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Abstract. In this paper necessary and sufficient conditions are obtained for the starlikeness of
Bessel functions of the first kind and their derivatives of the second and third order by using a
result of Shah and Trimble about transcendental entire functions with univalent derivatives and
Mittag-Leffler expansions for the derivatives of Bessel functions of the first kind, as well as some
results on the zeros of these functions.

1. Introduction and the Main Results

Geometric properties of Bessel functions of the first kind Jν , like univalence, star-
likeness, spirallikeness and convexity were studied in the sixties by Brown [10, 11, 12],
and also by Kreyszig and Todd [15]. Other geometric properties of Bessel functions of
the first kind were studied later in the papers [2, 3, 4, 6, 7, 8, 22, 23]. Very recently, in [9]
the close-to-convexity of the derivatives of Bessel functions was considered. Motivated
by the above results, in this paper we make a contribution to the subject by obtaining
some necessary and sufficient conditions for the starlikeness of Bessel functions of the
first kind and second and third order derivatives by using a result of Shah and Trim-
ble [20, Theorem 2] about transcendental entire functions with univalent derivatives
and Mittag-Leffler expansions for the derivatives of Bessel functions of the first kind,
as well as some results on the zeros of these functions. For more details on Bessel
functions of the first kind we refer to the book of Watson [24].

Our first set of sharp results are about the starlikeness of order α of two normal-
ized Bessel functions of the first kind. We note that these results naturally complement
the main results of [6, 8, 22].
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THEOREM 1. The function

z �→ fν (z) = (2νΓ(ν +1)Jν(z))
1
ν

is starlike of order α ∈ [0,1) in D = {z ∈ C : |z| < 1} if and only if ν > ν1(α), where
ν1(α) is the unique root of the equation (1−α)νJν(1) = Jν+1(1), situated in (0,∞).
In particular, fν is starlike in D if and only if ν > ν1(0), where ν1(0) � 0.390 . . . is
the unique root of the equation νJν (1) = Jν+1(1).

THEOREM 2. The function

z �→ gν(z) = 2νΓ(ν +1)z1−νJν (z)

is starlike of order α ∈ [0,1) in D if and only if ν > ν2(α), where ν2(α) is the unique
root of the equation (1−α)Jν(1) = Jν+1(1), situated in (ν̃ ,∞), where ν̃ �−0.774 . . .
is the unique root of jν,1 = 1 and jν,1 is the first positive zero of Jν . In particular, the
function gν is starlike in D if and only if ν > ν2(0), where ν2(0) � −0.339 . . . is the
unique root of the transcendental equation Jν(1) = Jν+1(1).

We note that very recently Antonino and Miller [1, Example 3] as an application

of the third-order differential subordinations proved that the function z �→
z∫
0

J0(t)dt is

convex (and hence univalent) in D. If we consider the function wν : D → C, defined
by

wν (z) = 2νΓ(ν +1)
∫ z

0
t−νJν(t)dt,

then in view of the relation

1+
zw′′

ν (z)
w′

ν (z)
=

zg′ν(z)
gν(z)

and the analytic characterizations of starlike and convex functions, Theorem 2 can be
rewritten as follows: The function wν is convex of order α ∈ [0,1) in D if and only if
ν > ν2(α), and in particular, the function wν is convex (and hence univalent) in D if
and only if ν > ν2(0). This generalizes the result of Antonino and Miller [1, Example
3] on w0 and shows actually that if ν < ν2(0), then the above convexity property is no
longer true.

The next set of sharp main results are based on a result of Shah and Trimble [20,
Theorem 2], see Lemma 1 in the next section, and these results are natural companions
of the main results in [5, 9]. We note that it would be interesting to see a common
generalization of the next three theorems. Following the proof of these theorems it is
clear that the monotonicity of the zeros (with respect to the order) of the derivative (of
arbitrary order greater than three) of Bessel functions of the first kind together with
Lemma 1 would be sufficient.

THEOREM 3. The function

z �→ 2νΓ(ν)z
3
2− ν

2 J′ν(
√

z)
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is starlike and all of its derivatives are close-to-convex (and hence univalent) in D if and
only if ν � ν̇, where ν̇ � 0.702 . . . is the unique root on (0,∞) of the transcendental
equation

(2ν −1)Jν(1)+ (ν −2)Jν+1(1) = 0.

THEOREM 4. The function

z �→ 2νΓ(ν −1)z2− ν
2 J′′ν (

√
z)

is starlike and all of its derivatives are close-to-convex (and hence univalent) in D if and
only if ν � ν∗, where ν∗ � 1.905 . . . is the unique root on (1,∞) of the transcendental
equation

(2ν2−2ν −3)Jν(1) = (ν2 + ν −3)Jν+1(1).

THEOREM 5. The function

z �→ 2νΓ(ν −2)z
5
2− ν

2 J′′′ν (
√

z)

is starlike and all of its derivatives are close-to-convex (and hence univalent) in D if and
only if ν � ν�, where ν� � 3.077 . . . is the unique root on (2,∞) of the transcendental
equation

(2ν3 −7ν2 +3)Jν(1)+ (ν3 + ν2 + ν −1)Jν+1(1) = 0.

The last main result of this paper is a common generalization of Theorems 3 and
4.

THEOREM 6. Let a,b,c ∈ R such that c = 0 and b 	= a or c > 0 and b > a.
Moreover, suppose that ν � ν, where ν = max{0,ν0} and ν0 is the largest root of the
quadratic Q(ν) = aν(ν −1)+bν +c. Assume also that the following inequalities hold

Q(ν)+4aν +2a+2b > 0, (4ν +3)Q(ν) > 4aν +2a+2b. (1.1)

Then the function

z �→ 2ν [Q(ν)]−1Γ(ν +1)z1− ν
2
(
azJ′′ν (

√
z)+b

√
zJ′ν(

√
z)+ cJν(

√
z)

)
is starlike and all of its derivatives are close-to-convex (and hence univalent) in D

if and only if ν � ν◦, where ν◦ is the unique root on (ν,∞) of the transcendental
equation

(2aν2−2aν +2bν −3a−b+2c)Jν(1) = (aν2 +aν −bν −3a+2b+ c)Jν+1(1).

It is worth to mention that when b = c = 0 and a = 1, then Theorem 6 reduces
to Theorem 4. In this case ν = 1, ν◦ becomes ν� and the inequalities (1.1) become
ν2 + 3ν + 2 > 0, and 4ν3 − ν2 − 7ν − 2 > 0. These inequalities give ν > −1 and
ν > 1.568. . ., which are certainly satisfied for ν > ν�.

Similarly, we note that when a = c = 0 and b = 1, then Theorem 6 reduces to
Theorem 3. In this case ν = 0, ν◦ becomes ν̇ and the inequalities (1.1) become
ν + 2 > 0, and 4ν2 + 3ν − 2 > 0. These inequalities give ν > −2 and ν > 0.425. . .,
which are certainly satisfied for ν > ν̇.
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2. Proofs of the main results

In this section we present the proof of the main results of this paper. The proof
of Theorems 1 and 2 are mainly based on the Mittag-Leffler expansions and some in-
equalities from the proof of the main result from [6].

Proof of Theorem 1. Let us denote by jν,n the n th positive zero of the function
Jν . From the proof of [6, Theorem 1] we know that for ν > 0 and r = |z| < jν,1 we
have

Re

(
z f ′ν (z)
fν (z)

)
� r f ′ν (r)

fν (r)
= 1− 1

ν ∑
n�1

2r2

j2ν,n − r2 .

Since jν,1 > j0,1 � 2.404. . . > 1 when ν > 0, the above inequality is clearly valid
when |z| < 1. On the other hand, the function r �→ r f ′ν (r)/ fν (r) is clearly decreasing
on (0,1) ⊂ (0, jν,1), and consequently for all z ∈ D and ν > 0 we have

Re

(
z f ′ν (z)
fν (z)

)
� 1− 1

ν ∑
n�1

2
j2ν,n −1

=
f ′ν (1)
fν (1)

.

Since the function ν �→ jν,n is increasing on (0,∞) for n ∈ N fixed (see [19, p.
236]), it follows that the function ν �→ f ′ν (1)/ fν(1) is increasing on (0,∞), and thus
f ′ν (1)/ fν(1) > α if and only if ν > ν1(α), where ν1(α) is the unique root of the
equation

f ′ν (1) = α fν (1) ⇐⇒ ναJν(1) = J′ν(1) ⇐⇒ (1−α)νJν(1) = Jν+1(1).

Here we used that
z f ′ν (z)
fν (z)

=
1
ν

zJ′ν(z)
Jν(z)

= 1− zJν+1(z)
νJν (z)

,

since Jν satisfies the recurrence relation

zJ′ν(z) = νJν(z)− zJν+1(z). (2.1)

Taking into account the fact that all of the above inequalities are sharp it follows that
indeed the function fν is starlike of order α ∈ [0,1) in D if and only if ν > ν1(α). �

Proof of Theorem 2. From the proof of [6, Theorem 1] we know that for ν > −1
and r = |z| < jν,1 we have

Re

(
zg′ν(z)
gν(z)

)
� rg′ν(r)

gν(r)
= 1− ∑

n�1

2r2

j2ν,n − r2 .

Since ν �→ jν,1 is increasing on (−1,∞), it follows that jν,1 > 1 when ν > ν̃, and thus
in this case the above inequality is clearly valid when |z| < 1. On the other hand, the
function r �→ rg′ν(r)/gν(r) is clearly decreasing on (0,1)⊂ (0, jν,1), and consequently
for all z ∈ D and ν > ν̃ we have

Re

(
zg′ν(z)
gν(z)

)
� 1− ∑

n�1

2
j2ν,n −1

=
g′ν(1)
gν(1)

.
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Since the function ν �→ jν,n is increasing on (−1,∞) for n ∈ N fixed (see [19, p.
236]), it follows that the function ν �→ g′ν(1)/gν(1) is increasing on (ν̃ ,∞), and thus
g′ν(1)/gν(1) > α if and only if ν > ν2(α), where ν2(α) is the unique root of the
equation

g′ν(1) = αgν(1) ⇐⇒ (1−ν −α)Jν (1)+ J′ν(1) = 0 ⇐⇒ (1−α)Jν(1) = Jν+1(1).

Here we used that

zg′ν(z)
gν(z)

= 1−ν +
zJ′ν(z)
Jν(z)

= 1− zJν+1(z)
Jν(z)

.

Taking into account the fact that all of the above inequalities are sharp it follows that
indeed the function gν is starlike of order α ∈ [0,1) in D if and only if ν > ν2(α). �

Now, for the proof of the remaining theorems we will use the following result of
Shah and Trimble [20, Theorem 2] about transcendental entire functions with univalent
derivatives, which was the key tool in the proof of the main results of [5, 8].

LEMMA 1. Let f : D → C be a transcendental entire function of the form

f (z) = z∏
n�1

(
1− z

zn

)
,

where all zn have the same argument and satisfy |zn| > 1. If f is univalent in D, then

∑
n�1

1
|zn|−1

� 1.

Moreover, the above inequality holds if and only if f is starlike in D and all of its
derivatives are close-to-convex there.

As we can see below the next proofs are very similar and all of them use the
monotonicity of the zeros with respect to the order of the derivatives of Bessel functions
of the first kind.

Proof of Theorem 3. Let us denote by j′ν,n the n th positive zero of the function
J′ν . From the infinite product representation [21, p. 340]

J′ν(z) =

(
z
2

)ν−1

2Γ(ν) ∏
n�1

(
1− z2

j′2ν,n

)

it follows that

2νΓ(ν)z
3
2− ν

2 J′ν(
√

z) = z ∏
n�1

(
1− z

j′2ν,n

)

and

−1
2

(
1−ν +

zJ′′ν (z)
J′ν (z)

)
= ∑

n�1

z2

j′2ν,n − z2 .
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On the other hand, applying the inequality [13, Theorem 6.3]

j′2ν,1 >
4ν(ν +1)

ν +2
,

where ν > 0, it follows that for n∈ {2,3, . . .} we have j′ν,n > j′ν,1 > 1 if ν > −3+
√

41
8 �

0.425. . .. Moreover, we know that ν �→ j′ν,n is increasing on (0,∞) for each n∈N fixed
(see [19, p. 236]), and thus the function

ν �→ ∑
n�1

1
j′2ν,n −1

= −1
2

(
1−ν +

J′′ν (1)
J′ν (1)

)

is decreasing on (0,∞). Consequently, the inequality

∑
n�1

1
j′2ν,n −1

� 1

is valid if and only if ν � ν̇, where ν̇ is the unique root on (0,∞) of the equation

∑
n�1

1
j′2ν,n −1

= 1 ⇐⇒ (3−ν)J′ν(1)+ J′′ν (1) = 0. (2.2)

Since Jν satisfies the Bessel differential equation, it follows that

z2J′′ν (z)+ zJ′ν(z)+ (z2−ν2)Jν(z) = 0,

and then

J′′ν (1) = (ν2 −1)Jν(1)− J′ν(1) = (ν2 −ν −1)Jν(1)+ Jν+1(1),

where we used the recurrence relation (2.1). Consequently, equation (2.2) is equivalent
to

(2ν −1)Jν(1)+ (ν −2)Jν+1(1) = 0.

Thus, by applying Lemma 1 the assertion of the theorem follows. �

Proof of Theorem 4. Let us denote by j′′ν,n the n th positive zero of the function
J′′ν . By using the infinite product representation [21, p. 340]

J′′ν (z) =

(
z
2

)ν−2

4Γ(ν −1) ∏
n�1

(
1− z2

j′′2ν,n

)

it follows that

2νΓ(ν −1)z2− ν
2 J′′ν (

√
z) = z ∏

n�1

(
1− z

j′′2ν,n

)

and

−1
2

(
2−ν +

zJ′′′ν (z)
J′′ν (z)

)
= ∑

n�1

z2

j′′2ν,n − z2 .
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On the other hand, applying the inequality [13, Theorem 8.1]

j′′2ν,1 >
4ν(ν −1)

ν +2
,

where ν > 1, it follows that for n ∈ {2,3, . . .} we have j′′ν,n > j′′ν,1 > 1 if ν > 5+
√

57
8 �

1.568. . .. Moreover, we know that ν �→ j′′ν,n is increasing on (1,∞) for each n ∈ N

fixed (see [18, 25]), and thus the function

ν �→ ∑
n�1

1
j′′2ν,n −1

= −1
2

(
2−ν +

J′′′ν (1)
J′′ν (1)

)

is decreasing on (1,∞). Consequently, the inequality

∑
n�1

1
j′′2ν,n −1

� 1

is valid if and only if ν � ν∗, where ν∗ is the unique root in (1,∞) of the equation

∑
n�1

1
j′′2ν,n −1

= 1 ⇐⇒ (4−ν)J′′ν (1)+ J′′′ν (1) = 0. (2.3)

Since Jν satisfies the Bessel differential equation, it follows that

z2J′′′ν (z)+3zJ′′ν (z)+ (z2 +1−ν2)J′ν(z)+2zJν(z) = 0,

and then

J′′′ν (1) = (1−3ν2)Jν(1)+(ν2 +1)J′ν(1) = (ν3−3ν2 +ν +1)Jν(1)− (ν2 +1)Jν+1(1),

where we used the recurrence relation zJ′ν(z) = νJν(z)−zJν+1(z). Consequently, equa-
tion (2.3) is equivalent to

(2ν2−2ν −3)Jν(1) = (ν2 + ν −3)Jν+1(1).

Thus, by applying Lemma 1 the assertion of the theorem follows. �

Proof of Theorem 5. Let us denote by j′′′ν,n the n th positive zero of the function
J′′′ν . From the infinite product representation [21, p. 340]

J′′′ν (z) =

(
z
2

)ν−3

8Γ(ν −2) ∏
n�1

(
1− z2

j′′′2ν,n

)

it follows that

2νΓ(ν −2)z
5
2− ν

2 J′′′ν (
√

z) = z ∏
n�1

(
1− z

j′′′2ν,n

)
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and

−1
2

(
3−ν +

zJ′′′′ν (z)
J′′′ν (z)

)
= ∑

n�1

z2

j′′′2ν,n − z2 .

On the other hand, taking into account that the function ν �→ j′′′ν,1 is increasing on (2,∞)
(see [14, 17]) it follows that for ν > 3 we have j′′′ν,1 > j′′′3,1 � 1.376. . . > 1. Thus, for
n∈ {2,3, . . .} we have j′′′ν,n > j′′′ν,1 > 1 if ν > 3. We would like to mention here that we
approximated the zero j′′′3,1 by using the mathematical software Matlab by taking into
account that j′′′3,1 is actually the first positive zero of the equation

(
(1−ν)z2 + ν3−3ν2 +2ν

)
Jν(z) =

(
(2+ ν2)z− z3)Jν+1(z)

when ν = 3. Appealing again to the fact that ν �→ j′′′ν,n is increasing on (2,∞) for each
n ∈ N fixed (see [14, 17]), we obtain that the function

ν �→ ∑
n�1

1
j′′′2ν,n −1

= −1
2

(
3−ν +

J′′′′ν (1)
J′′′ν (1)

)

is decreasing on (2,∞). Consequently, the inequality

∑
n�1

1
j′′′2ν,n −1

� 1

is valid if and only if ν � ν�, where ν� is the unique root on (2,∞) of the equation

∑
n�1

1
j′′′2ν,n −1

= 1 ⇐⇒ (5−ν)J′′′ν (1)+ J′′′′ν (1) = 0. (2.4)

Since Jν satisfies the Bessel differential equation, it follows that

z2J′′′′ν (z)+5zJ′′′ν (z)+ (z2 +4−ν2)J′′ν (z)+4zJ′ν(z)+2Jν(z) = 0,

and then

J′′′′ν (1) = (ν4 +9ν2−2)Jν(1)− (6ν2 +4)J′ν(1)

= (ν4 −6ν3 +9ν2−4ν −2)Jν(1)+ (6ν2 +4)Jν+1(1).

Consequently, equation (2.4) is equivalent to

(2ν3 −7ν2 +3)Jν(1)+ (ν3 + ν2 + ν −1)Jν+1(1) = 0.

Applying again Lemma 1 the assertion of the theorem follows. �

Proof of Theorem 6. Let us consider the power series

2νΓ(ν +1)z−ν (
az2J′′ν (z)+bzJ′ν(z)+ cJν(z)

)
= ∑

n�0

(2n+ ν)(2n+ ν−1)a+(2n+ ν)b+ c
4nn!(ν +1)n

(−1)nz2n,
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where (a)n = a(a + 1) . . .(a + n− 1) = Γ(a + n)/Γ(a). Using the fact that for τ > 0
the quotient logΓ(n+ τ)/(n logn) tends to 1 as n tends to infinity, we obtain that the
growth order of the above entire function is

ρ = lim
n→∞

n logn
n log4+ logΓ(n+1)+ logΓ(n+ ν +1)− logQn(ν)

=
1
2
,

where Qn(ν) = (2n + ν)(2n + ν − 1)a + (2n + ν)b + c. Thus, if λν,n denotes the
n th positive zero of the function z �→ az2J′′ν (z) + bzJ′ν(z) + cJν(z), then by applying
Hadamard’s theorem [16, p. 26] we obtain

az2J′′ν (z)+bzJ′ν(z)+ cJν(z) =
Q(ν)zν

2νΓ(ν +1) ∏
n�1

(
1− z2

λ 2
ν,n

)
,

and consequently

2νΓ(ν +1)
Q(ν)

z1− ν
2
(
azJ′′ν (

√
z)+b

√
zJ′ν(

√
z)+ cJν(

√
z)

)
= z ∏

n�1

(
1− z

λ 2
ν,n

)
,

−1
2

(
−ν + z · az2J′′′ν (z)+ (2a+b)zJ′′ν(z)+ (b+ c)J′ν(z)

az2J′′ν (z)+bzJ′ν(z)+ cJν(z)

)
= ∑

n�1

z2

λ 2
ν,n − z2 .

Here we used the fact that when ν � ν, where ν = max{0,ν0} and ν0 is the largest root
of the quadratic Q(ν) = aν(ν −1)+bν + c, the zeros of the function z �→ az2J′′ν (z)+
bzJ′ν(z)+ cJν(z) are real, according to [13, Theorem 7.1].

On the other hand, by using the inequalities in (1.1) together with [13, Eq. (8.2)]

λν,1 >
4(ν +1)Q(ν)

Q(ν)+4aν +2a+2b
,

it follows that for n ∈ {2,3, . . .} we have λν,n > λν,1 > 1. Moreover, we know [18,
Theorem 1] that for a,b,c ∈ R such that c = 0 and b 	= a or c > 0 and b > a we
have that ν �→ λν,n is increasing on (0,∞) for fixed n ∈ N. Consequently, under the
assumptions, the function

ν �→ −1
2

(
−ν +

aJ′′′ν (1)+ (2a+b)J′′ν(1)+ (b+ c)J′ν(1)
aJ′′ν (1)+bJ′ν(1)+ cJν(1)

)
= ∑

n�1

1
λ 2

ν,n−1

is decreasing on (0,∞). Thus, the inequality

∑
n�1

1
λ 2

ν,n−1
� 1

is valid if and only if ν � ν◦, where ν◦ is the unique root on (ν ,∞) of the equation

∑
n�1

1
λ 2

ν,n−1
= 1,
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or equivalently

aJ′′′ν (1)+ (4a−aν +b)J′′ν (1)+ (3b+ c−bν)J′ν(1)− (ν −2)cJν(1) = 0.

Using the expressions for J′′′ν (1), J′′ν (1) and J′ν(1) from the above proofs, the above
equation is equivalent to

(2aν2−2aν +2bν −3a−b+2c)Jν(1) = (aν2 +aν −bν −3a+2b+ c)Jν+1(1).

Applying Lemma 1 completes the proof. �
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1034 Budapest, Hungary

e-mail: bariczocsi@yahoo.com

Murat Çağlar
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