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Abstract. In this paper, we present some refinements and precise estimations of parametric ex-
tensions of Shannon inequality and its reverse one given by Furuta in Hilbert space operators.
We also demonstrate an extension of operator Shannon type inequality.

1. Introduction and preliminaries

Various generalizations of the Shannon inequalities have played an important role
in classical information theory. It has been discovered that many of these inequalities
have operator generalizations, in which one replaces random variables by Hilbert space
operators. The latter are the variables of quantum thermodynamics and quantum in-
formation theory. Yanagi et al. proved in [19] some generalized Shannon inequalities.
Some other operator inequalities related to Tsallis relative operator entropy were also
proved in [10] and [16].

The notion of entropy was introduced in thermodynamics by Clausius in 1850 [3],
and some of the main steps towards the consolidation of the concept were taken by
Boltzmann and Gibbs. Since then several extensions and reformulations have been de-
veloped in various disciplines with motivations and applications in different subjects,
such as statistical mechanics, information theory, dynamical systems and ergodic the-
ory, biology, economics, human and social sciences; cf. [15, 13, 14, 18]. There have
been investigated the so-called entropy inequalities by some mathematicians, see [1, 8]
and references therein.

The generalized relative operator entropy for strictly positive operators A,B and
q ∈ R defined in [7] by setting

Sq(A|B) = A1/2(A−1/2BA−1/2)q(logA−1/2BA−1/2)A1/2.

In particular, when q = 0, we reach the relative operator entropy defined in [9] as a
generalization of the operator entropy as follows:

S(A|B) := A
1
2 (logA− 1

2 BA− 1
2 )A

1
2 .
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Effros [5] considered an operator version of perspective of functions for commut-
ing operators. We introduced in [4] a fully noncommutative generalized perspective
of two variables (associated to f and h ), by choosing an appropriate ordering. In the
notation introduced in [6] we can write:

PkΔh(A,B) := h(A)1/2k(h(A)−1/2Bh(A)−1/2)h(A)1/2,

where A is a strictly positive matrix and B is a self-adjoint matrix with spectra in the
closed interval J containing 0. We then proved the necessary and sufficient conditions
for jointly convexity of a fully noncommutative perspective and generalized perspective
function (see also [17]).

Note that the relative operator entropy S(A|B) is perspective of logt in the sense
that S(A|B) = Plogt(A|B) and the generalized relative operator entropy Sq(A|B) is per-
spective of tq log t in the sense that Sq(A|B) = Ptq logt(A|B) .

Throughout the paper the symbol B(H ) stands for the C∗ -algebra of all bounded
linear operators on Hilbert space H with inner product 〈·, ·〉 . A self-adjoint operator A
in B(H ) is said to be positive, written A � 0, if 〈Ah,h〉 � 0 for h ∈ H . If moreover
A is invertible, then A is said to be strictly positive, written A > 0. For self-adjoint
operators A and B in B(H ) , we write A � B (resp. A > B) if A−B is positive (resp.
strictly positive).

A continuous function f : J→ R on an interval J ⊂R is called operator convex if

f (αA+(1−α)B) � α f (A)+ (1−α) f (B)

for all α ∈ [0,1] and every self-adjoint operators A,B∈B(H ) with spectra σ(A),σ(B)
contained in J . A continuous function f : J→R on an interval J⊂R is called operator
concave if − f is operator convex.

Furuta [7] obtained the following parametric extensions of Shannon inequality:
n

∑
j=1

Sp+1(Aj|Bj) � Vp(1) logVp(1) � logVp(1)

�
n

∑
j=1

Sp(Aj|Bj) � − logWp(1) � −Wp(1) logWp(1)

�
n

∑
j=1

Sp−1(Aj|Bj).

In this paper, we provide a refinement of Furuta’s operator extension of Shannon’s
inequality as follows:

n

∑
j=1

Sp+1(Aj|Bj) �
n

∑
j=1

Sp+q(Aj|Bj) � Vp(1)q logVp(1) � logVp(1)

�
n

∑
j=1

Sp(Aj|Bj) � − logWp(1) � −Wp(1)q logWp(1)

�
n

∑
j=1

Sp−q(Aj|Bj) �
n

∑
j=1

Sp−1(Aj|Bj).
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2. Refinements and precise estimations of operator Shannon type inequality

Let {A1,A2, ...,An} and {B1,B2, ...,Bn} be two sequences of strictly positive op-
erators on a Hilbert space H such that ∑n

j=1 Aj#pB j � I , where 0 � p � 1 and I
means the identity operator on H . Throughout this paper, for the sake of simplified
writing, we define

Up := I−
n

∑
j=1

Aj#pB j,

Vp(t0) :=
n

∑
j=1

Aj#p+1Bj + t0Up,

Wp(t0) :=
n

∑
j=1

Aj#p−1Bj + t0Up

for fixed real number t0 > 0, where A#pB = A
1
2 (A− 1

2 BA− 1
2 )pA

1
2 for A,B > 0. Furuta

[7, Theorem 2.1] stated the following parametric extensions of Shannon inequality and
its reverse one derived from operator concave function f (t) = log t for 0 � p � 1:

logVp(t0)− (logt0)Up �
n

∑
j=1

Sp(Aj|Bj) � − logWp(t0)+ (logt0)Up. (1)

He derived the following parametric extensions of Shannon inequality and its reverse
one from operator concave function f (t) = −t logt for 0 � p � 1:

n

∑
j=1

Sp+1(Aj|Bj) � Vp(t0) logVp(t0)− (t0 log t0)Up, (2)

n

∑
j=1

Sp−1(Aj|Bj) � −Wp(t0) logWp(t0)+ (t0 logt0)Up. (3)

He then concluded that
n

∑
j=1

Sp+1(Aj|Bj) � Vp(1) logVp(1) � logVp(1)

�
n

∑
j=1

Sp(Aj|Bj) � − logWp(1) � −Wp(1) logWp(1)

�
n

∑
j=1

Sp−1(Aj|Bj) (4)

by letting t0 = 1 in the inequalities (1), (2), and (3) and using the inequality A logA �
logA for every A > 0.

We present some refinements of parametric extensions of Shannon inequality and
its reverse one given by Furuta in Hilbert space operators.

Furuta in [7, Proposition 3.1] provided the following result for an operator concave
function. We state the result for an operator convex function. Note that this result is
just a trivial and parallel consequence of Jensen’s operator inequality [12].
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PROPOSITION 1. If f is a continuous, real function on an interval J , the follow-
ing conditions are equivalent:

(i) f is operator convex;

(ii) f (C∗AC+t0(I−C∗C) �C∗ f (A)C+ f (t0)(I−C∗C) for operator C with ||C||� 1
and self-adjoint operator A with spectra in J and for fixed real number t0 ∈ J ;

(iii) f (∑n
j=1C∗

j A jCj + t0(I −∑n
j=1C∗

jCj) � ∑n
j=1C∗

j f (Aj)Cj + f (t0)(I −∑n
j=1C∗

jCj)
for operator Cj with ∑n

j=1C∗
jCj � I and self-adjoint operator A j with spectra in

J for j = 1, ...,n and for fixed real number t0 ∈ J .

We remark that the function f (t) = t logt is operator convex on [0,∞) . In fact, it
is equal to the perspective of operator convex function k(t) = − logt , i.e.,

f (A) = A logA = −A logA−1 = A
1
2 (− logA− 1

2 A− 1
2 )A

1
2 = Pk(A,1).

The result comes from the operator convexity of the function k and [4, Theorem 2.2].
We are going to show that the function f (t) = tq logt is operator convex on [0,∞) for
0 < δ � q � 1.

LEMMA 1. If f is an operator monotone function on [0,∞) such that f (0) � 0

and limt→∞
f (t)
t = 0 , then tq f (t) is operator convex for 0 < δ � q � 1 .

Proof. The operator monotone function f on [0,∞) can be represented as

f (t) = f (0)+ β t +
∫ ∞

0

λ t
λ + t

dμ(λ ),

where β � 0 and μ is a positive measure on [0,∞) ; see [2, Chapter V]. Since limt→∞
f (t)
t

= 0, β = 0. So by multiplying both sides to tq we have

tq f (t) = f (0)tq +
∫ ∞

0

λ t1+q

λ + t
dμ(λ ).

The function f (0)tq is operator convex. Indeed, it is sufficient to prove that the function
λ t1+q

λ+t is operator convex. Define g(t) = tq and consider two cases:

(i) For λ > 1 the function h(t) = t+1/λ
t g(t) is operator monotone by [2, Corollary

V.3.12]. So [12, Theorem 2.4] and [2, Problem V.5.7] show that the function th(t−1)−1

is operator convex.
(ii) For 0 < λ < 1 the function h1(t)= t+λ

t g(t) is operator monotone by [2, Corol-
lary V.3.12]. So [2, Problem V.5.7] entails that the function h(t) = h1(λ t−1)−1 is oper-
ator monotone. This implies the function h( t

λ ) is also operator monotone. Therefore,
the function λ 2qth( t

λ ) is operator convex by [12, Theorem 2.4]. �

LEMMA 2. The function f (t) = tq logt is operator convex on [0,∞) for 0 < δ �
q � 1 .
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Proof. Let ε ∈ (0,1) . Then, the function log(t + ε) satisfies in the assumptions
of Lemma 1 and so tq log(t + ε) is operator convex. Hence, when ε → 0 we see that
the function f (t) = tq logt is operator convex for 0 < δ � q � 1. �

THEOREM 1. Let 0 � p � 1 , 0 < δ � q � 1 and also let {A1,A2, ...,An} and
{B1,B2, ...,Bn} be two sequences of strictly positive operators on a Hilbert space H
such that ∑n

j=1 Aj#pB j � I . Then,

n

∑
j=1

Sp+q(Aj|Bj) � Vp(t0)q logVp(t0)− (tq0 logt0)Up (5)

for fixed real number t0 > 0 and

n

∑
j=1

Sp−q(Aj|Bj) � −Wp(t0)q logWp(t0)+ (tq0 logt0)Up (6)

for fixed real number t0 > 0 .

Proof. We apply Proposition 1 (iii) to state the following inequality for any strictly
positive operator Tj > 0 for j = 1,2, ...,n and for any fixed real number t0 > 0, since
by Lemma 2 the function tq logt is operator convex for t > 0 and 0 < δ � q � 1:

( n

∑
j=1

C∗
j TjCj + t0(I−

n

∑
j=1

C∗
jCj

)q
log(

n

∑
j=1

C∗
j TjCj + t0(I−

n

∑
j=1

C∗
jCj))

�
n

∑
j=1

C∗
j T

q
j (logTj)Cj + tq0 logt0(I−

n

∑
j=1

C∗
jCj), (7)

where ∑n
j=1C∗

jCj � I . Note that ∑n
j=1C∗

jCj = ∑n
j=1 Aj#pB j and hence ∑n

j=1 Aj#pB j �
I . Set Tj = (A−1/2

j B jA
−1/2
j )α for a real number α and Cj = (A−1/2

j B jA
−1/2
j )

p
2 A1/2

j in
(7). Then, (7) entails that

( n

∑
j=1

A1/2
j (A−1/2

j B jA
−1/2
j )p+αA1/2

j + t0(I−
n

∑
j=1

Aj#pB j)
)q

× log(
n

∑
j=1

A1/2
j (A−1/2

j B jA
−1/2
j )p+αA1/2

j + t0(I−
n

∑
j=1

Aj#pB j))

�
n

∑
j=1

A1/2
j (A−1/2

j B jA
−1/2
j )p+αq

(
log(A−1/2

j B jA
−1/2
j )α

)
A1/2

j

+ tq0 log t0(I−
n

∑
j=1

Aj#pB j).
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Hence,

( n

∑
j=1

Aj#p+αBj + t0(I−
n

∑
j=1

Aj#pB j)
)q

log(
n

∑
j=1

Aj#p+αBj + t0(I−
n

∑
j=1

Aj#pB j))

� α
n

∑
j=1

Sp+αq(Aj|Bj)+ tq0 logt0(I−
n

∑
j=1

Aj#pB j). (8)

Setting α = 1 and α = −1 in (8) respectively and using our notation, we have

Vp(t0)q logVp(t0) �
n

∑
j=1

Sp+q(Aj|Bj)+ (tq0 log t0)Up

for fixed real number t0 > 0 and

−Wp(t0)q logWp(t0) �
n

∑
j=1

Sp−q(Aj|Bj)− (tq0 logt0)Up.

for fixed real number t0 > 0. �
Applying Theorem 1 we give the following result:

COROLLARY 1. Let 0 � p � 1 , 0 < δ � q � 1 and also let {A1,A2, ...,An} and
{B1,B2, ...,Bn} be two sequences of strictly positive operators on a Hilbert space H
such that ∑n

j=1 Aj#pB j � I . Then,

n

∑
j=1

Sp+1(Aj|Bj) �
n

∑
j=1

Sp+q(Aj|Bj)

� Vp(t0)q logVp(t0)− (tq0 logt0)Up

� logVp(t0)− (t0 logt0)Up, (9)
n

∑
j=1

Sp−1(Aj|Bj) �
n

∑
j=1

Sp−q(Aj|Bj)

� −Wp(t0)q logWp(t0)+ (tq0 logt0)Up

� − logWp(t0)+ (t0 logt0)Up (10)

for fixed real number t0 > 0 .

Proof. The function ΓA(x) = Ax logA is an increasing function of x for every
A > 0. On the other hand, Sq(A|B) = A1/2ΓA−1/2BA−1/2(q)A1/2 and so the generalized
relative operator entropy is an increasing function of q for every A,B > 0. The results
now follow from Theorem 1 and the fact that the function ΓA(x) is increasing. �

REMARK 1. We note that the inequalities (9) and (10) recover the inequalities (2)
and (3) proved by Furuta in [7, Theorem 2.2], if we put q = 1.
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Utilizing inequalities (9) and (10) for the special case t0 = 1, we get the following
result. This is indeed a generalization and refinement of inequality (4) and its reverse
one proved by Furuta in Hilbert space operators [7, Corollary 2.3], that is, we could
obtain more precise estimation (11) than (4) thanks to operator convexity of the function
f (t) = tq logt for 0 < δ � q � 1.

COROLLARY 2. Let 0 � p � 1,0 < δ � q � 1 and also let {A1,A2, ...,An} and
{B1,B2, ...,Bn} be two sequences of strictly positive operators on a Hilbert space H
such that ∑n

j=1 Aj#pB j � I . Then,

n

∑
j=1

Sp+1(Aj|Bj) �
n

∑
j=1

Sp+q(Aj|Bj) � Vp(1)q logVp(1) � logVp(1)

�
n

∑
j=1

Sp(Aj|Bj) � − logWp(1) � −Wp(1)q logWp(1)

�
n

∑
j=1

Sp−q(Aj|Bj) �
n

∑
j=1

Sp−1(Aj|Bj). (11)

Proof. Since the generalized relative operator entropy Sx(A,B) is an increasing
function of x for every A,B > 0, the first inequality and eighth one in (11) hold. Let
t0 = 1 in (5) and (6) to obtain the second and seventh inequalities in (11). Since the
function ΓA(x) , defined in the proof of Corollary 1, is increasing on x for every A > 0,
the third and sixth inequalities in (11) are true. The inequality (1) entails the fourth and
fifth inequalities in (11) by putting t0 = 1. �

The original Shannon inequality and its reverse one state that

0 �
n

∑
j=1

a j log
b j

a j
� − log

n

∑
j=1

a2
j

b j

for two probability vectors {a1, ...,an} and {b1, ...,bn} with ∑n
j=1 a j = ∑n

j=1 b j = 1 and
a j,b j > 0. Furuta in [7, Corollary 2.4] gave an operator version of Shannon inequality
and its reverse one. We now give a refinement of the operator version of Shannon
inequality and its reverse one.

COROLLARY 3. Let {A1,A2, ...,An} and {B1,B2, ...,Bn} be two sequences of stric-
tly positive operators on a Hilbert space H such that ∑n

j=1 Aj � I and ∑n
j=1 Bj � I

and let 0 < δ � q � 1 . Then,

n

∑
j=1

S2(Aj|Bj) �
n

∑
j=1

Sq+1(Aj|Bj)

�
( n

∑
j=1

BjA
−1
j B j

)q
log

( n

∑
j=1

BjA
−1
j B j

)
� log

( n

∑
j=1

BjA
−1
j B j

)
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�
n

∑
j=1

S1(Aj|Bj) �
n

∑
j=1

Sq(Aj|Bj) � 0 �
n

∑
j=1

S1−q(Aj|Bj) �
n

∑
j=1

S(Aj|Bj)

� − log
( n

∑
j=1

BjA
−1
j B j

)
� −

( n

∑
j=1

BjA
−1
j B j

)q
log

( n

∑
j=1

BjA
−1
j B j

)

�
n

∑
j=1

S−q(Aj|Bj) �
n

∑
j=1

S−1(Aj|Bj). (12)

Proof. Set p = 0 and p = 1 in Corollary 2. Note that U0 = U1 = 0, V1(1) =
W0(1) = ∑n

j=1 BjA−1
j B j , and V0(1) =W1(1) = I . Combining the resulting inequalities,

we have (12). �
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