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ALMOST EVERYWHERE CONVERGENCE OF

DYADIC TRIANGULAR–FEJÉR MEANS OF

TWO–DIMENSIONAL WALSH–FOURIER SERIES

GYÖRGY GÁT AND USHANGI GOGINAVA

(Communicated by T. Erdélyi)

Abstract. It is proved that the maximal operators of the dyadic triangular-Fejér means of two-
dimensional Walsh-Fourier series is of weak type (1,1). Moreover, the dyadic triangular-Fejér
means of the function f ∈ L1 converge almost everywhere to f as n → ∞ .

1. Introduction

Lebesgue’s [13] theorem is well known for trigonometric Fourier series: the Fejér
means σn f of f converge to f almost everywhere if f ∈ L1(T) , T := [−π ,π) (see
also Zygmund [26]).

An analogous result for Walsh–Fourier series is due to Fine [1]. Later, Schipp
[16] showed that the maximal operator σ∗ of the Fejér means of the one-dimensional
Walsh–Fourier series is of weak type (1,1), from which the a.e. convergence follows
by standard arguments. Schipp’s result implies by interpolation also the boundedness
of σ∗ : Lp (G) → Lp (G) , where 1 < p � ∞ . This fails to hold for p = 1, but Fujii [2]
proved that σ∗ is bounded from the dyadic Hardy space H1 (G) to the space L1 (G)
(see also Simon [18]). Fujii’s theorem was extended by Weisz [20]. Namely, he proved
that σ∗ is bounded from the martingale Hardy space Hp (G) to the space Lp (G) for
p > 1/2. Simon [19] gave a counterexample, which shows that this boundedness does
not hold for 0 < p < 1/2. In the endpoint case p = 1/2, Weisz [22] proved that σ∗ is
bounded from the Hardy space H1/2 (G) to the space weak-L1/2 (G) . Goginava proved
in [8, 9] that the maximal operator of the Fejér means of the one dimensional Walsh–
Fourier series is not bounded from the Hardy space H1/2 (G) to the space L1/2 (G) .

Marcinkiewicz [14] verified for two-dimensional trigonometric Fourier series that
the Marcinkiewicz-Fejér means

σ�
n f =

1
n

n−1

∑
j=0

S�
j ( f )
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of a function f ∈ L logL(T×T) converge a.e. to f as n → ∞ , where S�
j ( f ) denotes

the quadratical partial sums of the Fourier series of f . Later, Zhizhiashvili [24, 25]
extended this result to all f ∈ L1(T×T) .

An analogous result for two-dimensional Walsh–Fourier series is due to Weisz
[21]. Moreover, he proved that the maximal operator σ�∗ f = sup

n�1
|σ�

n f | is bounded

from the dyadic martingale Hardy space Hp (G×G) to the space Lp (G×G) for p >
2/3. The second author [11, 8, 9] proved that the maximal operator σ�∗ is bounded
from H2/3 (G×G) to weak−L2/3 (G×G) and is not bounded from H2/3 (G×G) to
L2/3 (G×G) . The first author gave [5] the following necessary and sufficient condition
for a.e. convergence of generalized Marcinkiewicz means of two-dimensional inte-
grable functions. Let α = (α1,α2) : N

2 → N
2 be a function. Define the following

Marcinkiewicz-like means:

σ�,α
n f =

1
n

n−1

∑
j=0

S�
α(|n|, j) ( f ) .

The following properties will play a prominent role in the a.e. convergence behavior of
σ�,α

n . (#B denotes the cardinality of set B and |n| is the integer part of log2 n .) Let
P = N\ {0} denote the set of positive integers.

#{l ∈ N : α j(|n|, l) = α j(|n|,k), l < n} � C (k < n,n ∈ P, j = 1,2), (1)

max{α j(|n|,k) : k < n} � Cn (n ∈ P, j = 1,2). (2)

Conditions (1) and (2) are necessary and sufficient in the following sense. In [5] the
first author proved: Let α satisfy (1) and (2). Then we have the a.e. convergence

σ�,α
n f → f

for every f ∈ L1(G×G) . It is clear that Condition (1) is necessary, and so does Con-
dition (2) in the following sense (see also [5]). Let γ : N → N be any function with
property γ(+∞) = +∞ . Then there exists a function α satisfying (1) and

max{α1(|n|,k) : k < n} � Cn, max{α2(|n|,k) : k < n} � Cnγ(n) (n ∈ P)

and f ∈ L1(G×G) such that limsupn∈N |σ�,α
n f | = +∞ almost everywhere.

Weisz [23] studied the triangular partial sums and the Fejér means

σ�
n f =

1
n

n−1

∑
j=0

S�j f

of the two-dimensional trigonometric Fourier series. This summability method is rarely
investigated in the literature (see the references in [23]). In [12] Goginava and Weisz

proved that the maximal operator σ�
# := sup

n

∣∣∣σ�
2n f
∣∣∣ of the Fejér means of the triangular

partial sums of the double Walsh–Fourier series is bounded from the dyadic Hardy
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space Hp (G×G) to the Lp (G×G) if p > 1/2, is bounded from H1/2 (G×G) to the
space weak- L1/2 (G×G) and it is not bounded from H1/2 (G×G) to L1/2 (G×G) .

For triangular partial sums of two-dimensional Walsh-Fourier series it is well-
known [17] the operatos S�

2A are not uniformly bounded on Lp for 1 � p �= 2.

In [6] Gát and Goginava proved that the operators σ�
n of the triangular-Fejér-

means of a two-dimensional Walsh–Fourier series are uniformly bounded from the
dyadic Hardy space Hp to Lp for all 4/5 < p � ∞ .

In this paper we prove that the maximal operators of the dyadic triangular-Fejér
means of two-dimensional Walsh-Fourier series is of weak type (1,1). Moreover, the
dyadic triangular-Fejér means of the function f ∈ L1 converge almost everywhere to f
as n → ∞ .

The results for summability of quadratical partial sums of two-dimensional Walsh-
Fourier series can be found in [7, 10, 3, 4, 5].

2. Definitions and the notation

Let P denote the set of positive integers, N:=P∪{0}. Denote by Z2 the dis-
crete cyclic group of order 2, that is Z2 = {0,1}, where the group operation is the
modulo 2 addition and every subset is open. A Haar measure on Z2 is given such
that the measure of a singleton is 1/2. Let G be the complete direct product of the
countable infinite copies of the compact groups Z2. The elements of G are of the
form x = (x0,x1, . . . ,xk, . . .) with xk ∈ {0,1}(k ∈ N) . The group operation on G is the
coordinate-wise addition, the measure (denoted by μ ) and the topology are the product
measure and topology. The compact Abelian group G is called the Walsh group. A
base for the neighborhoods of G can be given by

In (x) := In (x0, . . . ,xn−1) := {y ∈ G : y = (x0, . . . ,xn−1,yn,yn+1, . . .)} ,

where I0 (x) := G and x ∈ G,n ∈ N . These sets are called the dyadic intervals. Let
0 = (0 : i ∈ N) ∈ G denote the null element of G , In := In (0) (n ∈ N) , In := G\In.

For k ∈ N and x ∈ G denote

rk (x) := (−1)xk (x ∈ G, k ∈ N)

the k -th Rademacher function. If n ∈ N , then n =
∞
∑
i=0

ni2i, where ni ∈ {0,1} (i ∈ N) ,

i.e. n is expressed in the number system of base 2. Denote |n| := max{ j ∈ N:n j �= 0} ,
that is, 2|n| � n < 2|n|+1. Set

n(s) :=
s

∑
k=0

nk2
k,n(s) :=

∞

∑
k=s

nk2
k.

Define the dyadic addition of natural numbers n and j as

n⊕ j :=
∞

∑
k=0

|nk − jk|.
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Also use the notation n∧ j = min{n, j} . The Walsh–Paley system is defined as
the sequence of Walsh–Paley functions:

wn (x) :=
∞

∏
k=0

(rk (x))nk = (−1)

|n|
∑

k=0
nkxk

(x ∈ G, n ∈ P) .

The Walsh–Dirichlet kernel is defined by

Dn (x) =
n−1

∑
k=0

wk (x) , D0 (x) = 0.

Recall that ([17])

D2n (x) =
{

2n if x ∈ In,
0 if x ∈ In

,

Dn(x) = wn(x)

(
i−1

∑
r=0

nr2
r −ni2

i

)
for x ∈ Ji := Ii \ Ii+1.

(3)

In this paper we consider the double system
{
wi
(
x1
)
wj
(
x2
)

: i, j ∈ N
}

on G×G .
The rectangular partial sums of the 2-dimensional Walsh–Fourier series are de-

fined as

SM,N f (x1,x2) :=
M−1

∑
i=0

N−1

∑
j=0

f̂ (i, j)wi
(
x1)wj

(
x2) , (4)

where the number

f̂ (i, j) =
∫

G×G
f
(
x1,x2)wi

(
x1)wj

(
x2)dμ

(
x1,x2)

is said to be the (i, j) th Walsh–Fourier coefficient of the function f . Denote

S�
M f (x1,x2) := SM,M f (x1,x2).

The triangular partial sums of the 2-dimensional Walsh–Fourier series are defined
as

S�k f (x1,x2) :=
k−1

∑
i=0

k−i−1

∑
j=0

f̂ (i, j)wi
(
x1)wj

(
x2) .

Denote
D�

k

(
x1,x2) := Dk

(
x1)Dk

(
x2)

and

D�
k

(
x1,x2) :=

k−1

∑
i=0

k−i−1

∑
j=0

wi
(
x1)wj

(
x2) .

The norm (or the quasinorm) of the space Lp (G×G) is defined by

‖ f‖p :=
(∫

G×G

∣∣ f (x1,x2)∣∣p dμ
(
x1,x2))1/p

(0 < p � ∞) .
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The space weak-Lp (G×G) consists of all measurable functions f for which

‖ f‖weak−Lp(G×G) := sup
λ>0

λ μ (| f | > λ )1/p < +∞.

For n ∈ P and a function f the Marcinkiewicz-Fejér means and triangular Fejér
means of order n of the 2-dimensional Walsh–Fourier series of a function f is given
by

σ�
n f (x1,x2) =

1
n

n−1

∑
j=0

S�
j f (x1,x2)

and

σ�
n f (x1,x2) =

1
n

n−1

∑
j=0

S�j f (x1,x2),

respectively. It is easy to show that

σ�
n f (x1,x2) =

∫
G×G

f
(
u1,u2)K�

n

(
x1 +u1,x2 +u2)dμ

(
u1,u2)

and
σ�

n f (x1,x2) =
∫

G×G
f
(
u1,u2)K�

n

(
x1 +u1,x2 +u2)dμ

(
u1,u2) , (5)

where

K�
n

(
x1,x2) :=

1
n

n−1

∑
j=0

D�
j

(
x1,x2)

and

K�
n

(
x1,x2) :=

1
n

n−1

∑
j=0

D�
j

(
x1,x2) .

It is known that (see [6])

K�
n

(
x1,x2)=

1
n

n−1

∑
i=1

Dn−i
(
x1)Di

(
x2) . (6)

Consequently, from (4) and (6) we can write

σ�
n f (x1,x2) =

1
n

n−1

∑
i=1

Sn−i,i f (x1,x2) =
1
n

n−1

∑
i=1

Si,n−i f (x1,x2). (7)

In ([12]) it is proved that the following is true.

THEOREM GW. (Goginava, Weisz) Let f ∈ L1 (G×G) . Then

1
2n

2n−1

∑
i=1

Si,2n−i f (x1,x2) → f
(
x1,x2) a. e. (x1,x2) ∈ G×G as n → ∞.

In [5, Corollary 3] it is proved the following theorem.
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THEOREM G. (Gát) Let a : N → N be a lacunary sequence. That is, an+1/an �
q > 1 for some q and for each n ∈ N . Besides, let α j : N

2 → N satisfy the following
two conditions ( j = 1,2 ).

#{l ∈ N : α j(n, l) = α j(n,k), l < an} � C, max{α j(n,k) : k < an} � Can,

( j = 1,2) . Then for every f ∈ L1(G×G) we have

1
an

an−1

∑
i=1

Sα1(n,i),α2(n,i) f (x1,x2) → f (x1,x2)

for a.e. (x1,x2) ∈ G×G as n → ∞ .

If α1(n, i) = i and α2(n, i) = an− i , then we have the relation

1
an

an−1

∑
i=1

Si,an−i f (x1,x2) → f
(
x1,x2) a. e. (x1,x2) ∈ G×G as n → ∞.

We note that in the case of trigonometric system Weisz [23] proved that for f ∈
L1 (T×T) the almost everywhere convergence 1

n

n−1
∑
i=1

Si,n−i f → f (n → ∞) holds. This

issue with respect to the Walsh system is still open.
In this paper we introduce notion of dyadic triangular-Fejér means of two-dimen-

sional Walsh-Fourier series as follows

σ̇�
n f (x1,x2) :=

1
n

n−1

∑
i=1

Si,n⊕i f (x1,x2).

It is easy to show that

σ̇�
n f (x1,x2) =

∫
G×G

f
(
u1,u2) K̇�

n

(
x1 +u1,x2 +u2)dμ

(
u1,u2) ,

where

K̇�
n

(
x1,x2) :=

1
n

n−1

∑
k=1

Dk
(
x1)Dn⊕k

(
x2) .

The maximal operator of dyadic triangular-Fejér means of the two dimensional
Walsh-Fourier series is defined as follows

σ̇�
∗ f := sup

n∈P

∣∣∣σ̇�
n f
∣∣∣

The notation a � b in the proofs stands for a < c · b , where c is an absolute
constant.

We study the weak type inequality for the maximal operator of the dyadic triangu-
lar-Fejér means of two-dimensional Walsh-Fourier series. In particular, the following
is true.
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THEOREM 1. Let f ∈ L1 (G×G) . Then

∥∥∥σ̇�
∗ f
∥∥∥

weak−L1
� ‖ f‖1 .

The weak type (1,1) inequality and the usual density argument of Marcinkiewicz
and Zygmund [15] and the fact that σ̇�

n P → P everywhere for each two-dimensional
Walsh polynomial (which will be proved later) imply

COROLLARY 1. Let f ∈ L1 (G×G) . Then

σ̇�
n f (x1,x2) → f

(
x1,x2) a.e. as n → ∞.

3. Proof of Theorem 1

Proof. Denote by Ia× Ia the complement of the set Ia × Ia and let Jk = Ik \ Ik+1
(k ∈ N). First we prove that for any a ∈ P the following inequality is true

∫
Ia×Ia

sup
n�2a−1

∣∣∣K̇�
n

(
x1,x2)∣∣∣dμ

(
x1,x2)� 1. (8)

Indeed, we can write

∫
Ia×Ia

sup
n�2a−1

∣∣∣K̇�
n

(
x1,x2)∣∣∣dμ

(
x1,x2) (9)

�
a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1×Jt2

sup
n�2a−1

∣∣∣K̇�
n

(
x1,x2)∣∣∣dμ

(
x1,x2)

+
a−1

∑
t2=0

∞

∑
t1=t2

∫
Jt1×Jt2

sup
n�2a−1

∣∣∣K̇�
n

(
x1,x2)∣∣∣dμ

(
x1,x2)

:= R1 +R2.

For 2A � n < 2A+1 we can write

nK̇�
n

(
x1,x2)=

A

∑
s=0

ns

2s−1

∑
k=0

Dn(s+1)+k

(
x1)Dn⊕(n(s+1)+k)

(
x2)
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and since for |n| = A that is, for 2A � n < 2A+1 it holds n � 2A , thus we have

R1 �
a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1×Jt2

sup
A�a−1

sup
n:|n|=A

1
2A

A

∑
s=0

∣∣∣∣∣2
s−1

∑
k=0

Dn(s+1)+k

(
x1) (10)

×Dn⊕(n(s+1)+k)
(
x2)dμ

(
x1,x2)∣∣∣dμ

(
x1,x2)

�
∞

∑
A=a−1

a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1×Jt2

sup
n:|n|=A

1
2A

A

∑
s=0

∣∣∣∣∣2
s−1

∑
k=0

Dn(s+1)+k

(
x1)

×Dn⊕(n(s+1)+k)
(
x2)∣∣∣dμ

(
x1,x2)

�
∞

∑
A=a−1

a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1×Jt2

sup
n:|n|=A

1
2A

t1−1

∑
s=0

∣∣∣∣∣2
s−1

∑
k=0

Dn(s+1)+k

(
x1)

×Dn⊕(n(s+1)+k)
(
x2)dμ

(
x1,x2)∣∣∣dμ

(
x1,x2)

+
∞

∑
A=a−1

a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1×Jt2

sup
n:|n|=A

1
2A

t2∧A

∑
s=t1

∣∣∣∣∣2
s−1

∑
k=0

Dn(s+1)+k

(
x1)

×Dn⊕(n(s+1)+k)
(
x2)∣∣∣dμ

(
x1,x2)

+
∞

∑
A=a−1

a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1×Jt2

sup
n:|n|=A

1
2A

A

∑
s=t2+1

∣∣∣∣∣2
s−1

∑
k=0

Dn(s+1)+k

(
x1)

×Dn⊕(n(s+1)+k)
(
x2)∣∣∣dμ

(
x1,x2)

= R11 +R12 +R13.

Recall that s goes from 0 to A and therefore one can find in R12 that s goes to
t2∧A . Remark that for k < 2s we have

n⊕
(
n(s+1) + k

)
= n(s)⊕ k.

Since ∣∣∣Dn(s)⊕k
(
x2)∣∣∣� n(s)⊕ k � 2s

and ∣∣Dn(s+1)⊕k

(
x1)∣∣� 2t1 ,x1 ∈ Jt1
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for R11 we can write

R11 �
∞

∑
A=a−1

a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1×Jt2

sup
n:|n|=A

1
2A

t1−1

∑
s=0

∣∣∣∣∣2
s−1

∑
k=0

Dn(s+1)+k

(
x1) (11)

×Dn(s)⊕k
(
x2)∣∣∣dμ

(
x1,x2)

�
∞

∑
A=a−1

a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1×Jt2

1
2A

t1−1

∑
s=0

2s−1

∑
k=0

2t1+s

�
a−1

∑
t1=0

∞

∑
t2=t1

23t1

2t1+t2+a
� 1.

From (3) we have (x2 ∈ Jt2 )

Dn(s)⊕k
(
x2) = wn(s)⊕k

(
x2)(t2−1

∑
i=0

(n⊕ k)i 2
i− (n⊕ k)t2 ∧2t2

)

= wn(s)⊕k
(
x2)(t2−1

∑
i=0

|ni − ki|2i−|nt2 − kt2 |2t2

)
.

On the other hand, for x1 ∈ Jt1 and s � t1 we have

Dn(s+1)⊕k

(
x1) = wn(s+1)⊕k

(
x1)(t1−1

∑
j=0

k j2 j − kt12
t1

)
= wn(s+1)

(
x1)Dk

(
x1) ,k < 2s.

Consequently, for R13 we obtain

R13 �
∞

∑
A=a−1

a−1

∑
t1=0

A−1

∑
t2=t1

∫
Jt1×Jt2

sup
n:|n|=A

1
2A

A

∑
s=t2+1

∣∣∣∣∣2
s−1

∑
k=0

Dk
(
x1)wk

(
x2)

×
(

t2−1

∑
i=0

|ni− ki|2i −|nt2 − kt2 |2t2

)∣∣∣∣∣dμ
(
x1,x2)

�
∞

∑
A=a−1

a−1

∑
t1=0

A−1

∑
t2=t1

t2

∑
i=0

∫
Jt1×Jt2

sup
n:|n|=A

1
2A

A

∑
s=t2+1

∣∣∣∣∣2
s−1

∑
k=0

Dk
(
x1)wk

(
x2)

×|ni− ki|2i
∣∣dμ

(
x1,x2) .

Set

D :=
2s−1

∑
k=0

Dk
(
x1)wk

(
x2) |ni− ki|2i

=
1

∑
k0=0

· · ·
1

∑
ks−1=0

Dk
(
x1)wk

(
x2) |ni− ki|2i.
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Let i � t1 and x1
t1+l

= 1 for some l = 1,2, ...,t2− t1−1. Then it is easy to show
that

D =
1

∑
k0=0

· · ·
1

∑
ks−1=0

w
k(t1)

(
x1)(t1−1

∑
j=0

k j2 j − kt12
t1

)
w

k(t2)
(
x2) |ni− ki|2i

=
1

∑
kt1+l=0

(−1)kt1+l Φ = 0,

where
(
x1,x2

) ∈ Jt1 × Jt2 and the function Φ does not depend on kt1+l . Let x1
t2+l

�=
x2
t2+l

for some l = 1,2, ...,s− t2−1. Then for
(
x1,x2

) ∈ Jt1 × Jt2 analogously we can
write

D =
1

∑
kt2+l=0

(−1)kt2+l Φ1 = 0,

where the function Φ1 does not depend on kt2+l .
Consequently, D �= 0 imply that

(
i � t1

)
x1
t1+1 = · · · = x1

t2−1 = 0; (12)

x1
t2+1 = x1

t2+1, ....,x
1
s−1 = x2

s−1.

Let t1 < i < t2 . Then analogously, we can prove that D �= 0 imply that

x1
t1 = · · · = x1

i−1 = x1
i+1 = · · · = x1

t2−1 = 0; (13)

x1
t2+1 = x1

t2+1, ....,x
1
s−1 = x2

s−1.

Since ∣∣∣∣∣2
s−1

∑
k=0

Dk
(
x1)wk

(
x2) |ni− ki|2i

∣∣∣∣∣� 2s+t1+i (
x1 ∈ Jt1

)
from (12) and (13) we conclude that

R13 �
∞

∑
A=a−1

a−1

∑
t1=0

A−1

∑
t2=t1

t2

∑
i=0

1

∑
ni=0

A

∑
s=t2+1

2s+t1+i

2A

2s−t2

22s (14)

�
∞

∑
A=a−1

a−1

∑
t1=0

A−1

∑
t2=t1

A

∑
s=t2+1

2t1−A

�
∞

∑
A=a−1

a−1

∑
t1=0

A−1

∑
t2=t1

2t1−A (A− t2
)

�
∞

∑
A=a−1

a−1

∑
t1=0

2t1−A (A− t1
)2

�
∞

∑
A=a−1

(A−a)2

2A−a � 1.
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Let t1 � s < t2 . This gives

Dn(s)⊕k
(
x2)= n(s) ⊕ k =

s

∑
j=0

∣∣n j − k j
∣∣2 j,x2 ∈ Jt2

and
Dn(s+1)+k

(
x1)= wn(s+1)

(
x1)Dk

(
x1) ,x1 ∈ Jt1 .

Consequently,∣∣∣∣∣2
s−1

∑
k=0

Dn(s+1)+k

(
x1)Dn(s)⊕k

(
x2)∣∣∣∣∣

=

∣∣∣∣∣2
s−1

∑
k=0

Dk
(
x1)Dn(s)⊕k

(
x2)∣∣∣∣∣

=

∣∣∣∣∣2
s−1

∑
k=0

(
t1−1

∑
i=0

ki2i− kt12
t1

)
w

k(t1)
(
x1) s

∑
j=0

∣∣n j − k j
∣∣2 j

∣∣∣∣∣
=

∣∣∣∣∣ s

∑
j=0

1

∑
k0=0

· · ·
1

∑
ks−1=0

(
t1−1

∑
i=0

ki2
i− kt12

t1

)
w

k(t1)
(
x1)∣∣n j − k j

∣∣2 j

∣∣∣∣∣ .
Analogously, as above we can prove that the inner sum can be different from zero only
in the case when

x1
t1+1 = · · · = x1

s−1 = 0
(
x1 ∈ Jt1

)
,

where index j is excluded from the list of t1 +1, ...,s−1. That is, the measure of the
subset of Jt1 × Jt2 , where this sum can be different from zero is bounded by c2−s−t2 .
Taking account x1 ∈ Jt1 and n(s)⊕ k � 2s also give∣∣∣∣∣2

s−1

∑
k=0

Dn(s+1)+k

(
x1)Dn(s)⊕k

(
x2)∣∣∣∣∣� 22s+t1 .

Consequently, for R12 we can write (recall that s is not greater than A as one can see
the formula for nK̇�

n after the definition of R1 .)

R12 �
∞

∑
A=a−1

a−1

∑
t1=0

∞

∑
t2=t1

t2∧A

∑
s=t1

1
2A

22s+t1

2s+t2
(15)

�
∞

∑
A=a−1

a−1

∑
t1=0

A

∑
t2=t1

t2

∑
s=t1

2s+t1

2A+t2
+

∞

∑
A=a−1

a−1

∑
t1=0

∞

∑
t2=A+1

A

∑
s=t1

2s+t1

2A+t2

�
∞

∑
A=a

a−1

∑
t1=0

A

∑
t2=t1

2t1−A +
∞

∑
A=a

a−1

∑
t1=0

∞

∑
t2=A+1

2t1−t2

�
∞

∑
A=a−1

a−1

∑
t1=0

A− t1

2A−t1
+

∞

∑
A=a−1

a−1

∑
t1=0

1

2A−t1
� 1.
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Combining (12)–(15) we conclude that

R1 � 1. (16)

Analogously, we can prove that

R2 � 1. (17)

From (9), (16) and (17) we obtain the proof of (8).
In the sequal we prove that the maximal operator σ̇�

∗ is quasi-local. This reads as
follows:

Let f ∈ L1 (G×G) , supp f ⊂ Ia
(
u1
)× Ia

(
u2
)

and∫
Ia(u1)×Ia(u2)

f
(
x1,x2)dμ

(
x1,x2)= 0

for some u =
(
u1,u2

) ∈ G . Then∫
(G×G)\(Ia(u1)×Ia(u2))

σ̇�
∗ f
(
x1,x2)dμ

(
x1,x2)� ‖ f‖1 .

Indeed, by the shift invariancy of the Haar measure it can be supposed that u1 = u2 = 0.
If n < 2a−1 then

σ̇�
n f
(
x1,x2) =

∫
G×G

f
(
u1,u2) K̇�

n

(
x1 +u1,x2 +u2)dμ

(
u1,u2)

=
∫

Ia×Ia

f
(
u1,u2) K̇�

n

(
x1 +u1,x2 +u2)dμ

(
u1,u2)

= K̇�
n

(
x1,x2) ∫

Ia×Ia

f
(
u1,u2)dμ

(
u1,u2)= 0.

Consequently, n � 2a−1 can be supposed. Then by Ia× Ia = (Ia ×G)∪ (G× Ia) and
from (8) we have ∫

Ia×G

sup
n�2a−1

∣∣∣K̇�
n

(
x1,x2)∣∣∣dμ (x) � 1.

Since for any fixed (u1,u1) ∈ Ia× Ia we have that (x1 +u1,x2 +u2) ranges over Ia×G
as (x1,x2) ranges over Ia×G (x1 ∈ Ia,u1 ∈ Ia implies x1 +u1 ∈ Ia ), then we also have∫

Ia×G

sup
n�2a−1

∣∣∣K̇�
n

(
x1 +u1,x2 +u2)∣∣∣dμ (x) � 1.

Similarly, ∫
G×Ia

sup
n�2a−1

∣∣∣K̇�
n

(
x1 +u1,x2 +u2)∣∣∣dμ (x) � 1.
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This gives ∫
Ia×Ia

σ̇�
∗ f
(
x1,x2)dμ

(
x1,x2)

�
∫

Ia×Ia

∣∣ f (u1,u2)∣∣( ∫
Ia×Ia

sup
n�2a−1

∣∣∣K̇�
n

(
x1 +u1,x2 +u2)∣∣∣dμ (x)

)
dμ (u)

� ‖ f‖1 .

Now, we prove that the maximal operator σ̇�∗ is of type (∞,∞) . Let 2A−1 � n <
2A . Since

|Dk⊕n| � 2A, k = 0,1, ...,n−1

from (8) we obtain∫
G×G

∣∣∣K̇�
n

(
x1,x2)∣∣∣dμ

(
x1,x2)

=
∫

IA×IA

∣∣∣K̇�
n

(
x1,x2)∣∣∣dμ

(
x1,x2)+ ∫

IA×IA

∣∣∣K̇�
n

(
x1,x2)∣∣∣dμ

(
x1,x2)

� 1.

Hence, the maximal operator σ̇�
∗ is of type (∞,∞) .

Theorem 1 is proved. �

Finally, we prove Corollary 1.

Proof. The only thing left to proof is the a.e. relation σ̇�
n P → P for each two-

dimensional Walsh polynomial. We prove a bit more. That is, we prove everywhere
convergence. Let P be a two-dimensional Walsh polynomial with

P(x1,x2) =
2τ−1

∑
l1=0

2τ−1

∑
l2=0

cl1,l2wl1(x
1)wl2(x

2).

This gives that for any n1,n2 � 2τ we have SnP = Sn1,n2P = P . Set

T 1
n := { j ∈ N : j < 2τ} , T 2

n := { j ∈ N : n⊕ j < 2τ} .

If we suppose that n � 2τ , then one can find imeditely that T 1 ∩ T 2 = /0 . Next, we
prove the relation ∣∣S j,n⊕ jP(y)−P(y)

∣∣� 2τ+1‖P‖∞

for every y ∈ G×G and j ∈ Tn := T 1
n ∪T 2

n . Since T 1
n and T 2

n are disjoint, then either
j ∈ T 1

n \T 2
n or j ∈ T 2

n \T 1
n . Since the two situations can be intestigated in the same way
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we can suppose the first one. That is, j < 2τ and n⊕ j � 2τ . This follows

S j,n⊕ jP(y) =
∫

G
Dj(y1 + x1)

∫
G

2τ−1

∑
l1=0

2τ−1

∑
l2=0

cl1,l2wl1(x
1)wl2(x

2)

×Dn⊕ j(y2 + x2)dμ(x2)dμ(x1)

=
∫

G
Dj(y1 + x1)

2τ−1

∑
l1=0

2τ−1

∑
l2=0

cl1,l2wl1(x
1)wl2(y

2)dμ(x1)

=
∫

G
Dj(y1 + x1)P(x1,y2)dμ(x1).

Since
∫
G Dj(y1 + x1)μ(x1) = 1, then we have

|S j,n⊕ jP(y)−P(y)|=
∣∣∣∣∫

G
Dj(y1 + x1)

(
P(x1,y2)−P(y1,y2)

)
dμ(x1)

∣∣∣∣ .
This gives the relation for

∣∣S j,n⊕ jP(y)−P(y)
∣∣ . Since for j /∈ Tn we have S j,n⊕ jP(y) =

P(y) , then∣∣∣∣∣1n n−1

∑
j=0

S j,n⊕iP(y)−P(y)

∣∣∣∣∣� 1
n

n−1

∑
j=0

∣∣S j,n⊕ jP(y)−P(y)
∣∣

� 1
n ∑

j∈Tn

∣∣S j,n⊕ jP(y)−P(y)
∣∣+ 1

n ∑
j/∈Tn

∣∣S j,n⊕ jP(y)−P(y)
∣∣

=
1
n ∑

j∈Tn

∣∣S j,n⊕ jP(y)−P(y)
∣∣� #Tn2τ+1‖P‖∞

n
→ 0,

since #Tn = #T 1
n +#T2

n � 2τ+1 . �
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[5] G. GÁT, On almost everywhere convergence and divergence of Marcinkiewicz-Like means of inte-
grable functions with respect to the two-dimensional Walsh system, Journal of Approx. Theory 164, 1
(2012), 145–161.



DYADIC TRIANGULAR-FEJÉR MEANS 415
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