
Mathematical
Inequalities

& Applications

Volume 19, Number 1 (2016), 385–393 doi:10.7153/mia-19-30

ESSENTIAL NORM OF INTEGRAL
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YECHENG SHI AND SONGXIAO LI
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Abstract. In this paper, we investigate the essential norm of two classes of integral operators on
Morrey type spaces H2

K . As an application, we characterize the compactness of these operators.

1. Introduction

Let D denote the open unit disk in the complex plane C and ∂D be its boundary.
As usual, H(D) denotes the class of all analytic functions on D . Let 0 < p < ∞ . The
Hardy space Hp consists of all f ∈ H(D) such that

‖ f‖p
Hp = sup

0<r<1

1
2π

∫ 2π

0
| f (reiθ )|pdθ < ∞.

As usual, H∞ denote the space of bounded analytic function. We say that an f ∈ H2

belongs to the BMOA space, if

‖ f‖2
∗ = sup

I⊆∂D

1
|I|

∫
I
| f (ζ )− fI |2 dζ

2π
< ∞.

Here

fI =
1
|I|

∫
I
f (ζ )

dζ
2π

, I ⊆ ∂D.

Under the norm ‖ f‖BMOA = | f (0)|+ ‖ f‖∗ , BMOA is a Banach space. From [6], we
know that ‖ f‖∗ is comparable with supw∈D ‖ f ◦σw− f (w)‖H2 , where σw(z) = w−z

1−wz is
a Möbius transformation of D . We say that an f ∈ H(D) belongs to the VMOA space,
if

lim
|w|→1

‖ f ◦σw− f (w)‖H2 = 0.

Let K : [0,∞) → [0,∞) be a right-continuous and nondecreasing function. An
f ∈ H2 is said to belong to the Morrey type space, denoted by H2

K , if (see [29])

‖ f‖2
H2

K
= sup

I⊆∂D

1
K(|I|)

∫
I
| f (ζ )− fI |2 dζ

2π
< ∞.
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When K(t) = t , H2
K is just the BMOA space. When K(t) = tλ (0 < λ < 1) , the

space H2
K gives the classical Morrey space L 2,λ , which was first studied by Wu and

Xie in [28] in the case of the unit disk. H2
K was recently introduced by Wulan and

Zhou in [29]. Morrey space was first studied in [16] by Morrey for solutions of partial
differential equations.

Let g ∈ H(D) . In [17], Pommerenke introduced an integral operator as follows.

Jg f (z) =
∫ z

0
f (ξ )g′(ξ )dξ , f ∈ H(D), z ∈ D.

The operator Jg is called the Volterra type operator, which can be seen as a general-
ization of the classical Cesàro operator (see [3, 19]). Pommerenke showed that Jg is
bounded on H2 if and only if g ∈ BMOA . Aleman and Siskakis studied the operator
Jg on Hardy spaces and weighted Bergman spaces in [1, 2]. Similarly, the companion
integral operator was defined by

Ig f (z) =
∫ z

0
f ′(ξ )g(ξ )dξ , f ∈ H(D), z ∈ D.

The multiplication operator Mg is defined by

Mg f (z) = f (z)g(z), f ∈ H(D), z ∈ D.

It is easy to see that
Jg f + Ig f + f (0)g(0) = Mg f .

Recently, the boundedness, compactness and essential norm of the operators Jg and Ig
between some spaces of holomorphic functions, as well as their extensions on the unit
ball in C

n , were investigated, for example, in [1, 2, 7, 8, 10, 11, 12, 13, 14, 15, 19, 20,
21, 22, 23, 24, 25, 27, 30, 31, 32] (see also the related references therein).

In [10], the authors studied the operators Jg , Ig and Mg on the Morrey space L 2,λ

(0 < λ < 1) . Motivated by [10], Qian and the second author of this paper studied he
boundedness of Jg , Ig and Mg on the Morrey type space H2

K in [18]. We proved that,
under some conditions posed on K , Ig is bounded on H2

K if and only if g ∈ H∞ , as
well as Jg is bounded on H2

K if and only if g ∈ BMOA .
In this paper, we continue our study of these operators on the Morrey type space

H2
K and study the essential norm of Jg and Ig on H2

K . As an application, we get the
characterization of the compactness of Jg , Ig and Mg on H2

K .
Recall that the essential norm of a bounded linear operator T : X → Y is its dis-

tance to the set of compact operators S mapping X to Y , that is,

‖T‖e,X→Y = inf{‖T −S‖X→Y : S is compact},

where X and Y are two Banach spaces and ‖ · ‖X→Y is the operator norm.
For our aim, we need some constraints on K in the rest of this paper. By [4],

we may assume that K is defined on [0,1] and extend its domain to [0,∞) by setting
K(t) = K(1) for t > 1. We also assume that K(t) ≈ K(2t) . The symbol f ≈ g means
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that f � g � f . We say that f � g if there exists a constant C such that f � Cg .
Finally, we assume that ∫ 1

0

ϕK(s)
s

ds < ∞, (1)

∫ ∞

1

ϕK(s)
s2 ds < ∞, (2)

where
ϕK(s) = sup

0�t�1
K(st)/K(t), 0 < s < ∞.

2. Main results and proofs

In this section, we give our main results and proofs. For this purpose, we need
some auxiliary results.

LEMMA 1. [29] Let K satisfy the conditions (1) and (2). Then the following
statements are equivalent.

(1) f ∈ H2
K ;

(2)

sup
I⊆∂D

1
K(|I|)

∫
S(I)

| f ′(z)|2(1−|z|2)dA(z) < ∞,

where

S(I) =
{

z ∈ D : 1−|I|� |z| < 1 and
z
|z| ∈ I

}
;

(3)

sup
a∈D

1−|a|2
K(1−|a|2)

∫
D

| f ′(z)|2(1−|σa(z)|2)dA(z) < ∞.

LEMMA 2. [18] Let K satisfy the conditions (1) and (2). Suppose that f ∈ H2
K ,

then

| f (z)| �
‖ f‖H2

K

√
K(1−|z|2)√

(1−|z|2) , z ∈ D.

LEMMA 3. ([9, Lemma 3]) Suppose g ∈ BMOA. Then

dist(g,VMOA) ≈ limsup
r→1

‖g−gr‖BMOA ≈ limsup
|a|→1

‖g ◦σa−g(a)‖H2 .

Here gr(z) = g(rz) with 0 < r < 1 .

LEMMA 4. Suppose g ∈ BMOA and K satisfy the conditions (1) and (2). Then
Jgr : H2

K → H2
K is compact.
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Proof. Let { fn} be a sequence such that ‖ fn‖H2
K

� 1 and fn → 0 uinformly on

compact subsets of D as n → ∞ . To prove that Jgr : H2
K → H2

K is compact, we only
need to show that limn→∞ ‖Jgr fn‖H2

K
= 0. Notice that gr(z) = g(rz) , we have

|g′r(z)| � |g′(rz)| � ‖g‖BMOA

1−|rz|2 � ‖g‖BMOA

1− r2 , z ∈ D.

Since K satisfies (2), by Lemma 2.2 of [5], there exists a small enough c > 0 such that
ϕK(t) � t1−c, t � 1. We have (see the proof of Theorem 1 of [18])

sup
a∈D

(1−|a|2)2K(1−|z|2)
K(1−|a|2)|1−az|2 � 1.

Thus, by Lemma 1 we have

‖Jgr fn‖H2
K

≈sup
a∈D

(
1−|a|2

K(1−|a|2)
∫

D

| fn(z)|2|g′r(z)|2
(
1−|σa(z)|2

)
dA(z)

) 1
2

�‖g‖BMOA

1− r2 sup
a∈D

(
1−|a|2

K(1−|a|2)
∫

D

| fn(z)|2
(
1−|σa(z)|2

)
dA(z)

) 1
2

�‖g‖BMOA

1− r2

(∫
D

| fn(z)|2 1−|z|2
K(1−|z|2)

(
sup
a∈D

(1−|a|2)2K(1−|z|2)
K(1−|a|2)|1−az|2

)
dA(z)

) 1
2

�‖g‖BMOA

1− r2

(∫
D

| fn(z)|2 1−|z|2
K(1−|z|2)dA(z)

) 1
2

.

Note that

‖ fn‖H2
K

� 1 and | fn(z)|2 1−|z|2
K(1−|z|2) � 1,

by Lemma 2, the proof is finished by the Dominated Convergence Theorem. �

LEMMA 5. [26] Let X ,Y be two Banach spaces of analytic functions on D . Sup-
pose that

(1) The point evaluation functionals on X are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.

(3) T : X → Y is continuous when X and Y are given the topology of uniform con-
vergence on compact sets.

Then, T is a compact operator if and only if given a bounded sequence { fn} in X such
that fn → 0 uniformly on compact sets, then the sequence {T fn} converges to zero in
the norm of Y .
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THEOREM 1. Suppose g ∈ H(D) and K satisfy the conditions (1) and (2). If Ig
is bounded on H2

K , then
‖Ig‖e ≈ sup

z∈D

|g(z)| = ‖g‖∞.

Proof. From the result in [18], we know that ‖Ig‖ � supz∈D |g(z)| . Hence

‖Ig‖e = inf
S
‖Ig−S‖� ‖Ig‖ � sup

z∈D

|g(z)| = ‖g‖∞.

On the other hand, we choose the sequence {wn} ⊂ D such that |wn| → 1. Define

fn(z) =

√
K(1−|wn|2)

1−|wn|2 (σwn(z)−wn) , z ∈ D.

By the proof of Theorem 1 of [18], we see that ‖ fn‖H2
K

� 1. Moreover, fn converges

to zero uniformly on compact subsets of D . Then ‖S fn‖H2
K
→ 0 as n → ∞ for any

compact operator S on H2
K by Lemma 5. Hence

‖Ig−S‖� limsup
n→∞

‖(Ig−S) fn‖H2
K

� limsup
n→∞

(‖Ig fn‖H2
K
−‖S fn‖H2

K
)

= limsup
n→∞

‖Ig fn‖H2
K
.

In addition, by Lemma 1,

‖Ig fn‖H2
K

≈sup
a∈D

(
1−|a|2

K(1−|a|2)
∫

D

| f ′n(z)|2|g(z)|2 (
1−|σa(z)|2

)
dA(z)

) 1
2

�
(

1−|wn|2
K(1−|wn|2)

∫
D

K(1−|wn|2)(1−|wn|2)
|1−wnz|4 |g(z)|2 (

1−|σwn(z)|2
)
dA(z)

) 1
2

=
(∫

D

|σ ′
wn

(z)|2|g(z)|2 (
1−|σwn(z)|2

)
dA(z)

) 1
2

=
(∫

D

|(g ◦σwn) (z)|2 (
1−|z|2)dA(z)

) 1
2

�|g(wn)|.
Since wn ∈ D is arbitrary, we have

‖Ig‖e = inf
S
‖Ig−S‖� limsup

n→∞
‖Ig fn‖H2

K
� sup

z∈D

|g(z)| = ‖g‖∞.

The proof is completed. �
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THEOREM 2. Suppose K satisfy the conditions (1) and (2) and Jg : H2
K → H2

K is
bounded. Then Jg : H2

K → H2
K satisfies

‖Jg‖e ≈ dist(g,VMOA) ≈ limsup
|a|→1

‖g ◦σa−g(a)‖H2 .

Proof. Let {In} be the subarc sequence of ∂D such that limn→∞ |In| = 0. Denote
wn = (1−|In|)ζn , where ζn is the center of In , n = 1,2, ... . Then

1−|wn|2 ≈ |1−wnz| ≈ |In|, z ∈ S(In).

Thus, by K(2t) ≈ K(t) and nondecreasing of K , we know that

K(1−|wn|2) ≈ K(|In|), z ∈ S(In).

Take

hn(z) =
(1−|wn|2)

√
K(1−|wn|2)

(1−wnz)
3
2

, z ∈ D.

Then hn → 0 uniformly on the compact subsets of D as n → ∞ and ‖hn‖H2
K

� 1 by the

proof of Theorem 2 of [18]. Thus, for any compact operator S on H2
K , by Lemma 5 we

have
lim
n→∞

‖Shn‖H2
K

= 0.

Therefore

‖Jg−S‖� limsup
n→∞

(
‖Jghn‖H2

K
−‖Shn‖H2

K

)
= limsup

n→∞
‖Jghn‖H2

K

≈ limsup
n→∞

(
1

K(|In|)
∫

S(In)
|(Jghn)′(z)|2(1−|z|2)dA(z)

) 1
2

= limsup
n→∞

(
1

K(|In|)
∫

S(In)
|hn(z)|2|g′(z)|2(1−|z|2)dA(z)

) 1
2

≈ limsup
n→∞

√
1
|In|

∫
S(In)

|g′(z)|2(1−|z|2)dA(z).

Since {In} is arbitrary, we have

‖Jg‖e � limsup
|I|→0

√
1
|I|

∫
S(I)

|g′(z)|2(1−|z|2)dA(z).

By the boundedness of Jg : H2
K → H2

K , we see that g ∈ BMOA . It follows from the
proof of Lemma 3.4 of [19], for g ∈ BMOA ,

limsup
|a|→1

‖g ◦σa−g(a)‖H2 ≈ limsup
|I|→0

√
1
|I|

∫
S(I)

|g′(z)|2(1−|z|2)dA(z).
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Hence
‖Jg‖e � limsup

|a|→1
‖g ◦σa−g(a)‖H2 ≈ dist(g,VMOA).

On the other hand, by Lemma 4, Jgr : H2
K → H2

K is compact. Combining this with
Theorem 2 in [18] and the linearity of Jg respect to g , we get

‖Jg‖e � ‖Jg− Jgr‖ = ‖Jg−gr‖ ≈ ‖g−gr‖BMOA.

Hence, by Lemma 3 we obtain

‖Jg‖e � limsup
|r|→1

‖g−gr‖BMOA ≈ limsup
|a|→1

‖g ◦σa−g(a)‖H2

≈ dist(g,VMOA).

The proof is complete. �
From Theorems 1 and 2, we immediately get the following result.

COROLLARY 1. Suppose g ∈ H(D) and K satisfy the conditions (1) and (2).
Then

(i) Ig is compact on H2
K if and only if g = 0 .

(ii) Jg is compact on H2
K if and only if g ∈VMOA.

REMARK 1. If K(t) = tλ (0 < λ < 1) , then K satisfies our conditions and H2
K

is just the Morrey space L 2,λ . Hence our results generalize the results in [10]. If
K(t) = t , H2

K is the BMOA space. However K does not satisfy the condition (2).
Hence, our results do not include the case of BMOA space. In [19], Siskakis and Zhao
proved that Jg : BMOA → BMOA is compact if and only if

lim
|I|→0

(log 2
|I| )

2

|I|
∫

S(I)
|g′(z)|2(1−|z|2)dA(z) = 0.

THEOREM 3. Suppose that g ∈ H(D) and K satisfy the conditions (1) and (2).
Then Mg is compact on H2

K if and only if g = 0 .

Proof. If g = 0, it is obvious that Mg is a compact operator on H2
K .

Suppose Mg is compact on H2
K . For any wn ∈D such that |wn|→ 1, take the func-

tion hn defined in Theorem 2. By the compactness of Mg we have limn→∞ ‖Mghn‖H2
K

=
0. By Lemma 2, we obtain

|Mghn(z)| =
∣∣∣∣∣(1−|wn|2)

√
K(1−|wn|2)

(1−wnz)
3
2

g(z)

∣∣∣∣∣
�
‖Mghn‖H2

K

√
K(1−|z|2)√

(1−|z|2) .

Taking z = wn , we get |g(wn)| � ‖Mghn‖H2
K
. Let n → ∞ . We get limn→∞ g(wn) = 0.

Since {wn} is arbitrary sequence of D such that |wn| → 1, by the Maximum Modulus
Principle we deduce that g = 0. The proof is complete. �
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