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STARLIKENESS OF BESSEL FUNCTIONS AND THEIR DERIVATIVES
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Abstract. In this paper necessary and sufficient conditions are obtained for the starlikeness of
Bessel functions of the first kind and their derivatives of the second and third order by using a
result of Shah and Trimble about transcendental entire functions with univalent derivatives and
Mittag-Leffler expansions for the derivatives of Bessel functions of the first kind, as well as some
results on the zeros of these functions.
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[3] Á. BARICZ, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73, (2008),
155–178.
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Math. 54, 1 (2009), 127–132.

[24] G. N. WATSON, A Treatise of the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge,
1995.

[25] R. WONG AND T. LANG, On the points of inflection of Bessel functions of positive order II, Can. J.
Math. 44, 3 (1991), 628–651.

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


