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KANTOROVICH PROBLEMS UNDER YOUNG TYPE CONSTRAINTS

FLAVIA-CORINA MITROI-SYMEONIDIS AND DANIEL ALEXANDRU ION

(Communicated by C. P. Niculescu)

Abstract. We explain how the Hermite-Hadamard inequality agrees with the primal Monge-
Kantorovich problems. We also focus onto a particular case of the dual Kantorovich problem,
by considering a version significantly affected by some Young type constraints.

1. Introduction

As it is well-known, the optimal transport is a simple, meaningful, natural and
therefore universal concept. See Cédric Villani [8]. In this paper we study the clas-
sical transportation problems with additional constraints (of Young type), proving that
whenever our constraints are not too restrictive, it is possible to describe the solution in
simple mathematical terms.

The framework is as follows. Let (X ,μ) and (Y ,ν) be two separable, complete,
probability metric spaces. Let c : X ×Y → R+ ∪{+∞} be a lower semicontinuous
cost function.

The so-called Monge transportation problem consists in the determination of a
Borel measurable map T : X → Y that realizes the infimum

inf
T#μ=ν

∫
X

c(x,T (x))dμ (x) , (Monge)

where T#μ represents the push-forward of μ through a Borel map T, defined by

(T#μ)(A) = μ
(
T−1 (A)

)
for every Borel subset A of Y . In fact, this is the abstract formulation in modern
terminology of a problem put in 1781 by Monge in the context of excavations and
embankments (1781). In other words one looks for the cheapest way of transporting
some given mass distribution onto another one. But the problem has been ill posed,
because there does not always exist T which satisfies T#μ = ν . Even when such a
map T exists, it can happen that the problem has no minimizer.
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We recall that a coupling of μ and ν is a measure π on X ×Y which admits μ
and ν as marginals on X and Y respectively, that is,

π (A×Y ) = μ (A) and π (X ×B) = ν (B) ,

for all measurable sets A ⊂ X , B ⊂ Y . We can interpret π (A×B) as the amount of
mass transported from A to B . For instance if this quantity is directly proportional to
ν (B) , then π coincides with the tensor product μ ⊗ ν . The measures π obtained by
coupling μ and ν are called transference plans and satisfy the condition∫

X ×Y
( f (x)+g(y))dπ (x,y) =

∫
X

f (x)dμ (x)+
∫

Y
g(y)dν (y) (1.1)

for all bounded and continuous functions f ,g. The reader may to consult [6] and [8]
for further background on this topic. We denote by Π(μ ,ν) the set of all couplings of
the measures μ and ν.

The so-called (primal) Monge-Kantorovich problem of optimal mass transporta-
tion (1942) consists in the determination of a minimizer π in Π(μ ,ν) for the optimal
transport cost

inf
π∈Π(μ,ν)

∫
X ×Y

c(x,y)dπ (x,y) . (Monge-Kantorovich)

The infimum is known as Kantorovich-Wasserstein distance. The set Π(μ ,ν) is not
empty (as we have seen, it contains the tensor product μ⊗ν ), hence the problem is well
posed. Due to the property of lower semicontinuity of the function c the infimum is
achieved, that is, optimal transference plans π exist, usually not uniquely determined.
Also, if T is a solution for the Monge problem, then we may define a plan π ∈ Π(μ ,ν)
such that the mass is not split during the transportation process, as

π (E) = (Id,T )#μ (E) = μ ({x : (x,T (x)) ∈ E}) (1.2)

for every Borel subset E of X ×Y . Obviously, in most cases the optimal couplings
in Π(μ ,ν) need not be generated by any one-to-one mapping T. Still, if μ is atomless
and a map T generates an optimal coupling, then T is also an optimal transport map
for the Monge problem.

We now recall the basics of Kantorovich duality. A pair of continuous ( f ,g) of a
continuous and bounded function f : X → R and a continuous and bounded function
g : Y → R is called competitive if f (x)+g(y) � c(x,y) for all (x,y) ∈ X ×Y . The
determination of a couple of so-called potentials which maximize

sup
( f ,g) competitive

{∫
X

f (x)dμ (x)+
∫

Y
g(y)dν (y)

}
(Kantorovich)

is called the dual Kantorovich problem (1942). Moreover,

c(x,y) = sup
( f ,g) competitive

{ f (x)+g(y)} π − a.e. ,
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where π is a solution of the primal problem.
A proper function f : X → [−∞,∞) is called c-concave (see for instance [6,

Definition 2.33]) if there exists a proper function g : Y → [−∞,∞) such that for all
x ∈ X we have

f (x) = inf
y∈Y

{c(x,y)−g(y)} . (1.3)

Its c-transform (c-conjugate) is f c, defined by

f c (y) = inf
x∈X

{c(x,y)− f (x)} .

For some structural results concerning the cost convexity, the reader is referred to our
paper [3]. Every solution ( f ,g) for the dual Kantorovich problem contains c-concave
conjugate functions, that is g = f c . Also, there is no duality gap, that is

sup
( f ,g) competitive

{∫
X

f (x)dμ (x)+
∫
Y

g(y)dν (y)
}

= inf
π∈Π(μ,ν)

∫
X ×Y

c(x,y)dπ (x,y) . (1.4)

For the particular case c(x,y) = xy we get from (1.3) the usual definition of concave
functions.

The following result is interesting in itself.

PROPOSITION 1. Let π ∈ Π(μ ,ν) . Then

π ((X ×Y )\(A×B)) � μ (X \A)+ ν (Y \B)

for all measurable sets A ⊂ X , B ⊂ Y . Equality holds if and only if

π ((X \A)× (Y \B)) = 0.

Proof. We successively derive that

π ((X ×Y )\(A×B))� π ((X \A)×Y )+π (X × (Y \B))= μ (X \A)+ν (Y \B) .

The equality case is obvious. �
For the reader’s convenience we recall the Hermite-Hadamard inequality which

will be closer investigated in the next section through primal Monge-Kantorovich prob-
lems.

If μ is a Borel probability measure on an interval [a,b] with barycenter

bμ =
∫ b

a
xdμ (x) ,

then for every continuous convex function f : [a,b] → R we have

f
(
bμ
)

�
∫ b

a
f (x)dμ (x) � b−bμ

b−a
f (a)+

bμ −a

b−a
f (b) .
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DEFINITION 1. A strictly increasing continuous function f : [0,∞)→ [0,∞) such
that f (0) = 0 and lim

x→∞
f (x) = ∞ is called Young function (Y-function).

Obviously the inverse function of a Y-function is again a Y-function.
Our approach to the dual Kantorovich problem is based on Young’s inequality

which asserts that every Y-function verifies an inequality of the following form,

ab �
∫ a

0
f (x)dx+

∫ b

0
f−1 (y)dy,

whenever a and b are nonnegative real numbers. The equality occurs if and only if
f (a) = b .

We shall also need the following reverse of Young’s inequality obtained by A.
Witkowski [9].

LEMMA 1. Let f be continuous and strictly increasing. The following inequality
holds:

min

{
1,

b
f (a)

}∫ a

0
f (x)dx+min

{
1,

a
f−1 (b)

}∫ b

0
f−1 (y)dy � ab.

Equality holds iff b = f (a) .

The aims of this paper are twofold. Firstly, we describe how the primal Monge-
Kantorovich problems help us understand the Hermite-Hadamard inequality. Secondly,
we discuss the dual Kantorovich type problem subjected to some additional constraints
of Young type and investigate how the solution of such a problem can generate solutions
for the classical optimization problems discussed above.

2. Mass transfer and the Hermite-Hadamard inequality

The mass transfer theory is strongly related to the mechanism of the Hermite-
Hadamard inequality.

EXAMPLE 1. (the quadratic cost c(x,y) = 1
2 |x− y|2 ) Let us have a closer look at

the quadratic case of the quadratic cost. The transportation cost of the mass ν0 = δbμ

to ν1 = b−bμ
b−a δa + bμ−a

b−a δb is

∫
[a,b]2

c(x,y)dν0⊗ν1 (x,y) =
∫ b

a
c
(
bμ ,y

)
dν1 (y)

=
b−bμ

b−a
c
(
bμ ,a

)
+

bμ −a

b−a
c
(
bμ ,b

)
=

1
2

(
bμ −a

)(
b−bμ

)
.
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When we transport the measure ν0 = δbμ to μ , the transportation cost is given by

∫
[a,b]2

c(x,y)dν0⊗ μ (x,y) =
∫ b

a

1
2

∣∣x−bμ
∣∣2 dμ (x) .

The Hermite-Hadamard inequality applied to f (x) =
∣∣x−bμ

∣∣2 yields

∫ b

a

∣∣x−bμ
∣∣2 dμ (x) �

(
bμ −a

)(
b−bμ

)
,

hence the transfer of the mass ν0 to μ is cheaper than the transfer of the mass ν0 to
ν1 . Our result agrees with the one obtained in [5].

EXAMPLE 2. (the cost c(x,y) = |x− y|) We discuss the case, originally consid-
ered by Monge, where the cost is the euclidean distance. The transportation cost of the
mass ν0 = δbμ to ν1 = b−bμ

b−a δa + bμ−a
b−a δb is

∫
[a,b]2

c(x,y)dν0⊗ν1 (x,y) = 2

(
bμ −a

)(
b−bμ

)
b−a

.

The transport of the measure ν0 = δbμ to μ costs

∫
[a,b]2

c(x,y)dν0⊗ μ (x,y) =
∫ b

a

∣∣x−bμ
∣∣dμ (x) .

Again, applying the Hermite-Hadamard inequality to f (x) =
∣∣x−bμ

∣∣ yields

∫ b

a

∣∣x−bμ
∣∣dμ (x) � b−bμ

b−a

∣∣a−bμ
∣∣+ bμ −a

b−a

∣∣b−bμ
∣∣

= 2

(
bμ −a

)(
b−bμ

)
b−a

.

Emphasis is now placed on a more extended conclusion: the Hermite-Hadamard
inequality agrees this way with Monge-Kantorovich problems for any convex cost
function c(|x− y|) . Note that in both examples we had Π(ν0,ν1) = {ν0 ⊗ν1} and
Π(ν0,μ) = {ν0 ⊗ μ} .

REMARK 1. Concerning the previous example we see that when μ coincides with
the normalized Lebesgue measure λ/(b−a) we get∫

[a,b]2
|x− y|dν0⊗ν1 (x,y) = 2

∫
[a,b]2

|x− y|dν0⊗ μ (x,y) =
b−a

2
,

which has a nice and very intuitive interpretation: the cost of the transfer from ν0 to
λ/(b−a) equals the cost of the transfer from λ/(b−a) to ν1. Indeed, a minimizer
(among joint measures Π(λ/(b−a),ν1) ) for the optimal transport cost

inf
Π(λ/(b−a),ν1)

∫
[a,b]2

|x− y|dπ (x,y)
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is given by

π =

{
2λ/(b−a)⊗ 1

2 δa on
[
a, a+b

2

]× [a,b]

2λ/(b−a)⊗ 1
2 δb on

[
a+b
2 ,b

]× [a,b]
.

One has∫
[a,b]2

|x− y|dπ (x,y) =
∫
[a, a+b

2 ]×[a,b]
|x− y|dπ (x,y)+

∫
[ a+b

2 ,b]×[a,b]
|x− y|dπ (x,y)

=
b−a

4
.

We stress that Π(λ/(b−a),ν1) �= {λ/(b−a)⊗ν1} .

REMARK 2. For the cost function c(x,y) = |x− y| , the cost of the transfer from
ν1 to ν0 (which, of course, has the same value as the cost of the transfer from ν0 to
ν1 ) equals the cost of the transfer from ν1 to λ/(b−a) accordingly to the transport
plan ν1⊗λ/(b−a):

∫
[a,b]2

|x− y|dν1⊗λ/(b−a) =
b−a

2
.

3. The dual Young-Kantorovich problem

Let c : [0,a]× [0,b] → R+ and f be a Y-function. The function f is called Y-
competitive relative to the cost c if f (x)+ f−1 (y)� c(x,y) for all (x,y)∈ [0,a]× [0,b] .
Furthermore, we take the cost c such that the set of Y-competitive functions is not
empty.

If we put

X = A = [0,a] , Y = B = [0,b] , π ∈ Π(λ/a,λ/b)

we obtain from (1.1)

∫
[0,a]×[0,b]

(
f (x)+ f−1 (y)

)
dπ (x,y) =

1
a

∫ a

0
f (x)dx+

1
b

∫ b

0
f−1 (y)dy.

We shall replace the usual dual Kantorovich optimization problem over the set of
competitive pairs of functions, by the optimization over the smaller set which consists
of Y-competitive functions.

DEFINITION 2. The dual Young-Kantorovich optimization problem (Young type
constraints added to Kantorovich problem): Find a maximizer for

sup
f Y-competitive

{
1
a

∫ a

0
f (x)dx+

1
b

∫ b

0
f−1 (y)dy

}
.
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We will have

sup
f Y-competitive

{
1
a

∫ a

0
f (x)dx+

1
b

∫ b

0
f−1 (y)dy

}

� inf
π∈Π(λ/a,λ/b)

∫
[0,a]×[0,b]

c(x,y)dπ (x,y) .

LEMMA 2. Let f be a Y-function. It holds

1
a

∫ a

0
f (x)dx+

1
b

∫ b

0
f−1 (y)dy �

(
1
a
− 1

b

)∫ a

0
f (x)dx+a,

for all a,b > 0. Equality holds iff b = f (a) .

Proof. It follows directly from Young’s inequality. �

PROPOSITION 2. For all Y-competitive functions f it holds

sup
f Y-competitive

{(
1
a
− 1

b

)∫ a

0
f (x)dx+a

}
� inf

π∈Π(λ/a,λ/b)

∫
[0,a]×[0,b]

c(x,y)dπ (x,y) .

Proof. We use Young’s inequality and Lemma 2. �
A nice counterpart of Lemma 2 with reversed inequality sign reads as follows:

THEOREM 1. Let f be a Y-function. The following inequality holds:

1
a

∫ a

0
f (x)dx+

1
b

∫ b

0
f−1 (y)dy �

(
1
a
− 1

f (a)

)∫ a

0
f (x)dx+a,

for all b � f (a) . Equality holds iff b = f (a) .

Proof. We apply Lemma 1 and get

b
f (a)

∫ a

0
f (x)dx+

∫ b

0
f−1 (y)dy � ab.

Hence

1
a

∫ a

0
f (x)dx+

1
b

∫ b

0
f−1 (y)dy

� 1
a

∫ a

0
f (x)dx+

1
b

(
ab− b

f (a)

∫ a

0
f (x)dx

)

=
(

1
a
− 1

f (a)

)∫ a

0
f (x)dx+a.

This proves the claim. �
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REMARK 3. Theorem1 becomes useful when we try to solve the followingMonge-
Kantorovich problem:

sup
π∈Π(λ/a,λ/b)

∫
[0,a]×[0,b]

c(x,y)dπ (x,y)

(this means that the function c represents the profit). Then it holds

sup
π∈Π(λ/a,λ/b)

∫
[0,a]×[0,b]

c(x,y)dπ (x,y) �
(

1
a
− 1

f (a)

)∫ a

0
f (x)dx+a,

for all Y-functions f which satisfy f (x)+ f−1 (y) � c(x,y) .

4. Dealing with the profit concept

Let K : [0,∞)× [0,∞) → [0,∞) be a Lebesgue locally integrable function. Let
c : [0,a]× [0,b] → R+,

c(x,y) =
∫ x

0

∫ y

0
K (s,t)dtds.

In order to maintain the notation we continue to call it cost throughout this section,
but its true economical meaning here is of a profit (gain, income) function. This is also
the reason why we keep the above names of the optimization problems, even if due
to the change of the meaning we switch the discussion replacing sup by inf and vice
versa.

We will need the following result.

PROPOSITION 3. ([4]) Let f be a Y-function . Then for every x,y > 0 we have

∫ x

0

∫ y

0
K (s, t)dtds �

∫ x

0

(∫ f (s)

0
K (s,t)dt

)
ds+

∫ y

0

(∫ f−1(t)

0
K (s,t)ds

)
dt.

If in addition K is strictly positive almost everywhere, then the equality occurs if and
only if y = f (x) .

Let the potentials of f and f−1 be

F(x) =
∫ x

0

(∫ f (s)

0
K (s,t)dt

)
ds, x � 0 (4.1)

and

G(y) =
∫ y

0

(∫ f−1(t)

0
K (s,t)ds

)
dt, y � 0. (4.2)

The functions F and G verify the relations Fc = G and Gc = F (due to the equality
case as specified in the statement of Proposition 3), so they are both c-convex. Here

Gc (x) = sup
y∈[0,b]

{c(x,y)−G(y)} ,

Fc (y) = sup
x∈[0,a]

{c(x,y)−F (x)} .
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The inverse of a map with a c-convex potential has also a c-convex potential, and the
two potentials are c-transforms of each other. This agrees for K ≡ 1 with the usual
convexity and then we are dealing with Fenchel transforms.

DEFINITION 3. The dual *-Young Kantorovich (dual *-YK) optimization prob-
lem states: Find a minimizer for

inf
f Y-function

I[ f ].

Here

I[ f ] =
1
a

∫ a

0
F (x)dx+

1
b

∫ b

0
G(y)dy.

Taking into account (1.4), we note that

sup
π∈Π(λ/a,λ/b)

∫
[0,a]×[0,b]

c(x,y)dπ (x,y) � inf
f Y-function

I[ f ]. (4.3)

One can check that (4.3) can also be obtained from Proposition 3.
Let π ∈ Π(λ/a,λ/b) be the solution of Monge-Kantorovich problem. Let f be

a minimizer (if it exists over the constraint set of Y-functions) for the dual *-YK prob-
lem. If (4.3) holds with equality sign (in other words if the dual *-Young Kantorovich
problem has no duality gap) then f satisfies∫

[0,a]×[0,b]
c(x,y)dπ (x,y) = I[ f ] =

∫
[0,a]×[0,b]

(F (x)+G(y))dπ (x,y) ,

whence
c(x,y) = F (x)+G(y) , π − a.e.. (4.4)

From Proposition 3 we see that (4.4) holds if and only if y = f (x) , hence

c(x, f (x)) = F (x)+G( f (x)) , (4.5)

that is, we arrived at the following optimality criterion.

THEOREM 2. Let K be such that the dual *-YK optimization problem has the
Young function f as solution without duality gap. Then

i) the pair (F,G) given by (4.1) and (4.2) is a minimizer of the dual Kantorovich
problem

inf
u(x)+v(y)�c(x,y)

{
1
a

∫ a

0
u(x)dx+

1
b

∫ b

0
v(y)dy

}
; (4.6)

ii) the function f is a solution of the Monge problem

sup
T#λ/a=λ/b

∫ a

0
c(x,T (x))dx; (4.7)

iii) the coupling (Id, f )#λ/a is a maximizer of the Monge-Kantorovich problem

sup
π∈Π(λ/a,λ/b)

∫
[0,a]×[0,b]

c(x,y)dπ (x,y) . (4.8)
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Proof. The items i) and ii) are straightforward according to the discussion above.
The item iii) follows from (1.2) and ii). �

REMARK 4. Accordingly to (4.4) and (4.5), the support of the optimal transport
plan π is concentrated on the graph of f . This is in fact the meaning of Theorem 2,
iii). Hence solving the dual *-YK problem (such that the gap duality vanishes) reduces
to the problem of finding a transport plan π ∈ Π(λ/a,λ/b) concentrated on the graph
of a Y-function.

REMARK 5. We stress that problems like (4.6), (4.7), (4.8) appear not only for
optimizations which involve profit functions (see the optimal pricing policies discussed
in [2]), but also during the investigation of some particular cost functions. See for
example [7].

Quadratic costs are of interest in many practical applications, e.g. in cosmol-
ogy, where some of the methods of reconstructing the early Universe correspond to a
quadratic cost (see the Monge-Ampère-Kantorovich method in [1]). It is also known
that for quadratic costs the optimal map for the Monge problem exists and is unique.
Taking into account the previous theorem we can also infer that in this case the dual
*-YK optimization problem has at most one solution.

EXAMPLE 3. In the particular case K (s,t) ≡ 1, that is, c(x,y) = xy (quadratic),
the dual *-YK problem admits as unique minimizer the Y-function f : [0,a] → [0,b] ,
f (x) = b

ax. Indeed, then

F(x) =
bx2

2a
and G(y) =

ay2

2b
.

Obviously it satisfies f#λ/a = λ/b. For π = (Id, f )#λ/a, concentrated on the graph
of f , it holds ∫

[0,a]×[0,b]
xydπ (x,y) =

∫ a

0
x f (x)

dx
a

=
ab
3

.

A straightforward computation gives

1
a

∫ a

0
F (x)dx+

1
b

∫ b

0
G(y)dy =

ab
3

,

hence f solves the dual *-YK optimization problem.
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