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Lp –MIXED INTERSECTION BODIES

DEYAN ZHANG

(Communicated by M. A. Hernandez Cifre)

Abstract. In this paper, we prove a dual Bergstrom type inequality for q -dual mixed volumes.
Furthermore, we introduce the Lp -mixed intersection bodies for any real number p �= 0 , and
establish some interesting inequalities for Lp -mixed intersection bodies involving a Minkowski
type inequality and three Brunn-Minkowski type inequalities.

1. Introduction

The intersection operator and the class of intersection bodies were introduced by
Lutwak [27]. It is well known that the intersection operator and the class of intersection
bodies played a critical role in the solution of the famous Busemann-Petty problem,
see [12, 32]. During the past 20 years significant advances have been made in our un-
derstanding of the intersection operator and the class of intersection bodies (see, e.g.,
[4, 5, 6, 11, 12, 14, 15], [17]–[23], [29, 31, 32]). As a result of the duality between
projection and intersection bodies [27], together with the fact that the projections (onto
lower dimensional subspaces) of projection bodies are themselves projection bodies,
Lutwak conjectured the ‘dual’ statement for intersection bodies: when intersection bod-
ies are intersected with lower dimensional subspaces, the results are intersection bodies
as well (within the lower dimensional subspaces). This was proved by Fallert, Goodey
and Weil [7]. In [25] (see also [26, 28]) Lutwak introduced the mixed projection bodies
and derived their fundamental inequalities.

In 2006, Haberl and Ludwig [17] introduced the so-called Lp -intersection bod-
ies. Recently, Zhao and Cheung [34] defined the q -dual mixed volumes of star bod-
ies, which generalized the classical dual mixed volumes, and extended notions of Lp -
intersection bodies to Lp -mixed intersection bodies.

In [2] Bergstrom presented an inequality, which later received his name, for sym-
metric positive definite matrices (see also [1, 8]). It is a natural problem whether there
is a version of Bergstrom’s inequality in the theory of mixed volumes. This question
can be formulated as follows: for which values of i is it true that
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for every pair of convex bodies K and L in R
n ?

In 2003, Fradelizi, Giannopoulos and Meyer [10] proved that (1.1) holds for every
pair of convex bodies K and L in R

n if and only if i = n−2 or i = n−1.
In this paper S n will denote the set of star bodies (about the origin) in R

n . Under
the Lp -radial addition of star bodies (see (2.1) below), we obtain a dual Bergstrom type
inequality for q -dual mixed volumes: let K,L,E ∈ S n , if i = n−2 or i = n−1, then
for p �= 0,

W̃ p
p,i(K+̃pM,E)

W̃ p
p,i+1(K+̃pM,E)

�
W̃ p

p,i(K,E)

W̃ p
p,i+1(K,E)

+
W̃ p

p,i(M,E)

W̃ p
p,i+1(M,E)

, (1.2)

where W̃p,i(K,E) denotes the i-th p -dual relative quermassintegral of K with respect
to E .

Next we introduce the notion of Lp -mixed intersection body Ip(K1, . . . ,Kn−1) for
any p �= 0 (see Definition 4.1), and establish two interesting inequalities for Lp -mixed
intersection bodies. One of them is the following Minkowski type inequality: given
K,L ∈ S n , 0 � i < n , 0 � j < n−1, i, j ∈ N , and any p �= 0, we have

W̃ n−1
i (Ip, j(K,L)) � W̃ n− j−1

i (IpK)W̃ j
i (IpL), (1.3)

with equality for 0 < j < n− 1 if and only if K is a dilation of L . Here Ip, j(K,L)
denotes the j -th Lp -mixed intersection body of K with respect to L and Ip(K) denotes
the Lp -intersection body of K .

The other is a dual Aleksandrov-Fenchel inequality for Lp -mixed intersection bod-
ies: if K1, . . . ,Kn−1 ∈ S n , 1 < m � n−1, 0 � i < n , i ∈ N , then for p �= 0,

W̃m
i (Ip(K1, . . . ,Kn−1))

�
m−1

∏
j=0

W̃i(Ip(Kn−1− j, . . . ,Kn−1− j︸ ︷︷ ︸
m

,K1, . . . ,Kn−1−m)), (1.4)

with equality if and only if Kn−1, . . . ,Kn−m are all dilations of each other.
Particularly, taking p = 1 in (1.3) and (1.4), they are precisely the Minkowski

inequality and the dual Aleksandrov-Fenchel inequality for mixed intersection bodies,
respectively.

Finally, under the Lp -radial addition and the log-Minkowski radial addition (see
(2.5) below) of star bodies, three Brunn-Minkowski type inequalities for Lp -mixed
intersection bodies are obtained: let K,L,E ∈ S n ; for 0 � i < n , 0 � j < n− 1,
i, j ∈ N and λ ∈ [0,1] , we have

(I) if 1 � p2 > 0, then

W̃i(Ip, j((1−λ ) ·K+̃p λ ·L,E)) � (1−λ )W̃i(Ip, j(K,E))+ λW̃i(Ip, j(L,E)). (1.5)

If 0 � i < n−1, 0 � j < n−2, equality for some λ ∈ (0,1) in (1.5) holds if and only
if K = L ;

(II) if p �= 0, then

W̃i(Ip, j((1−λ ) ·K+̃o λ ·L,E)) � W̃ 1−λ
i (Ip, j(K,E))W̃ λ

i (Ip, j(L,E)), (1.6)
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with equality for some λ ∈ (0,1) if and only if K is a dilation of L ;
(III) if q � p2 � 1, then

W̃ q
q,i(Ip, j((1−λ )·K+̃λ ·L,E))�(1−λ )W̃q

q,i(Ip, j(K,E))+ λW̃q
q,i(Ip, j(L,E)). (1.7)

If 0 � i < n−1, 0 � j < n−2, equality for some λ ∈ (0,1) in (1.7) holds if and only
if K = L .

Clearly, taking j = 0 in (1.5)–(1.7), we get some Brunn-Minkowski type inequali-
ties for Lp -intersection bodies. In the same way, taking p = 1 and q = 1 in (1.5)–(1.7),
we get the corresponding Brunn-Minkowski type inequalities for mixed intersection
bodies.

This paper is organized as follows. In Section 2, we collect some basic concepts
and various facts that will be used in the proofs of our results. In Sections 3 and 4, we
show our main results and their proofs.

2. Notations and preliminaries

Let Sn−1 and ωn denote the unit sphere and n -dimensional volume of the unit
ball B in R

n , respectively. For a compact subset K of R
n , which is star-shaped with

respect to the origin, its radial function, ρK = ρ(K, ·) : R
n \ {0} −→ R , is defined by

ρ(K,x) = max{λ � 0 : λx ∈ K} , x ∈ R
n \ {0}.

If ρK is positive and continuous K will be called a star body (about the origin). We
will denote by V (K) its n -dimensional volume.

Let K ∈ S n and let c be a real number. The Minkowski scalar multiplication cK
is defined by

cK = {cx : x ∈ K} .

If c is a positive real number, from the definition of the radial function, it is easy to
verify that

ρcK(u) = cρK(u), ρK(cu) = c−1ρK(u), u ∈ R
n.

We say that K,L ∈ S n are dilations of each other if ρK(u)/ρL(u) is independent of
u ∈ Sn−1 .

Following [24], given K,L ∈ S n and α,β � 0, the radial linear combination
αK+̃βL is defined by

ρ(αK+̃βL, ·) = αρ(K, ·)+ β ρ(L, ·). (2.1)

Let Kj(1 � j � n) ∈ S n be star bodies. The dual mixed volume Ṽ (K1,K2, · · · ,Kn) is
defined by (see [24])

Ṽ (K1,K2, · · · ,Kn) =
1
n

∫
Sn−1

ρK1(u)ρK2(u) · · ·ρKn(u)dS(u), (2.2)

where dS(u) is the (n− 1)-dimensional volume element on Sn−1 . If s,t are non-
negative integers whose sum does not exceed n , K,L are star bodies and C is the
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(n− s− t)-tuple of star bodies (C1, · · · ,Cn−s−t) , Ṽ (K[s],L[t],C) will denote the dual
mixed volume Ṽ (K, · · · ,K,L, · · · ,L,C1, · · · ,Cn−s−t) in which K appears s times and L
appears t times. In particular, if K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn = L ,
then the dual mixed volume Ṽ (K1,K2, · · · ,Kn) is written as W̃i(K,L) , and is called the
i -th dual relative quermassintegral of K with respect to L . Moreover, if L = B , then
W̃i(K,B) is called the i -th dual quermassintegral of K and is written as W̃i(K) .

We list some elementary properties of the dual mixed volume:

PROPOSITION 2.1. ([24]) Let K,Ki,Li ∈ S n(1 � i � n) . Then

(1) Ṽ is continuous;

(2) Ṽ (K1,K2, · · · ,Kn) > 0 ;

(3) Ṽ (λ1K1, · · · ,λnKn) = λ1 · · ·λnṼ (K1, · · · ,Kn) , for λ1, · · · ,λn > 0 ;

(4) If Ki ⊂ Li for all i , then Ṽ (K1, · · · ,Kn) � Ṽ (L1, · · · ,Ln) with equality if and only if
Ki = Li for all i ;

(5) Ṽ (K1, · · · ,Ki, · · · ,Kj, · · · ,Kn) = Ṽ (K1, · · · ,Kj, · · · ,Ki, · · · ,Kn) for all i, j .

(6) Ṽ (K, · · · ,K) = V (K);

(7) Ṽ (K+̃L,K2 · · · ,Kn) = Ṽ (K,K2 · · · ,Kn)+ Ṽ(L,K2 · · · ,Kn) .

The dual Aleksandrov-Fenchel inequality (cf. [24]) states that

Ṽm(K1,K2, · · · ,Kn) �
m−1

∏
i=0

Ṽ (K1, · · · ,Kn−m,Kn−i, · · · ,Kn−i), (2.3)

where 1 < m � n , and with equality if and only if K1, · · · ,Kn are dilations of each other
(with the origin as the center of dilation).

In the early 1960s, Firey (see e.g., [9], [13] and [30, p. 490]) defined the later so-
called Firey Lp -combination (or simply Lp -combination) of convex bodies. Similarly,
for p �= 0, α,β � 0, the Minkowski-Firey Lp -radial combination (or simply the Lp -
radial combination) α ·K+̃p β ·L of star bodies K,L is defined by

ρ(α ·K+̃p β ·L,u) = (αρ p(K,u)+ β ρ p(L,u))
1
p , u ∈ Sn−1. (2.4)

Clearly, taking p = 1, α ·K+̃pβ ·L becomes the classical radial combination.
Recently, the authors introduced the log-Minkowski combination of convex bod-

ies [3]. Similarly, they defined the log-Minkowski radial combinations α ·K+̃o β ·L of
star bodies K,L by

ρ(α ·K+̃o β ·L,u) = ρα(K,u)ρβ (L,u), u ∈ Sn−1. (2.5)

From (2.4) and (2.5) we can easily get that the log-Minkowski radial combination is the
limit of the Lp -radial combination as p tends to 0.
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3. q -dual mixed volumes

Let K1, . . . ,Kn ∈ S n be star bodies. For a real number q �= 0, Zhao and Cheung
defined in [34] the q -dual mixed volume Ṽq(K1, . . . ,Kn) by

Ṽq(K1, . . . ,Kn) = ωn

(
1

nωn

∫
Sn−1

ρq(K1,u) · · ·ρq(Kn,u)dS(u)
) 1

q

. (3.1)

Clearly, Ṽ1(K1, . . . ,Kn) = Ṽ (K1, . . . ,Kn) , where Ṽ (K1, . . . ,Kn) is the classical dual
mixed volume which was defined by Lutwak [24]. Particularly, if K1 = · · · = Kn−i = K
and Kn−i+1 = · · · = Kn = L , then Ṽq(K, . . . ,K,L, . . . ,L) is written as W̃q,i(K,L) and is
called the i -th q-dual relative quermassintegral of K with respect to L . Moreover, if
L = B , then W̃q,i(K,B) is called the i -th q-dual quermassintegral of K , and is written
as W̃q,i(K) . When i = 0, Ṽq(K, . . . ,K︸ ︷︷ ︸

n

) is written as Ṽq(K) .

For q equal to −∞,0 or ∞ , we define the q -dual mixed volume by

Ṽq(K1, . . . ,Kn) = lim
s→q

Ṽs(K1, . . . ,Kn).

As a direct consequence of Jensen’s inequality we have

PROPOSITION 3.1. Let K1, . . . ,Kn ∈ S n , then for −∞ � p < q � ∞ ,

Ṽp(K1, . . . ,Kn) � Ṽq(K1, . . . ,Kn),

with equality if and only if ρ(K1,u) · · ·ρ(Kn,u) is constant for all u ∈ Sn−1 .

For the q -dual mixed volume, Zhao and Cheung [34] got some elementary prop-
erties that we collect in the following lemma.

LEMMA 3.2. ([34]) Let K1, . . . ,Kn ∈ S n , then for q �= 0 ,

(1) Ṽq is continuous;

(2) Ṽq(K1,K2, · · · ,Kn) > 0 ;

(3) Ṽq(λ1K1, · · · ,λnKn) = λ1 · · ·λnṼq(K1, · · · ,Kn) , for λ1, · · · ,λn > 0 ;

(4) Ṽq(K1, · · · ,Ki, · · · ,Kj, · · · ,Kn) = Ṽq(K1, · · · ,Kj, · · · ,Ki, · · · ,Kn) for all 1 � i, j � n.

For the q -dual mixed volume, in view of (3.1) and Hölder’s inequality, a dual
Aleksandrov-Fenchel inequality between q -dual mixed volumes is obtained.

LEMMA 3.3. Let K1, . . . ,Kn ∈ S n . If 1 < m � n and q �= 0 , then

Ṽ qm
q (K1, . . . ,Kn) �

m−1

∏
i=0

Ṽ q
q (Kn−i, . . . ,Kn−i︸ ︷︷ ︸

m

,K1, . . . ,Kn−m), (3.2)

with equality if and only if Kn−m+1, . . . ,Kn are all dilations of each other (with the
origin as the center of dilation).
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Taking q = 1 in (3.2), then it becomes the classical dual Aleksandrov-Fenchel
inequality between dual mixed volumes, which is due to Lutwak [24].

For the q -dual mixed volume, in view of (3.1) and the definition of the Minkowski-
Firey Lp -radial combination, we can get that Ṽ p

p is linear under such an operation. This
is the content of the following lemma.

LEMMA 3.4. Let K1, . . . ,Kn−1,K,L∈S n and set M = (K1, . . . ,Kn−1) . Then for
α > 0,β > 0 ,

Ṽ p
p (α ·K+̃pβ ·L,M ) = αṼ p

p (K,M )+ βṼ p
p (L,M ). (3.3)

Motivated by [30, Theorem 7.4.3]we establish the following Aleksandrov-Fenchel
type inequality for the q -dual mixed volume.

PROPOSITION 3.5. Let K,L,M,K3, . . . ,Kn ∈S n and p �= 0 . Set C = (K3, · · · ,Kn) ,
then

Ṽ p
p (K,K,C)

Ṽ 2p
p (K,M,C)

− 2Ṽ p
p (K,L,C)

Ṽ p
p (K,M,C)Ṽ p

p (L,M,C)
+

Ṽ p
p (L,L,C)

Ṽ 2p
p (L,M,C)

� 0. (3.4)

Proof. Let K0,K1,K2 ∈S n and Vi j = Ṽ p
p (Ki,Kj,C) for i, j = 0,1,2. For λ1,λ2 �

0, Lemmata 3.3 and 3.4 give

0 �Ṽ 2p
p (K1+̃pλ1·K0,K2+̃pλ2·K0,C)

− Ṽ p
p (K1+̃pλ1·K0,K1+̃pλ1·K0,C)Ṽ p

p (K2+̃pλ2·K0,K2+̃pλ2·K0,C)

=(V12 + λ1V02 + λ2V01 + λ1λ2V00)2

− (V11 +2λ1V01 + λ 2
1V00)(V22 +2λ2V02 + λ 2

2V00)

=V 2
12−V11V22 +2λ1V12V02 +2λ2V12V01−2λ1V01V22−2λ2V11V02

+ λ 2
1 (V 2

02−V00V22)+ λ 2
2 (V 2

01−V00V11)+2λ1λ2(V12V00−V01V02).

(3.5)

With a similar argument to [30, Lemma 7.4.1] (or [10, Lemma 2.1]), we can obtain

(V12V00−V01V02)2 � (V 2
01−V00V11)(V 2

02−V00V22). (3.6)

The proof now concludes by following the same steps as in the proof of [30, Theorem
7.4.3] and taking into account that V 2

01−V00V11 � 0 and V 2
02−V00V22 � 0. �

From (3.6) we get

|V12V00−V01V02| � (V00V11−V 2
01)

1
2 (V00V22−V 2

02)
1
2 .

Thus we have proved the following.

COROLLARY 3.6. Let K,L,M ∈ S n and p �= 0 . Then

Ṽ p
p (K,M,C)Ṽ p

p (L,L,C)− Ṽ p
p (K,L,C)Ṽ p

p (M,L,C)

�
(
Ṽ p

p (L,L,C)Ṽ p
p (K,K,C)− Ṽ 2p

p (K,L,C)
) 1

2

× (
Ṽ p

p (L,L,C)Ṽ p
p (M,M,C)− Ṽ 2p

p (M,L,C)
) 1

2 .

(3.7)
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Based on Corollary 3.6, following the same steps as [10, Proposition 2.1], we can
establish the dual Bergstrom type inequality for p -dual mixed volumes.

THEOREM 3.7. Let K,M,E be star bodies and p �= 0 . Then, for i = n− 2 or
i = n−1 ,

W̃ p
p,i(K+̃pM,E)

W̃ p
p,i+1(K+̃pM,E)

�
W̃ p

p,i(K,E)

W̃ p
p,i+1(K,E)

+
W̃ p

p,i(M,E)

W̃ p
p,i+1(M,E)

. (3.8)

with equality if K,M,E are all dilations of each other (with the origin as the center of
dilation).

4. Lp -mixed intersection bodies

Let K ∈ S n . For p < 1, Haberl and Ludwig [17] introduced the Lp -intersection
body IpK by

ρ p(IpK,u) =
∫

K
|u · x|−pdx.

From [16] one gets

v(K∩u+) = lim
ε→0

ε
2

∫
K
|u · x|−1+εdx

and

ρ(IK,u) = lim
p→1−

1− p
2

ρ p(IpK,u),

where u+ = {x ∈ R
n : u · x � 0} .

Let K1, . . . ,Kn−1 ∈S n . For any p �= 0, we define the Lp -mixed intersection body
of K1, . . . ,Kn−1 as follows.

DEFINITION 4.1. For p �= 0, the Lp -mixed intersection body of K1, . . . ,Kn−1 ∈
S n , Ip(K1, . . . ,Kn−1) , is defined by

ρ p(Ip(K1, . . . ,Kn−1),u) =
{ 2

1−p ṽp(K1 ∩Eu, . . . ,Kn−1 ∩Eu), p < 1;
ṽp(K1∩Eu, . . . ,Kn−1∩Eu), p � 1.

Here Eu denotes the hyperplane passing through the origin which is orthogonal to u ,
and we write ṽp(K1 ∩Eu, . . . ,Kn−1 ∩Eu) to denote the p -dual mixed volume of K1 ∩
Eu, . . . ,Kn−1 ∩Eu computed in the (n−1)-dimensional space.

In the same way, w̃p,i(K∩Eu,L∩Eu) will denote the i-th p -dual quermassintegral
and thus, in particular, w̃p,i(K ∩Eu,B∩Eu) will be written for short as w̃p,i(K ∩Eu)
(and consequently w̃p,0(K∩Eu) will be denoted as ṽp(K ∩Eu)).

REMARK 1. When p < 1, this notation was introduced by Zhao and Cheung [34].
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From Definition 4.1, we can get that ρ p(Ip(K1, . . . ,Kn−1),u) is continuous with
respect to p (see [34, p. 432]). For the Lp -mixed intersection body, Ip(K1, . . . ,Kn−1) ,
if K1 = . . . = Kn−1−i = K , Kn−i = . . . = Kn−1 = L , then Ip(K1, . . . ,Kn−1) is written
as Ip,i(K,L) . If L = B , then Ip,i(K,L) is written as Ip,i(K) and is called the i -th Lp -
mixed intersection body of K . Ip,0(K) is simply written as IpK , since it is just the
Lp -intersection body of K (see [17, 33]). Finally, when p = 1, I(K1, . . . ,Kn−1) is
called the mixed intersection body of K1, . . . ,Kn−1 .

From (3.1) and Definition 4.1, we easily obtain the following Lemma.

LEMMA 4.2. Let K,L ∈ S n , 0 � i < n, 0 � j < n− 1 , i, j ∈ N . For p �= 0 ,
q �= 0 , then

W̃q,i(IpK) = C(n, p,q)
(∫

Sn−1

(
ṽp(K ∩Eu)

) (n−i)q
p dS(u)

) 1
q

, (4.1)

W̃q,i(Ip, jK) = C(n, p,q)
(∫

Sn−1

(
w̃p, j(K ∩Eu)

) (n−i)q
p dS(u)

) 1
q

, (4.2)

W̃q,i(Ip, j(K,L)) = C(n, p,q)
(∫

Sn−1

(
w̃p, j(K ∩Eu,L∩Eu)

) (n−i)q
p dS(u)

) 1
q

, (4.3)

where

C(n, p,q) =

⎧⎨
⎩ ωn

(
1

nωn

) 1
q
(

2
1−p

) (n−i)
p , p < 1;

ωn
( 1

nωn

) 1
q , p � 1.

The following Minkowski type inequality for Lp -mixed intersection bodies stated
in the introduction will be established:

Let K,L ∈ S n , 0 � i < n , 0 � j < n−1, i, j ∈ N . Then for p �= 0,

W̃ n−1
i (Ip, j(K,L)) � W̃ n− j−1

i (IpK)W̃ j
i (IpL), (4.4)

with equality for 0 < j < n−1 if and only if K and L are dilations of each other.
This is just the case q = 1 of the following theorem.

THEOREM 4.3. Let K,L ∈ S n , 0 � i < n, 0 � j < n− 1 , i, j ∈ N . For p �= 0 ,
q > 0 , then

W̃n−1
q,i (Ip, j(K,L)) � W̃ n− j−1

q,i (IpK)W̃ j
q,i(IpL), (4.5)

with equality for 0 < j < n− 1 if and only if K is a dilation of L (with the origin as
the center of dilation).

Proof. For j = 0, it is trivial. For 0 < j < n− 1, taking K1 = · · · = Kn− j = K ,
Kn− j+1 = · · · = Kn = L and m = n in Lemma 3.3, and in view of taking p for q , we
obtain

W̃ np
p, j(K,L) � Ṽ (n− j)p

p (K)Ṽ jp
p (L),
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with equality if and only if K is a dilation of L . Hence, in the (n− 1)-dimensional
space, we have

w̃p(n−1)
p, j (K∩Eu,L∩Eu) � ṽ(n− j−1)p

p (K∩Eu)ṽ jp
p (L∩Eu), (4.6)

with equality if and only if K ∩Eu and L∩Eu are dilations of each other for a fixed
u ∈ Sn−1 .

For p �= 0, q > 0, from Lemma 4.2, (4.6) and Hölder’s inequality for integrals,
we have

W̃ q
q,i(Ip, j(K,L))

�Cq(n, p,q)
∫

Sn−1

(
ṽ

n− j−1
n−1

p (K∩Eu)ṽ
j

n−1
p (L∩Eu)

) (n−i)q
p dS(u)

�Cq(n, p,q)
(∫

Sn−1
ṽ

(n−i)q
p

p (K ∩Eu)dS(u)
) n− j−1

n−1
(∫

Sn−1
ṽ

(n−i)q
p

p (L∩Eu)dS(u)
) j

n−1

=
(
W̃q,i(IpK)

) (n− j−1)q
n−1

(
W̃q,i(IpL)

) jq
n−1 ,

which together with q > 0 gives W̃ n−1
q,i (Ip, j(K,L)) � W̃ n− j−1

q,i (IpK)W̃ j
q,i(IpL) . The

equality conditions of both (4.6) and Hölder’s inequality for integrals imply that the
equality holds in (4.5) if and only if K is a dilation of L . �

The following dual Aleksandrov-Fenchel inequality for Lp -mixed intersection
bodies stated in the introduction will be established:

If K1, . . . ,Kn−1 ∈ S n , 1 < m � n−1, 0 � i < n , i ∈ N , then

W̃m
i (Ip(K1, . . . ,Kn−1)) �

m−1

∏
j=0

W̃i(Ip(Kn−1− j, . . . ,Kn−1− j︸ ︷︷ ︸
m

,K1, . . . ,Kn−1−m)), (4.7)

with equality if and only if Kn−m, . . . ,Kn−1 are all dilations of each other.
This is just the case q = 1 of the following theorem.

THEOREM 4.4. Let K1, . . . ,Kn−1 ∈ S n , 1 < m � n− 1 , 0 � i < n, i ∈ N . For
p �= 0 , q > 0 , we have

W̃m
q,i(Ip(K1, . . . ,Kn−1)) �

m−1

∏
j=0

W̃q,i(Ip(Kn−1− j, . . . ,Kn−1− j︸ ︷︷ ︸
m

,K1, . . . ,Kn−1−m)), (4.8)

with equality if and only if Kn−m, . . . ,Kn−1 are all dilations of each other (with the
origin as the center of dilation).

Proof. It is similar to that of Theorem 4.3. �
Under the Lp -radial combination of star bodies, the following Brunn-Minkowski

type inequality for Lp -mixed intersection bodies stated in the introduction will be es-
tablished: let K,L,E ∈ S n , 0 � i < n , 0 � j < n−1, i, j ∈ N . Then for all λ ∈ [0,1]
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and 1 � p2 > 0,

W̃i(Ip, j((1−λ ) ·K+̃p λ ·L,E))�(1−λ )W̃i(Ip, j(K,E))+λW̃i(Ip, j(L,E)). (4.9)

When 0 � i < n−1, 0 � j < n−2, equality holds for some λ ∈ (0,1) in (4.9) if and
only if K = L .

This is just the case q = 1 of the following theorem.

THEOREM 4.5. Let K,L,E ∈ S n , 0 � i < n, 0 � j < n− 1 , i, j ∈ N . Then for
all λ ∈ [0,1] and q � p2 > 0 ,

W̃ q
q,i(Ip, j((1−λ ) ·K+̃p λ ·L,E))�(1−λ )W̃q

q,i(Ip, j(K,E))+λW̃ q
q,i(Ip, j(L,E)). (4.10)

Moreover, if 1 � q � p2 > 0 , then

W̃q,i(Ip, j((1−λ ) ·K+̃p λ ·L,E))�(1−λ )W̃q,i(Ip, j(K,E))+λW̃q,i(Ip, j(L,E)). (4.11)

When 0 � i < n− 1 , 0 � j < n− 2 , equality in (4.10) (respectively (4.11)) for some
λ ∈ (0,1) holds if and only if K = L.

Proof. Set Mλ ,p = (1−λ ) ·K+̃pλ ·L and u ∈ Sn−1 . For any v ∈ Sn−1∩Eu , from
(2.4) one can get

ρ p(Mλ ,p∩Eu,v) =ρ p(Mλ ,p,v) = (1−λ )ρ p(K,v)+ λ ρ p(L,v)
=(1−λ )ρ p(K∩Eu,v)+ λ ρ p(L∩Eu,v).

By Jensen’s inequality, one gets

ρ p(n−1− j)(Mλ ,p∩Eu,v)

�(1−λ )ρ p(n−1− j)(K∩Eu,v)+ λ ρ p(n−1− j)(L∩Eu,v),
(4.12)

where equality for some λ ∈ (0,1) and all v ∈ Sn−1∩Eu , since 0 � j < n−2, holds if
and only if K∩Eu = L∩Eu .

It follows from (3.1) that

w̃p
p, j(Mλ ,p∩Eu,E ∩Eu)

=
ω p

n−1

(n−1)ωn−1

∫
Sn−1∩Eu

ρ p(n−1− j)(Mλ ,p∩Eu,v)ρ p j(E ∩Eu,v)dμ(v),
(4.13)

where μ(v) denotes the (n−2)-dimensional Lebesgue measure.
Combining (4.12) with (4.13) we get

w̃p
p, j(Mλ ,p∩Eu,E ∩Eu)

�(1−λ )w̃p
p, j(K∩Eu,E ∩Eu)+ λ w̃p

p, j(L∩Eu,E ∩Eu),
(4.14)

where equality for some λ ∈ (0,1) holds if and only if K ∩Eu = L∩Eu .
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By Lemma 4.2 one can get

W̃ q
q,i(Ip, j(Mλ ,p,E)) = Cq(n, p,q)

∫
Sn−1

[w̃p
p, j(Mλ ,p∩Eu,E ∩Eu)]

(n−i)q
p2 dS(u). (4.15)

From (4.14) and (4.15) we have

W̃ q
q,i(Ip, j(Mλ ,p,E)) � Cq(n, p,q)

×
∫

Sn−1
[(1−λ )w̃p

p, j(K ∩Eu,E ∩Eu)+λ w̃p
p, j(L∩Eu,E ∩Eu)]

(n−i)q
p2 dS(u).

Since q � p2 > 0, (n−i)q
p2 � n− i � 1, applying Jensen’s inequality, one can obtain

W̃ q
q,i(Ip, j(Mλ ,p,E)) � (1−λ )W̃q

q,i(Ip, j(K,E))+ λW̃q
q,i(Ip, j(L,E)).

If 0 � i < n−1, 0 � j < n−2 and λ ∈ (0,1) , the equality condition in (4.14) implies
that the equality in (4.10) holds if and only if K = L .

If 1 � q � p2 > 0, (4.11) is a direct consequence of (4.10). �
For the log-Minkowski radial combination, the following Brunn-Minkowski type

inequality for Lp -mixed intersection bodies stated in the introduction will be estab-
lished: let 0 � i < n , 0 � j < n−1, i, j ∈ N . Then for all λ ∈ [0,1] and p �= 0

W̃i(Ip, j((1−λ ) ·K+̃o λ ·L,E)) � W̃ 1−λ
i (Ip, j(K,E))W̃λ

i (Ip, j(L,E)), (4.16)

with equality for some λ ∈ (0,1) if and only if K is a dilation of L .
This is just the case q = 1 of the following theorem.

THEOREM 4.6. Let K,L,E ∈ S n , 0 � i < n, 0 � j < n− 1 , i, j ∈ N . For all
λ ∈ [0,1] and p �= 0 , q > 0 ,

W̃q,i(Ip, j((1−λ ) ·K+̃o λ ·L,E)) � W̃ 1−λ
q,i (Ip, j(K,E))W̃ λ

q,i(Ip, j(L,E)), (4.17)

with equality for some λ ∈ (0,1) if and only if K is a dilation of L (with the origin as
the center of dilation).

Proof. Setting Mλ = (1−λ ) ·K+̃o λ ·L and u ∈ Sn−1 , it is immediate to see that,
for any v ∈ Sn−1∩Eu ,

ρ(Mλ ∩Eu,v) = ρ1−λ (K∩Eu,v)ρλ (L∩Eu,v).

This identity together with (3.1) and Hölder’s inequality allow us to write

w̃p
p, j(Mλ ∩Eu,E ∩Eu) � w̃p(1−λ )

p, j (K ∩Eu,E ∩Eu)w̃
pλ
p, j(L∩Eu,E ∩Eu),

with equality for some λ ∈ (0,1) if and only if K ∩Eu and L∩Eu are dilatates. The
proof now concludes by using Lemma 4.2 and applying the above relation together with
Hölder’s inequality. �

For the classical Minkowski radial combination, the Brunn-Minkowski type in-
equality for Lp -mixed intersection bodies stated in the introduction is established:
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THEOREM 4.7. Let K,L,E ∈ S n , 0 � i < n, 0 � j < n− 1 , i, j ∈ N . For all
λ ∈ [0,1] and q � p2 � 1 , we have

W̃q
q,i(Ip, j((1−λ ) ·K+̃λ ·L,E)) � (1−λ )W̃q

q,i(Ip, j(K,E))+ λW̃ q
q,i(Ip, j(L,E)). (4.18)

When 0 � i < n−1 and 0 � j < n−2 , equality for some λ ∈ (0,1) in (4.18) holds if
and only if K = L.

Proof. Since p2 � 1, with the same argument as that of the proof of Theorem 4.5
we have

w̃p
p, j(Mλ ,1∩Eu,E ∩Eu)

�(1−λ )w̃p
p, j(K∩Eu,E ∩Eu)+ λ w̃p

p, j(L∩Eu,E ∩Eu),
(4.19)

with equality for λ ∈ (0,1) and 0 � j < n−2 if and only if K∩Eu = L∩Eu .
For q � p2 � 1, it follows from (4.15) and (4.19) that

W̃ q
q,i(Ip, j(Mλ ,1,E)) � Cq(n, p,q)

×
∫

Sn−1
[(1−λ )w̃p

p, j(K∩Eu,E ∩Eu)+λ w̃p
p, j(L∩Eu,E ∩Eu)]

(n−i)q
p2 dS(u)

�(1−λ )W̃q
q,i(Ip(K,E))+ λW̃ q

q,i(Ip(L,E)),

(4.20)

where equality for λ ∈ (0,1) , 0 � i < n− 1 and 0 � j < n− 2 holds if and only if
K = L . �

REMARK 2. Taking p = q = 1 in Theorems 4.6 and 4.7, respectively, we obtain
the corresponding Brunn-Minkowski type inequality for mixed intersection bodies.

From the proof of Theorem 4.7, we can get the following results.

COROLLARY 4.8. Let K,L,E ∈ S n , 0 � i < n, 0 � j < n− 1 , i, j ∈ N . Some
sufficient conditions for the parameters p,q in order that (4.18) holds for all λ ∈ [0,1]
are that

(1) 0 < p < 1
n−1 and q < 0 ,

(2) p < 0 and q > p2 .
Furthermore, a sufficient condition for p,q in order that (4.18) holds with the

opposite sign for all λ ∈ [0,1] is that
(3) 0 < p < 1

n−1 and 0 < nq < p2 .
In all the cases, equality holds for some λ ∈ (0,1) if and only if K = L.
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[3] K. J. BÖRÖCZKY, E. LUTWAK, D. YANG AND G. Y. ZHANG, The log-Brunn-Minkowski inequality,
Adv. Math., 231 (2012), 1974–1997.

[4] H. BUSEMANN, Volume in terms of concurrent cross-sections, Pacific J. Math., 3 (1953), 1–12.
[5] S. CAMPI, Stability estimates for star bodies in terms of their intersection bodies, Mathematika, 45

(1998), 287–303.

[6] S. CAMPI, Convex intersection bodies in three and four dimensions, Mathematika, 46 (1999), 15–27.

[7] H. FALLERT, P. GOODEY AND W. WEIL, Spherical projections and centrally symmetric sets, Adv.
Math., 129 (1997), 301–322.

[8] K. FAN, Some inequalities concerning positive-definite Hermitian matrices, Proc. Camb. Philos. Soc.,
51 (1955), 414–421.

[9] W. J. FIREY, p-means of convex bodies, Math. Scand., 10 (1962), 17–24.

[10] M. FRADELIZI, A. GIANNOPOULOS AND M. MEYER, Some inequalities about mixed volumes, Isr.
J. Math., 135 (2003), 157–179.

[11] R. J. GARDNER, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc., 342
(1994), 435–445.

[12] R. J. GARDNER, A positive answer to the Busemann-Petty problem in three dimensions, Ann. Math.,
140 (1994), 435–447.

[13] R. J. GARDNER, D. HUG AND W. WEIL, Operations between sets in geometry, J. Eur. Math. Soc.,
15 (2013), 2297–2352.

[14] P. GOODEY, E. LUTWAK AND W. WEIL, Functional analytic characterizations of classes of convex
bodies, Math. Z., 222 (1996), 363–381.

[15] P. GOODEY AND W. WEIL, Intersection bodies and ellipsoids, Mathematika, 42 (1995), 295–304.

[16] E. GRINBERG AND G. Y. ZHANG, Convolutions, transforms, and convex bodies, Proc. London Math.
Soc., 78 (1999), 77–115.

[17] C. HABERL AND M. LUDWIG, A characterization of Lp intersection bodies, Int. Math. Res. Not., 17
(2006), Art ID 10548, 29 pages.

[18] A. KOLDOBSKY, Intersection bodies, positive definite distributions, and the Busemann-Petty problem,
Amer. J. Math., 120 (1998), 827–840.

[19] A. KOLDOBSKY, Second derivative test for intersection bodies, Adv. Math., 136 (1998), 15–25.

[20] A. KOLDOBSKY, Intersection bodies in R
4 , Adv. Math., 136 (1998), 1–14.

[21] A. KOLDOBSKY, Intersection bodies and the Busemann-Petty problem, C. R. Acad. Sci. Paris S. I
Math., 325 (1997), 1181–1186.

[22] A. KOLDOBSKY, A functional analytic approach to intersection bodies, Geom. Funct. Anal., 10
(2000), 1507–1526.

[23] M. LUDWIG, Intersection bodies and valuations, Amer. J. Math., 128 (2006), 1409–1428.
[24] E. LUTWAK, Dual mixed volumes, Pacific J. Math., 58 (1975), 531–538.

[25] E. LUTWAK, Mixed projection inequalities, Trans. Amer. Math. Soc., 287 (1985), 91–105.

[26] E. LUTWAK, Volumes of mixed bodies, Trans. Amer. Math. Soc., 294 (1986), 487–500.

[27] E. LUTWAK, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 232–261.

[28] E. LUTWAK, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc., 339 (1993), 901–916.
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