueCR(p)>0, (10)
2 Tk ) psu (P)

and for y = u =1, this function coincides with the classical Mittag-Leffler function
Ep(z) [22, 23]

oo k
Ey(z)i=E  (5)=Y —— € C,R(p) > 0. (11)
Also, for y=0 we have
1
ES#(Z) = . (12)
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For the generalized Mittag-Leffler function (9), many researchers have established many
contributions in theory of fractional calculus with applications in mathematical physics
and Cauchy-type initial and boundary value problems [9, 10, 11, 12, 13,17, 18, 19, 21],
[26, 27, 28].

LEMMA 1. The Laplace transforms of generalized Mittag-Leffler function (9) has
the following form [25]:

LHEL (0xP)](s) =sTH(1—wsP) 77, los™P| < 1, (13)
forv,p,i, 0,5 € C, R(u) >0, R(s) > 0.

LEMMA 2. Let y,p,u,® € C, R(p) > 0. Then for any n € N, differentiation of
the generalized Mittag-Leffler function (9) is given by [18]

(%)" (ML y(@aP)] = xEEY L (0aP), (14)

2.2. Prabhakar derivative and integral

DEFINITION 1. (Prabhakar integral). Let f € L'[0,b], 0 < x < b < co. The Prab-
hakar integral operator including the generalized Mittag-Leffler function (9) is defined
as follows [9]

Eg%w’OJrf(x)dx = /0 (x— u)“_lEg.’u (o(x—u)P) f(u)du, x>0, (15
where p,u, 0,y C, R(p), R(u) > 0.

REMARK 1. We note that for ¥ = 0, the Prabhakar integral operator (15) coin-
cides with the Riemann-Liouville fractional integral of order

E) yworf =151, (16)

where the Riemann-Liouville fractional integral is defined as
Bof0) = o [0 0, e € %R(w) >0 (a7
X)=—=— [ (x— , , .
o T(u) Jo
DEFINITION 2. (Prabhakar derivative). Let f € L'[0,b], 0 < x < b < . The

Prabhakar derivative is defined by [9]

A"

Dg7“7w70+ (.X) = dmep7m7“7w7O+f(x)’ (18)

where p, i, 0,y€ C, R(p) >0, R(u) >0, m—1 <R(u) <m.
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REMARK 2. It is obvious that the Prabhakar derivative (18) generalizes the Rie-
mann-Liouville fractional derivative

S, HEC K0, mo1<R@) <m (9

oS () =
LEMMA 3. The Laplace transform of Prabhakar integral (15) is given by

LAE] w0 f(x)is} =5 H(1—ws ) TF(s), (20)

where

F(s):.,?{f(x);s}:/:e_sxf(x)dx, seC. 21
Proof. According to Definition 1, we have
Eg%w’OJrf(x)dx = /0 (x— u)”_lEg# (o(x—u)P) f(u)du= (f* eg%w) (x), (22)

Wl}ere « is the convolution integral and e}, ; o, (x) = x* 'E} ,(wx?). Therefore, by
using the Laplace transform

L{(f#8)(x);s} = L{f (x);5}L{g(x);s}, (23)

and applying the relation (13), the proof of lemma is completed. [

LEMMA 4. For m—1 < u < m, the Laplace transform of Prabhakar derivative
(18) has the form

D‘Z{Dg7“7w70+f(x);s}:Su(l_ws ZS pu —k— 1w0+f)( ) (24)
where F(s) is the Laplace transform of f(x).

Proof. Applying the Laplace transform operator on the Prabhakar derivative (18)
and using the following formula [1]

LS FW)ssh =L )5) z A7 (o), es)
we have

X{Dg,u,w,OJrf( x);st = g{dx’“ pm pw0+f(x);s}
o am— —k—1 —)/
sg{Epm oo+ ()5} = Z <xmk1 pm— um0+f>()~

Now, according to Lemma 3, we can deduce the relation (24) easily. [
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LEMMA 5. If f(x) € C(a,b)NL(a,b), then

Dg,p,w,quEg,u,w,aJrf(x) = f(x), (26)

andij‘f(x),Dg7#7w7u+f(x) € C(a,b)NL(a,b), then for c; e R and m—1 < u <m, we
have
Eg,u,w,HDg,u,w,ﬁf(X) =f(x)+er(x— a)“_lEg,u (a)(x - a)p)
+c(x— a)”*2E’Z’M_l (o(x—a)?)

+...—l—cm(x—a)“meg’u_mH(a)(x—a)p). (27)

Proof. Using the relations (20) and (24) for the Laplace transform of left hand side
of (27), we obtain (in case a = 0)

m—1
X{Eg7#7w7o+Dg7“7w7o+f(x);s} =F(s)— 2 skf“(l — a)sfp)fy(Dg’u_k_Lw’OJrf) (0).

k=0
(28)
Now, by applying the inverse Laplace transform and modification for a # 0, we get the
right hand side of relation (27). [

3. Main Theorems

THEOREM 1. Let 1 <pu <2, v,p,0 € R", y € Cla,b|NL[a,b], then the frac-
tional boundary value problem

(D} wary) ) +q)y(1)=0,  y(@)=y(b)=0, a<i<b, (29

is equivalent to the integral equation

o) = [ Gl a)ayan, (30)

where the Green function G is given by

(t—a)* 'E} y (0(i—a)P) -
(bfa)#*lEZ';Z(w(bfu)P) (b= Ef u(o(b—u)P)
G(t,u) = —(t—u)“_lEgﬁu(a)(t—u p

)
(t—a)"'E} 4 (0(t—a)P) _
(hfa)wm%(w(hfa)p) (b~ )" E y(o(b—u)P

Proof. Applying the operator Eg’u’w’a . on fractional differential equation (29)
and using Lemma 5, for real constants ¢y and ¢, we have

y(t) =~ (E} ywaray) @) +c1(t —a)* 'E} 4 (0(1 — a)P)
+ot—a ?E) (0 —a)), (32)
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or equivalently

y(t) = — /a[(t — u)“ilEgﬂ (a)(t — u)p)q(u)y(u)du +ci(t— a)“ilEg# (a)(t — a)p)
+o(t—a)' CE) (0@ —a)). (33)

Now, by employing the boundary conditions we can obtain the coefficients ¢; and ¢;
as follows
y €Cla,b], y(a) =0< ¢, =0,

y(b)=0&c = 1( b—ap) /ah(b—u)“flEg,,J(a)(b—u)p)q(u)y(u)du.

(b—a)*'E} (o
Therefore, the unique solution of (29) is
t u— IEY
0=l TE] uEZE 0 Ehatots )
— (=) Ef (0t —u))]q

t—a“ lEy u(o(t—a)P)
+/ (b—a)t- lEgu(a)(b—a)P)

(b— u)“_lEg#(a)(b —u)P)

~ [ Gt.wgtwstidu. O
a
THEOREM 2. The Green function (31) satisfies the following conditions
1. Forall a<t, u<b, G(t,u) >0.
2. max;e(,p G(t,u) = G(u,u) for u € [a,b].
3. The maximum of G(u,u) is given at u = # and has the value

G<a+b a—l—b) _ (b—a)“lEg,u(w(’%)”)EZ,y(w("T“)”).

max G(u,u) =

u€lab] 272 4 E} y(w(b—a)P)
(34)
Proof. We set two functions
(t—a)* 'E} y(0(t —a)P) |
[, = ’ b_ 1 EY b_ P
= B (o) Bl OO
— (= Ef y(o(t—u)P),  a<u<i<b,
t—a)*EY (0t —a)P
erlt) = Z D Epul QU DN (i (op-wp),  a<i<u<h

(b—a)*'E} ,(w(b—a)P)
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It is clear that g5 (¢,u) > 0. So to prove 1, we should show that g;(7,u) > 0, or equiva-
lently

(t — )" '} y((t — a)P)
(b 1E] y(0(b—a)P)
Therefore it is sufficient to show

(i) {9 e (b —w ! > (-,

(b— u)“’lEg#(a)(b —u)P) = (- u)“’lEg#(a)(t —u)P).

a))

(11) b a)P)Egu( (b—u)P) >Egﬁu(w(,_u)p>'
Pr00f0f(z):
EEPRYIES
%(b— Wt !

t—a
a(t—a)+ (u—a)(b—a)
l‘_
Salt—b)+ulb—1)=0
Su>a

According to inequality (r —a)(b—u) > (b—a)(t — u) and Taylor expansion of the
generalized Mittag-Leffler function EB,: u(z), for 1 <pu <2, 7,p,0,zcR" the proof
of (ii) is completed.

Proof of (ii): By differentiating g; with respect to ¢ for every fixed u# and by
applying Lemma 2, we get

—u)H-LEY u)P

oo e} B0 =)
— (=)' E (ot —u)P)

(b—a)*'E} y(0(b—a)P
S (b—a)*E) y(o(b—a)P
—(t—a)*'E} y(0(t —a)?) =0,

! —
81 (tvu)_ p

;< QFEL (0 a)P)

that yields g; is a decreasing function of 7. Similarly by differentiating g, with respect
to ¢t for every fixed u, we conclude that g, is a increasing function. Therefore, the
maximum of G with respect to ¢ is the value G(u,u). Finally if we set

(u—a)*'E} y(0(u — a)P)
(b= EL y(w(b—a)P)

f(u) =G(uu) = (b= Ef y(o(b—u)P),  u€la,b],
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then, using the relations (9) and (14) for u € [a,b] we have

1
(b—a)*'E} ,(0(b—a)P)

X Eg#(w(b —u)P)—(u— a)”flEg#(w(u —a)P)(b—u)*~ 2Egu (o — u)p)}

flw)= (=) 2B}, (0(u—a)P)(b—uwH!

piu—1

 (w—a)p-uw)'? & (Mot (u—a)* & (Yot (b —u)*
 (b—a)rE] y(o(b—a)) [b-0 X Flpk-+u— Dl 2 T(pk+ iR
& (et —a)P* & (Yot (b —u)Pt
‘“““EO T(pk+ k! kgg)r(pﬂu—l)k!]'

By solving f'(u) =0, we see that f'(u) >0 on (a,%2) and f'(u) <0 on (“£2,b).

Hence, we deduct that u = # is maximum point. [J

THEOREM 3. Let % = Cla,b] be the Banach space with norm ||y|| = sup;cq ) [y(t)]
and a nontrivial continuous solution of the fractional boundary value problem

(D} pwary) ) +q)y(1)=0, a<i<b,  yla)=y(b)=0,

exists, then for the real and continuous function q the following inequality holds

b 4\ Ej u(o(b—a))
/aq(u)|du><b_a) Eg,u(w(lﬂ)p)EY (w(b%a)p) (35)

2 pou

Proof. According to Theorem 1, a solution of the above fractional boundary value
problem satisfies the integral equation

b
- [ Glwqtwydu,
a
which by applying the indicated norm on both sides of it, we have
b
Iyl < max /"Gt wpg(u)laul (36)
[E[a,b] a
or equivalently
< max/ |G(t,u)q(u)|du. (37)
t€fa,b

At this point, using the second property of the Green function in Theorem 2, we get

b—a\"E} (0(554)P)EY y(w(254)P) P
1<< 4 ) . Efu(w(bp—“a)v) : /a“’(””d”' R
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COROLLARY 1. In the special case Y= 0, the fractional boundary value problem
(29) is reduced to [6]

(D) (1) +q(t)y(t) =0,  y(a) =y(b) =0, l<u<2,

with the Green function

(t—a)" -1 —1
1 ——— (- —(r—u)* a<u<t <D,
G(Z,Lt) = S (t—a)*! -1 (39)
T(u) (bfu)u—l(b_”)u ,a<t<u<hb,

and the Lyapunov inequality

fame i (525)

Also, when L =2, we get the classical Lyapunov inequality (2).
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