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UNIMODALITY OF CERTAIN PARAMETRIC INTEGRALS
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Abstract. The unimodality of the functions represented as certain parametric integrals is consid-
ered. A crucial part of the proof is based on Kemperman’s necessary and sufficient condition for
the unimodality of all mixtures of a given family of functions.

Let p be any real number. Let F stand for the set of all concave (strictly) in-
creasing continuous functions f : [0,1] → R with f (0) = 0. Let us say that a function
F : (0,∞) → R is (strictly) unimodal if F is increasing on (0,yF ] and decreasing on
[yF ,∞) , for some yF ∈ (0,∞) .

Now we are prepared to state the result presented in this note:

THEOREM 1. The following two conditions are equivalent to each other:

(I) for all f ∈ F the function Fp, f : (0,∞) → R defined by the formula

Fp, f (y) :=
∫ 1

0

yp dx
(y+ f (x))2

is unimodal;

(II) p ∈ [1,2) .

One may consider Fp, f a mixture of functions of the form

(0,∞) � y �→ yp

(y+a)2 with a ∈ (0,∞), (1)

which are unimodal if p ∈ (0,2) . Of course, not all mixtures of unimodal functions
are unimodal. Kemperman [3] provided necessary and sufficient conditions for the
unimodality of all mixtures of a given family of functions. However, because of the
condition f ∈ F imposed on the functions f in Theorem 1, Fp, f is not an arbitrary
mixture of the functions of the form (1). So, some work will be needed in order to
make adequate use of Kemperman’s result. Namely, it will be shown that without loss
of generality (w.l.o.g.) Fp, f may be taken to be an arbitrary mixture of functions of the
form (3).
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Proof of Theorem 1. In this proof, it is assumed that f ∈ F and y ∈ (0,∞) .
Clearly, the function Fp, f is monotonically decreasing if p ∈ (−∞,0] and mono-

tonically increasing if p ∈ [2,∞) . So, it remains to consider

p ∈ (0,2). (2)

Next, to prove that Fp, f is unimodal, it is enough to show that Fp, f is non-strictly
unimodal in the sense that for some yp, f ∈ (0,∞) the function Fp, f is non-decreasing on
(0,yp, f ] and non-increasing on [yp, f ,∞) . Indeed, Fp, f is clearly real-analytic on (0,∞)
and hence can be constant on an nonempty open subinterval of (0,∞) only if Fp, f is
constant on (0,∞) . But Fp, f (0+) = 0, whereas Fp, f > 0 on (0,∞) . Thus, to prove
that Fp, f is unimodal, it is enough to show that it is the pointwise limit of a sequence
of non-strictly unimodal functions on (0,∞) .

Consider the inverse function g := f−1 : [0,b]→ [0,1] , where

b := f (1) ∈ (0,∞).

Then g is an increasing convex function with g(0) = 0. Let g′ be the left derivative
of g , with g′(0) := 0. Then g′ : [0,b] → R is a non-decreasing function, which is
left-continuous on (0,b] . So, for all t ∈ [0,b]

g(t) =
∫ t

0
g′(u)du =

∫ t

0
du

∫
[0,u)

dg′(a) =
∫

[0,t)
dg′(a)

∫ t

a
du =

∫
[0,b)

dg′(a)(t −a)+,

by Fubini’s theorem, where x+ := 0 ∨ x . Hence, by the change of variables t =
f (x) ⇐⇒ x = g(t) and again Fubini’s theorem,

y−pFp, f (y) =
∫

[0,b]

dg(t)
(y+ t)2 =

∫
[0,b)

dg′(a)
∫

[0,b]

dt(t −a)+
(y+ t)2 =

∫
[0,b)

dg′(a)
∫ b

a

dt
(y+ t)2

=
∫

[0,b)
dg′(a)

b−a
(y+b)(y+a)

for y ∈ (0,∞) . By rescaling z := y/b , w.l.o.g. b = 1.
So, for each real p , the unimodality of Fp, f for all the functions f ∈ F is equiv-

alent to the unimodality of all (say discrete) mixtures
(
that is, all linear combinations

with nonnegative coefficients
)

of the functions of the form

(0,∞) � y �→ gp,a(y) :=
yp

(y+1)(y+a)
with a ∈ (0,1] . (3)

Accordingly, assume in the sequel that (p,a,y) ∈ (0,2)× (0,1]× (0,∞) . Note that

g1;p,a(y) := g′p,a(y)(1+ y)2(a+ y)2y1−p = (a+ y)(py+ p− y)− y(y+1) (4)

equals g′p,a(y) in sign. Moreover, g′1;p,a(y) = 2(p− 2)y + (p− 1)(1 + a) decreases
in y ∈ (0,∞) from (p − 1)(1 + a) to −∞ . So, g1;p,a decreases on (0,∞) if p ∈
(0,1] , and g1;p,a switches from increase on

(
0,y1;p,a

]
to decrease on

[
y1;p,a,∞

)
if
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p ∈ (1,2) , where y1;p,a := (p−1)(1+a)/(4−2p) . At that, g1;p,a(0+) = ap > 0 and
g1;p,a(∞−) = −∞ < 0. It follows that, for each pair (p,a) ∈ (0,2)× (0,1] , there is a
unique (mode) mp,a ∈ (0,∞) of the function gp,a such that

g′p,a(y)

⎧⎪⎨
⎪⎩

> 0 if y ∈ (0,mp,a),
= 0 if y = mp,a,

< 0 if y ∈ (mp,a,∞).
(5)

Further, if y = mp,a , then g1;p,a(y) = 0. This and (4) imply
∂

∂a
g1;p,a(y) = py+ p−y =

y(y+1)
a+ y

> 0 at y = mp,a . So, g1;p,ã(mp,a) > 0 and hence g′p,ã(mp,a) > 0 and hence, by

(5), mp,a ∈ (0,mp,ã) for all a∈ (0,1) and all ã in a right neighborhood of a . Similarly,
mp,a ∈ (mp,ã,∞) for all a∈ (0,1] and all ã in a left neighborhood of a . Thus, the mode
mp,a is increasing in a ∈ (0,1] .

Take now any a1 and a2 such that 0 � a1 < a2 � 1. Then mp,a1 < mp,a2 , by the
monotonicity of mp,a in a . Moreover, by (5) and (4), the condition

mp,a1 < y < mp,a2 (6)

is equivalent to g1;p,a1(y) < 0 < g1;p,a2(y) , which (together with the condition 0 � a1 <
a2 � 1) in turn reduces to

y ∈ (0,∞) &
2y

1+ y
< p <

1+2y
1+ y

& 0 < a1 < ap,y & ap,y < a2 � 1, (7)

where

ap,y :=
y− py+2y2− py2

p− y+ py
∈ (0,1), (8)

and at that p− y+ py > 0.
Let now Dgp,a(y) := g′p,a(y)(1+ y)2y1−p and DDgp,a(y) := g′′p,a(y)(1+ y)3 y2−p .

Then, by Remark 1 in [3], all mixtures (in a ) of the functions gp,a are unimodal iff

dp,a1,a2(y) :=
∣∣∣∣Dgp,a1(y) DDgp,a1(y)
Dgp,a2(y) DDgp,a2(y)

∣∣∣∣ (a1 + y)3(a2 + y)3

y(1+ y)2(a2−a1)
=(a1 +a2)(p−1)y(py+ p−2y)+a1a2p(py+ p− y+1)

+ (p−2)y2(py+ p−3y−1)� 0

(9)

whenever (6) or, equivalently, (7) holds.
Now, in view of (2), the implication (I) =⇒ (II) of Theorem 1 follows, because in

the case p ∈ (0,1) one has limy↓0 lima↓0 1
y dp,a,1(y) = (p−1)p < 0, and for p ∈ (0,1)

the limit transition limy↓0 lima↓0 is allowed by the condition (7) with (a1,a2) = (a,1) ,
because this condition can be rewritten for p ∈ (0,1) as 0 < y < p

2−p & 0 < a < ap,y .
To complete the proof of the implication (II) =⇒ (I) of Theorem 1, assume indeed

that p ∈ [1,2) and note that dp,a1,a2(y) is affine in a1 and in a2 . So, in view of (7), it
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suffices to check the inequality in (9) just for the pairs

(a1,a2) ∈
{
(0,ap,y),(0,1),(ap,y,ap,y),(ap,y,1)

}
, assuming

2y
1+ y

< p <
1+2y
1+ y

.

But

dp,0,ap,y(y)
p− y+ py

y2 = dp,ap,y,ap,y(y)
(p− y+ py)2

y2(1+ y)
= dp,ap,y,1(y)

p− y+ py
y(1+ y)

= d∗;y(p) := −p2(1+ y)2 + p(1+ y)(1+3y)−2y2

is concave in p , with d∗;y( 2y
1+y) = 2y > 0 and d∗;y( 1+2y

1+y ) = y > 0. So, d∗;y(p) > 0 and

hence dp,a1,a2(y) > 0 for (a1,a2) ∈
{
(0,ap,y),(ap,y,ap,y),(ap,y,1)

}
. Next,

dp,∗(y) := 1
y dp,0,1(y) = (3− p)(2− p)y2−2(2− p)(p−1)y+(p−1)p

is convex in y , with dp,∗( p−1
2−p) = p−1

2−p and d′
p,∗(

p−1
2−p) = 2(p− 1) , so that dp,∗(y) > 0

and hence dp,0,1(y) > 0 if p−1
2−p < y < p

2−p , which latter condition is equivalent
(
for

y∈ (0,∞) and p∈ (0,2)
)

to the condition 2y
1+y < p < 1+2y

1+y in (7). Thus, the implication
(II) =⇒ (I) of Theorem 1 is established as well. �

Theorem 1 is an answer to an extension of the question posted at [1]. A general
treatment of unimodality and convexity can be found in [2].
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