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COMPRESSED SAMPLING INEQUALITIES

BY TCHAKALOFF’S THEOREM

MARCO VIANELLO

(Communicated by J. Pečarić)

Abstract. We show that a discrete version of Tchakaloff’s theorem on the existence of positive
algebraic cubature formulas, entails that the information required for multivariate polynomial
approximation can be suitably compressed.

1. Introduction

The purpose of this note is to give a sound theoretical foundation to a compression
technique, recently developed in [15], to reduce the sampling cardinality in multivariate
polynomial least-squares and multivariate polynomial meshes (on the notion of poly-
nomial mesh see, e.g., [4, 6, 9]).

We show that such a foundation can be obtained in a simple way by the well-
known Tchakaloff’s theorem, a deep result of cubature theory, that ensures existence
of positive algebraic cubature formulas of low cardinality. Originally stated and proved
by Tchakaloff [16] for compactly supported absolutely continuous measures with re-
spect to the Lebesgue measure, it has then been generalized to arbitrary (even discrete)
measures with finite moments; cf., e.g., [1, 14].

Here is a quite general version of the theorem, taken from [14, Thm. 1].

THEOREM 1. Let μ be a positive measure with compact support Ω in Rd and let
k be a fixed positive integer. Then there are s � dim(Pd

k ) points {ξ j} in Ω and positive
real numbers {λ j} such that

∫
Rd

p(x)dμ =
s

∑
j=1

λ j p(ξ j) (1)

for all p ∈ Pd
k .
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2. Compressed sampling

We use now a discrete instance of Tchakaloff’s theorem, to prove polynomial in-
equalities for compressed sampling.

PROPOSITION 1. Let X = {x1, . . . ,xM} be a P
d
n -determining finite subset of R

d ,
with M = card(X)> N = dim(Pd

2n) , and let σσσσ = (σ1, . . . ,σM)∈RM be positive weights.
Then there exist a subset A = {a1, . . . ,am} ⊂ X with m = card(A ) � N , and positive
weights wwww = (w1, . . . ,wm) ∈ R

m , such that, denoting by Ln f ∈ P
d
n the weighted least-

squares polynomial approximation on A to a function f defined on X , i.e.

‖ f −Ln f‖�2
wwww(A ) = min

p∈Pd
n

‖ f − p‖�2
wwww(A ) , (2)

the following estimate holds

‖Ln f‖�2σσσσ (X) �
√

μ(X)‖ f‖�∞(A) , μ(X) =
M

∑
i=1

σi , (3)

where m, A and wwww are independent of f .

Proof. Take Ω = X and μ = ∑M
i=1 σiδxi (the discrete measure with support X

and point masses {σi} ). By Theorem 1, applied for degree k = 2n , there exist a subset
A = {a1, . . . ,am}⊂X with m = card(A ) �N , and positive weights wwww =(w1, . . . ,wm) ,
such that

‖p‖2
�2σσσσ(X) =

M

∑
i=1

σi p
2(xi) =

m

∑
j=1

wj p
2(a j) = ‖p‖2

�2
wwww(A ) (4)

for all p ∈ Pd
n . Observe that, since X is Pd

n -determining (i.e., polynomials vanishing
there vanish everywhere), by (4) also A is P

d
n -determining.

Therefore, the weighted least-squares operator Ln : �2
wwww(A ) → Pd

n in (2) is well-
defined. Taking in (4) the polynomial p = Ln f (i.e., the extension of Ln f to X ), and
using the Pythagorean theorem in �2

wwww(A ) (Ln f being an orthogonal projection), and
the fact that ∑wj = μ(X) by (1), we get the chain of inequalities

‖Ln f‖2
�2σσσσ (X) = ‖Ln f‖2

�2
wwww(A ) � ‖ f‖2

�2
wwww(A ) �

m

∑
j=1

wj ‖ f‖2
�∞(A ) = μ(X)‖ f‖2

�∞(A) ,

that is (3). �
Estimate (3) has a number of significant consequences in sampling theory for mul-

tivariate polynomial approximation. For example, consider the following basic error
estimate for the weighted least-squares polynomial approximation on (X ,σσσσ) of a func-
tion f ∈C(K) , say Ln f , where K ⊇ X is a compact subset of Rd ,

‖ f −Ln f‖�2σσσσ (X) = min
p∈Pd

n

‖ f − p‖�2σσσσ (X) � ‖ f − p∗n‖�2σσσσ (X)

�
√

μ(X)‖ f − p∗n‖�∞(X) �
√

μ(X)‖ f − p∗n‖L∞(K) =
√

μ(X)En( f ;K) , (5)
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where p∗n is the best uniform approximation polynomial for f on K and En( f ;K) the
correspondingminimum error (for example K could be the closure of the convex hull of
the points). If K is a Jackson compact, (5) estimates the approximation quality through
the regularity of f , cf. [13].

On the other hand, consider the weighted least-squares polynomial approximation
on (A ,wwww) defined in (2). Since Ln is a projection operator, i.e., Lnp = p for all
p ∈ Pd

n , we can write the chain of inequalities

‖ f −Ln f‖�2
σσσσ (X) � ‖ f − p∗n‖�2

σσσσ (X) +‖Ln( f − p∗n)‖�2
σσσσ (X)

�
√

μ(X)
(‖ f − p∗n‖�∞(X) +‖ f − p∗n‖�∞(A )

)
� 2

√
μ(X)En( f ;K) , (6)

which shows that the �2
σσσσ (X) reconstruction error of a continuous function f by the

“compressed” least-squares operator Ln has a natural bound, with the same magnitude
of that appearing in (5) for the original “complete” least-squares operator Ln . “Com-
pressed” means that Ln f can be constructed by sampling f at less points than those
required by Ln f , and this becomes particularly significant when N � card(X) and/or
the sampling process is difficult or costly.

Another interesting situation occurs in the standard unweighted instance, σσσσ =
(1,1, . . . ,1) , when X = Xn is a (weakly) admissible polynomial mesh. We recall that a
Weakly Admissible Mesh (WAM) is a sequence of finite subsets of a multidimensional
Pd -determining compact set, say Xn ⊂ K ⊂ Rd (or Cd ), which are norming sets for
total-degree polynomial subspaces,

‖p‖L∞(K) � Cn ‖p‖�∞(Xn) , ∀p ∈ P
d
n , (7)

and both Cn and card(Xn) increase at most polynomiallywith n (necessarily card(Xn)�
dim(Pd

n) since Xn is Pd
n -determining). The positive number Cn is called the “constant”

of the WAM. When Cn ≡ C does not depend on n we speak of an Admissible Mesh
(AM), sometimes also called “polynomial mesh” in the literature [9, 11]. An AM is
said optimal if card(Xn) = O(nd) .

The notion of WAM has been introduced in the seminal paper [6] and since then
it has emerged as a powerful tool in multivariate polynomial approximation. We quote
among their properties that WAMs are preserved by affine transformations, can be con-
structed incrementally by finite union and product, and are stable under small perturba-
tions on Markov compacts. Moreover, WAMs are well-suited for uniform least-squares
approximation, and for polynomial interpolation at suitable extremal subsets, which are
approximate versions of Fekete and Leja points. Concerning various theoretical and
computational features of WAMs, and their role in multivariate polynomial approxima-
tion, we refer the reader, e.g., to [2, 4, 9, 11] and to the references therein.

Now, if Xn is a WAM, with

card(Xn) > N = dim(Pd
2n) =

(
2n+d

d

)
=

2d

d!
nd +O(nd−1) , (8)
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Proposition 1 entails that there exists a sequence of subsets An ⊂ Xn , card(An) � N ,
such that

‖Ln f‖L∞(K) � Cn ‖Ln f‖�∞(Xn) � Cn ‖Ln f‖�2(Xn)

� Cn

√
card(Xn)‖ f‖�∞(An) , (9)

which shows immediately, for example, that we can estimate the uniform norm of the
compressed least-squares operator as

‖Ln‖ = sup
f �=0

‖Ln f‖L∞(K)

‖ f‖L∞(K)
� Cn

√
card(Xn) . (10)

On the other hand, taking f = p ∈ Pd
n in (9), we get the following

PROPOSITION 2. If the compact set K ⊂ Rd has a (Weakly) Admissible Mesh Xn

with card(Xn) > dim(Pd
2n) , then it has also a Weakly Admissible Mesh An ⊂ Xn , with

constant C′
n = Cn

√
card(Xn) and card(An) � dim(Pd

2n) .

Existence proofs for WAMs and AMs typically resort to geometric properties of
the compact sets (cf., e.g., [3, 4, 5, 6, 8, 9, 12]). Few general results are known. One
concern Fekete interpolation points (points that maximize the absolute value of Van-
dermonde determinants), that always exist and form a WAM with card(Xn) = Cn =
dim(Pd

n) = O(nd) , but are very difficult to compute (and known analytically essentially
only in dimension one, interval or complex circle).

Another general class has been found (non constructively) in [2, Prop. 23], where
it is shown that any Pd -determining compact set of Cd has a “near optimal” AM with
Cn ≡C and card(Xn) = O((n logn)d) . Proposition 2 entails then immediately the fol-
lowing

COROLLARY 1. Let K ⊂ Rd be compact and Pd -determining. Then K has a
Weakly Admissible Mesh An with card(An)�dim(Pd

2n) and constant C′
n=O((n logn)d/2) .

Proposition 2 could be relevant from the point of view of applications, since it
guarantees the existence of low cardinality WAMs within high-cardinality WAMs. For
example, given a simple polygon with ν sides in R

2 , it is simple to construct by min-
imal triangulation and finite union of triangles an optimal AM for it, with Cn ≡C = 2
and card(Xn) = 4(ν − 2)n2 + O(n) ; cf. [5]. Proposition 2 says that we could ex-
tract from Xn a WAM An , with constant C′

n = O(n) and card(An) � 2n2 + O(n) ,
thus reducing the cardinality essentially by a factor 2(ν − 2) , which is substantial
when ν is large (notice that there are other known WAMs for polygons, with constant
Cn = O(log2 n) and card(Xn) = (ν −2)n2 +O(n) , cf. [8]).

In the spirit of the considerations above, we can also state the following general
result, which again is an immediate consequence of Proposition 2.

COROLLARY 2. Let K ⊂ Rd be compact and Pd -determining. If K has an op-
timal Admissible Mesh Xn (i.e., Cn ≡ C and card(Xn) = O(nd)) with card(Xn) >
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dim(Pd
2n) , then it has also a Weakly Admissible Mesh An ⊂ Xn with card(An) �

dim(Pd
2n) and constant C′

n = O(nd/2) .

Unfortunately, the known proofs of generalized Tchakaloff’s theorem are not con-
structive, so it cannot be used directly for the compression of least-squares or of poly-
nomial meshes. Nevertheless, it provides a foundation to the computational method
studied in [15]. Indeed, the computation of the nodes {a j} and positive weights {wj}
(cf. Proposition 1) is there formulated as the problem of finding a sparse nonnegative
solution to the underdeterminedVandermonde-like linear system (consider column vec-
tors)

Vtzzzz = αααα , V = (vi j) = (φ j(xi)) , αααα = Vtσσσσ , (11)

i = 1, . . . ,M , j = 1, . . . ,N , where span{φ1, . . . ,φN}= Pd
2n and αααα = (α1, . . . ,αN) is the

vector of dμ -moments of the polynomial basis {φ j} ,

α j =
∫

X
φ j(x)dμ =

M

∑
i=1

σi φ j(xi) .

Now, by the discrete version of Tchakaloff’s theorem, Proposition 1 ensures that
a nonnegative solution with at least M−N zero components exists. Therefore, we can
solve the underdetermined system (11) via the NNLS (Non Negative Least Squares)
quadratic programming problem

‖αααα −Vtzzzz‖2 = min‖αααα −Vtuuuu‖2 , uuuu ∈ R
M , uuuu � 0000 , (12)

for which several numerical algorithms are known, for example the active set opti-
mization algorithm by Lawson and Hanson [10] that computes a sparse solution. The
nonzero components of the solution vector zzzz correspond to the positive weights wwww and
allow to extract a subset A ⊂ X with card(A ) � N .

We refer the reader to [15] for the implementation details, as well as for an analysis
of the effect of the approximation error (a very small but nonzero residual ε = ‖αααα −
Vtzzzz‖2 ) on the compressed sampling inequalities (6), (9) and (10). A compression code
for WAMs, based on Proposition 2 and (12), has been inserted in the Matlab package
[7].
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