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ON ONE EXTENSION THEOREM DEALING WITH

WEIGHTED ORLICZ–SLOBODETSKII SPACE. ANALYSIS

ON LIPSCHITZ SUBGRAPH AND LIPSCHITZ DOMAIN

RAJ NARAYAN DHARA AND AGNIESZKA KAŁAMAJSKA

(Communicated by B. Opic)

Abstract. Having a given weight ρ(x) = τ (dist(x,∂Ω)) defined on Lipschitz boundary domain
Ω and an Orlicz function Ψ , we construct the subordinated weight ω(·, ·) defined on ∂Ω×∂Ω
and extension operator ExtL : Lip(∂Ω) �→ Lip(Ω) form Lipschitz functions defined on ∂Ω to
Lipschitz functions defined on Ω , independent of τ and Ψ , in such a way that ExtL extends
to the bounded operator from the subspace of weighted Orlicz-Slobodetskii space YΨ,Ψ

ω (∂Ω)
generated by Lipschitz functions and subordinated to the weight ω to Orlicz-Sobolev space
W 1,Ψ

ρ (Ω) . More detailed analysis on Lipschitz subgraph is also provided. Result is new in the
unweighted Orlicz setting for general function Ψ as well as in the weighted Lp setting.

1. Introduction

In this paper we deal with an extension theorems between weighted Orlicz-Slobo-
detskii space defined on the boundary of domain Ω to the weighted Sobolev space
defined on Ω , where Ω is either a Lipschitz boundary domain or subgraph of Lipschitz
function.

More precisely, let Ω⊆Rn be the Lipschitz boundary domain, ρ(x)=τ(dist(x,∂Ω))
be the given weight defined on Ω and let Ψ be given Orlicz function. We construct:

• a linear extension operator between spaces of Lipschitz functions: Ext : Lip(∂Ω)
→ Lip(Ω) , u �→ ũ , where ũ|∂Ω = u ;

• the transformation of weights ρ �→ ωρ , where ωρ is defined on ∂Ω × ∂Ω ,
ωρ(x,y) = τ(|x− y|) = τ(dist(x,y)) ;

• a weighted Slobodetskii type space defined on ∂Ω and subordinated to ωρ ,

Y = Y Ψ,Ψ
ωρ (∂Ω) , extending the classical definition of Orlicz-Slobodetskii space

W 1− 1
p ,p(∂Ω) to the weighted Orlicz setting
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in such a way that the operator Ext extends to the bounded operator

Ẽxt : YL →W 1,Ψ
ρ (Ω)

acting between YL - the completion of Lipschitz functions in Y and weighted Orlicz-
Sobolev space W 1,Ψ

ρ (Ω) . This extension result is a consequence of the following in-
equalities proven in Theorem 3.3∫

Ω
Ψ
( |ũ(x)|

λ

)
τ(dist(x,∂Ω))dx ≺

∫
∂Ω

Ψ
(

E
λ
|u(x)|

)
dσ(x);

(1.1)∫
Ω

Ψ
( |∇ũ(x)|

λ

)
τ(dist(x,∂Ω))dx

≺
∫

∂Ω

∫
∂Ω

Ψ
(

B
λ
|u(x)−u(y)|

|x− y|
)

τ(|x− y|)
|x− y|n−2 dσ(x)dσ(y)+

∫
∂Ω

Ψ
(

D
λ
|u(x)|

)
dσ(x),

(1.2)

as well as their norm counterparts

‖ũ‖
W1,Ψ

τ(dist(x,∂ Ω))(Ω) ≺ ‖u‖
YΨ,Ψ

τ(dist(x,y))(∂Ω),

with constants E,B,D independent on u ∈ Lip(∂Ω) , where ũ = Ext(u) ∈ Lip(Ω) .
Here Y Ψ,Ψ

τ(dist(x,y))(∂Ω) is the space of functions for which (1.1) and (1.2) are finite for

certain λ , equipped with the related Luxemburg norm (see Section 2.3.4).
The problem of extension and trace operator in the unweighted Lp -setting has

been completely solved in the late 50’s of the last century (see papers by Aronszajn
[2], Slobodetskii [64] and Gagliardo [19]). The rudiments in the weighted setting have
appeared in papers by Nikolski [56] and Lizorkin [46]. Trace and extension operator
in the unweighted Orlicz setting was investigated by Nečas ([54], Chapter II, Section
4.3), Fougéres [16, 17] and Lacroix [42] in the 60’s and 70’s of the last century. Further
related contributions can be found in [16, 17, 42], [31], Theorem 5.1, [60, Theorem 7]
and [67, Section 2.6.2]. Trace and extension operator in the weighted Lp -setting, i.e.
in weighted Sobolev spaces W 1,p

ρ (Ω) has been analyzed in [40, 54, 67]. Perhaps first
trace embedding and extension theorems in the weighted Lp -setting can be found in the
paper by Nikolskii [56], written in 1953, before paper by Slobodetskii [64] obtained in
1958. It dealt with power measure dist(x,∂Ω)2 , in the form not involving Slobodetskii
type spaces directly. Extensions within measures of the form dist(x,∂Ω)α can be found
in works by Lizorkin [46], Vasarin [70], Portnov [62], Kudryavcev [39] (Section 9),
Uspenski [71], Nečas [55]. See also [1, 24, 34, 52, 57, 58, 61] for related works. For
trace and extension operator in the weighted Orlicz setting we refer to paper by Lacroix
[43] (providing very very abstract approach), Palmieri [59] where weight functions
involved are powers of distances from the boundary, Kokilashvili [37].

See also [47, 9, 10], Theorem 9.14 in [40], Theorem 2.2 from page 291 in [54],
for interesting related works.
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Let us mention that our extension result in two important cases: in the weighted
Lp setting and in the unweighted Orlicz setting, is new and rather general as it involves
measures which can be different than powers of distances from the boundary. Moreover,
we propose formulaes to transform the related weights ρ �→ωρ , as far as ρ is a function
of the distance from the boundary. We also have no assumptions on generating Orlicz
functions involved.

Weighted Sobolev spaces are basic tool to study degenerated PDEs. To explain our
motivation we focus on the following simple example, showing certain application to
the study of the nonhomogeneous boundary-value problems of elliptic type. Consider
the following boundary value problem:{−div(ρ(x)∇u(x)) = f in Ω

u = g in ∂Ω,
(1.3)

where ρ is the given weight and assume that g ∈ Y , where Y is some function space
on ∂Ω . Suppose further that there exists bounded operator: Ext : Y →W 1,2

ρ (Ω). Then

there exists Ψg ∈ W 1,2
ρ (Ω) such that Ψg|∂Ω = g . Simple substitution: v := u−Ψg

allows to reduce the problem to the homogeneous equivalent one:{
Pv = f −PΨg in Ω

v = 0 on ∂Ω,

where Pw = −div(ρ∇w) . Let us consider W 1,2
ρ (Ω) = {u∈ L1

loc(Ω) : u, |∇u| ∈ Lp
ρ(Ω)}

with the usual norm and Hilbert space H := W 1,2
ρ ,0 (Ω) - the completion of C∞

0 (Ω) in

W 1,2
ρ (Ω) . Assume further that f ∈ H∗ . With suitable assumptions on the admitted

weight ρ one can prove existence of solutions of last equation for example by Lax
Milgram theorem. In particular we also have the solution of (1.3) and boundary data
interprets as u−Ψg ∈W 1,2

ρ ,0 (Ω) . Details are provided in [11].
For more general equations

{−div(ρ(x)FA(∇u(x))) = f in Ω
u = g in ∂Ω,

(1.4)

where g∈Y , FA(z) := A′(|z|)|z|−1z and A : [0,∞)→ [0,∞) is the given convex function
(A′ is the derivative of A), one needs to investigate the extension operator: Ext : Y →
W 1,A

ρ (Ω) , where W 1,A
ρ (Ω) is the weighted Orlicz-Sobolev space corresponding to A ,

and find the respective space Y .
The typical example of pde like (1.4) where ρ(x) = τ(dist(x,∂Ω)) like in our

approach is the case when Ω is a ball with center at 0 and ρ is a function of |x| .
For some other example motivations to consider weighted Sobolev spaces we refer

to books: [7, 14, 25, 40, 54], papers [15, 20, 29, 35, 48, 49, 51, 52, 65], [72], page
1146, and to their references. For motivations to consider Orlicz-Sobolev spaces we
refer e.g. to [3, 5, 8, 13, 21, 22] and references therein. Moreover, in many cases
the theory of existence of solutions to non-homogeneous boundary value problems like
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(1.4) has been systematically undertaken but the authors are aware of the fact that this
theory is avoiding the nonhomogeneous boundary problems because of lack of general
trace/extension results. See e.g. [14], page 16 in the Introduction.

Our tools are based on recent paper [12], where we have introduced the key es-
timates for trace extension theorem (Theorem 2.10), providing analysis on cube. The
passage from analysis on cube to analysis on Lipschitz boundary domain is not so auto-
matic, because we have to care on transformation of weight which in general strongly
depend on geometry of the domain. Therefore at first we provide an analysis on Lips-
chitz subgraph (Theorem 3.1) and obtain the estimates with certain care on constants.
Our constants are not sharp, but one can observe their dependences on geometry of the
domain, related weights and the dimension. In second step we obtain estimations on
Lipschitz boundary domain. Let us mention that our first approach here, analysis on
Lipschitz subgraph, is essentially more general if one takes into account the admitted
class of weights (see Section 5). In our second approach, dealing with Lipschitz bound-
ary domain, we restricted our attention to the special class of weights τ with some good
doubling/halfing properties (Theorem 3.3), which still can be essentially more general
than homogeneous type ones like τ(s) = sα , moreover, τ can vanish or explode at 0.
Our selection of weights allows us to provide analysis which is independent of geomet-
ric properties of domain Ω . We hope that more detailed analysis provided on Lipschitz
subgraph, the technical step, allows to generalize extension theorems involving more
general weights in some further issues.

2. Notation and preliminaries

2.1. Basic notation and general assumptions

NOTATION. Let Ω ⊂ Rn be an open set. By C∞(Ω) we mean set of functions
which have smooth extension to certain open neighborhood of Ω . If f is defined on a
set A⊆Rn , by f χA we mean the function f extended by 0 outside A . Having to norms
‖ ·‖ and ‖ ·‖1 defined on a Banach space X , we will write ‖ ·‖ ∼ ‖ ·‖1 if norm ‖ ·‖ is
equivalent to ‖ ·‖1 on X . When n ∈ N , we denote: Q′ = (− 1

2 , 1
2)n−1 , Q = Q′ × (0,1) ,

and tA := {tx : x ∈ A} whenever A is an arbitrary subset of an Euclidean space. If X
is a subset in an Euclidean space, by Lip(X) we denote Lipschitz functions defined
on X , while the notation Lip0(X) stands for Lipschitz functions with compact support

in X . When B ∈ Rm×n is any matrix, we denote ‖B‖ =
√

∑ j m
2
j , where mj ’s are all

minors of B of highest order. By θk we denote the k -dimensional Hausdorff measure
of the unit sphere Sk(1) ⊆ Rk+1 . If f1, f2 are two given functions defined on the same
domain D , we say that f1 ≺ f2 if there is constant C > 0 such that for every x ∈ D
we have f1(x) � C f2(x) . If we use this notation in inequalities involving some general
function u , it is meant that inequalities hold with constants independent on u .

ASSUMPTIONS. If not said otherwise we assume that Ω ⊆ Rn is a bounded do-
main of class C 0,1 described below, the symbol dσ(x) stands for the (n−1)-dimensional
Hausdorff measure on ∂Ω . All weight functions in our considerations (non-negative
measurable functions) are assumed to be integrable on domains of their definition.
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2.2. Domains of class C 0,1

We will be using the following definition of Lipschitz boundary domain (see
e.g. [41]).

DEFINITION 2.1. We say that Ω⊂Rn is of class C 0,1 if the following conditions
are satisfied:

(a) there is m ∈ N and decomposition

∂Ω = ∪m
r=1Λr,

where Λr ⊆ ∂Ω are connected and open in ∂Ω (where the topology on ∂Ω is
inherited from Rn );

(b) there are m cartesian coordinate systems Xr defined Rn , (r = 1,2, · · · ,m)

Xr = (xr
1, · · · ,xr

n−1,x
r
n) = ((xr)′,xr

n) where (xr)′ = (xr
1, · · · ,xr

n−1);

(c) there are rigid motions in Rn , Ãr(X) = ArX +Cr, where Ar ’s are orthonormal
matrices with determinant one, Cr are vectors in Rn , r = 1, . . . ,m ;

(d) there exist functions αr ∈ Lip(aQ′) , where aQ′ = [− a
2 , a

2 ]n−1 , r = 1, . . . ,m , a > 0;

such that

(i) sets Λr are the rigid presentations of the Lipschitz graph of αr under the mapping
Ã−1

r , i. e.
Λr = Ã−1

r

({(x′,αr(x′)) : x′ ∈ aQ′}) ;
(ii) there exists a constant b > 0 such that for every r = 1, · · · ,m sets

U+
r = Ã−1

r ({Xr = ((xr)′,xr
n); (xr)′ ∈ aQ′ and αr((xr)′) < xr

n < αr((xr)′)+b})
are subsets of Ω , while sets

U−
r = Ã−1

r ({Xr = ((xr)′,xr
n); (xr)′ ∈ aQ′ and αr((xr)′)−b < xr

n < αr((xr)′)})
are a subsets of Rn \Ω .

2.3. Orlicz, Orlicz-Sobolev and Orlicz-Slobodetskii spaces equipped with weights

2.3.1. Orlicz space LΨ
ρ

We start with the definition of Orlicz space.

DEFINITION 2.2. The function Ψ : [0,∞) → [0,∞) is called Orlicz function if it
is nondecreasing, convex and satisfies conditions: Ψ(0) = 0 and limt→∞ Ψ(t) = +∞ .

We will write that Ψ ∈ Δ2 if it satisfies the Δ2 -condition: Ψ(2λ ) � CΨ(λ ) , for
every λ > 0, with a constant C independent of λ .

We define now the Orlicz spaces. We are particularly interested in definition on
domain and on its boundary.
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A. Orlicz space on domain. Let Ψ be an Orlicz function and ρ : Ω → (0,∞) be a
given weight function. The space

LΨ
ρ (Ω) := { f ∈ L1

loc(Ω) :
∫

Ω
Ψ(s| f (x)|)ρ(x)dx < ∞ for some s > 0}

is called weighted Orlicz space with weight ρ . It is a Banach space with the Luxemburg
norm:

‖ f‖LΨ
ρ (Ω) := inf

{
λ > 0 :

∫
Ω

Ψ
( | f (x)|

λ

)
ρ(x)dx � 1

}
.

As is well known, when Ψ(λ ) = λ p and p � 1, then LΨ
ρ (Ω) = Lp

ρ (Ω) . See e.g. [63].
The Legendre transform of Ψ is Ψ∗(t) = sups�0{st−Ψ(s)}, t � 0.

B. Orlicz space on the boundary of domain. Similarly, we define the weighted Or-
licz space on the boundary of the domain:

LΨ
r (∂Ω) := { f ∈ L1

loc(∂Ω) :
∫

∂Ω
Ψ(s| f (x)|) r(x)dσ(x) < ∞ for some s > 0},

with the norm:

‖ f‖LΨ
r (∂Ω) := inf

{
λ > 0 :

∫
∂Ω

Ψ
( | f (x)|

λ

)
r(x)dσ(x) � 1

}
,

where r : ∂Ω → (0,∞) is a given weight function defined on the boundary of Ω .
The same notation will be used for vector functions, u : Ω → Rm , with the formal

difference that instead of |u(x)| we shall work with the Euclidean norm of the vector
u(x) .

2.3.2. Information about classical Besov spaces Bp,q
s

For 1 � p,q < ∞ and 0 < s < 1 one defines Besov space Bp,q
s (Ω) as the collection

of all measurable functions f defined on Ω such that

‖ f‖Bp,q
s (Ω) := ‖ f‖Lp(Ω) +

(∫
Ω

(∫
Ω

| f (x)− f (y)|p
|x− y|(n+sq)p/q

dy

)q/p

dx

)1/q

< ∞.

With the same range of parameters Besov space Bp,q
s (∂Ω) is the collection of all

measurable functions f defined on ∂Ω such that

‖ f‖Bp,q
s (∂Ω) := ‖ f‖Lp(∂Ω) +

(∫
∂Ω

(∫
∂Ω

| f (x)− f (y)|p
|x− y|(n−1+sq)p/q

dσ(y)
)q/p

dσ(x)

)1/q

< ∞.

We have used the (nonatomic) definition of Besov spaces (see e.g. [67] and Section
4 in [53] for discussion and overview of Besov spaces specializing on those defined on
Lipschitz domains and their boundaries).
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2.3.3. Orlicz-Sobolev space W 1,Ψ
ρ

Let Ω ⊆ Rn be an open bounded domain, k ∈ N , and Ψ : [0,∞) → [0,∞) be a
given Orlicz function. The weighted Orlicz-Sobolev space with weight ρ , Wk,Ψ

ρ (Ω) is
the linear set

{u ∈ L1
loc(Ω) : Dαu ∈ LΨ

ρ (Ω) for every α : |α| � k},
equipped with the norm

‖u‖
Wk,Ψ

ρ (Ω) := ∑
α :|α |�k

‖Dαu‖LΨ
ρ (Ω).

Here Dαu means the distributional derivative of u . We will be dealing with k = 1 only.
For more information we refer e.g. [8].

Symbol W 1,Φ
ρ ,L (Ω) will denote the completion of Lipschitz functions in the norm of

the space W 1,Φ
ρ (Ω) . For general class of weights density results for Lipschitz functions

are rather missing in the literature. We refer to the related articles [4, 26, 23, 33, 45, 72].
In the special case when Ψ(λ ) = λ p,1 � p < ∞ , we use the standard notation:

W 1,Ψ
ρ (Ω) = W 1,p

ρ (Ω) .

REMARK 2.3. Ψ(λ ) = λ p , 1 � p < ∞ . Classical Besov space Bp,p
s (Ω) can in

some cases be compared with weighted Sobolev spaces W 1,p
(dist(x,∂Ω))α (Ω) according to

the following proposition.

PROPOSITION 2.4. Let Ω⊆Rn be a domain of class C 0,1 and ρ(·)=(dist(x,∂Ω))α .
Then we have

i) When α ∈ (0, p) and 1 � p � ∞ , we have W 1,p
ρ (Ω) ⊆ Bp,p

1− α
p
(Ω);

ii) When α ∈ (−1,0), p > 1 , we have W 1,p
ρ (Ω) ⊇ Bp,p

1− α
p
(Ω) .

Moreover, when α ∈ (0, p) and u is harmonic then u ∈ W 1,p
ρ (Ω) if and only if u ∈

Bp,p
1− α

p
(Ω) .

Proof. For part i) and ii) see [53], Proposition 4.4 and [52] by taking k = 0 and
k = 1 respectively, Appendix A. For last statement see [27], Theorem 4.1. �

2.3.4. Orlicz-Slobodetskii space Y Ψ,Φ
ω

A. Orlicz-Slobodetskii space on domain. Let ω ∈ L1(Ω×Ω) be the given weight.
Moreover, let Ψ and Φ be the given two Orlicz functions. By Y Ψ,Φ

ω (Ω) we denote the
space of all u ∈ LΨ(Ω) , for which the quantity

IΦ
ω (su,Ω) :=

∫
Ω

∫
Ω

Φ
(

s|u(x)−u(y)|
|x− y|

)
ω(x,y)

|x− y|n−1 dxdy
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is finite for some s > 0. We equip it with the norm

‖u‖
YΨ,Φ

ω (Ω) := ‖u‖LΨ(Ω) + JΦ
ω (u,Ω),

involving Luxemburg-type seminorm

JΦ
ω (u,Ω) := inf

{
λ > 0 : IΦ

ω

( u
λ

,Ω
)

� 1
}

.

B. Orlicz-Slobodetskii space on the boundary of domain. The same type of space
can be defined on the boundary of Ω , with a given weight ω(x,y) ∈ L1(∂Ω× ∂Ω) .
Namely, when

IΦ
ω (u,∂Ω) :=

∫
∂Ω

∫
∂Ω

Φ
( |u(x)−u(y)|

|x− y|
)

ω(x,y)
|x− y|n−2 dσ(x)dσ(y),

we define the space

Y Ψ,Φ
ω (∂Ω) :=

{
u ∈ LΨ(∂Ω) : there exists s > 0; IΦ

ω (su,∂Ω) < ∞
}

,

equipped with the norm

‖u‖
YΨ,Ψ

ω (∂Ω) := ‖u‖LΨ(∂Ω) + JΦ
ω (u,∂Ω),

where
JΦ

ω (u,∂Ω) := inf
{

λ > 0 : IΦ
ω

( u
λ

,∂Ω
)

� 1
}

.

In the similar way as before we define spaces: YΨ,Φ
ω,L (Ω) , YΨ,Φ

ρ ,L (∂Ω) as the com-

pletion of Lipschitz functions in the space YΨ,Φ
ω (Ω) and Y Ψ,Φ

ρ (∂Ω) , respectively. See
[44] for the related density result dealing with the case ω ≡ 1.

REMARK 2.5. If ω ≡ 1 and Ψ(λ ) = Φ(λ ) = |λ |p , 1 < p < ∞ , then we have

‖u‖YΨ,Φ(∂Ω) ∼ ‖u‖Lp(∂Ω) +
(∫

∂Ω

∫
∂Ω

|u(x)−u(y)|p
|x− y|p+n−2 dσ(x)dσ(y)

)1/p

,

which is the norm of u in the Slobodetskii space W 1− 1
p ,p(∂Ω) , see e.g. [41].

Obvious modifications lead to the same type of spaces defined on manifolds (in-
voloving Hausdorff measures), or less general but important, on parts of the boundary
of Ω : Λ ⊆ ∂Ω , when Ω is a domain of class C 0,1 .

REMARK 2.6. Weighted Slobodetskii spaces can in some cases be identified with
the classical Besov spaces. When p = q we have Y λ p,λ p

|x−y|α (∂Ω) = Bp,p
1− 1

p− α
p
(∂Ω) when-

ever 0 < 1− 1
p − α

p < 1.
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2.3.5. Equivalence of norms

We will be using the following statement (see e.g. [6], Proposition 2).

PROPOSITION 2.7. Let M be a Young function and (X ,μ) be the measurable
space equipped with the measure μ . Then the expression

‖ f‖LΨ(X ,μ),α := inf

{
λ > 0 :

∫
X

Ψ
( | f (x)|

λ

)
μ(dx) � α

}
.

defines a complete norm on

LΨ(X ,μ) := { f ∈ L1
loc(X) :

∫
Ω

Ψ(s| f (x)|)μ(dx) < ∞ for some s > 0}

for each α ∈ (0,∞) . Moreover, all norms ‖ ·‖LΨ(X ,μ),α , where α ∈ (0,∞) , are equiva-
lent.

2.4. Trace embedding theorem (unweighted case)

2.4.1. Admitted Orlicz pairs

We will use the following assumptions coming from paper by Kita [36].

ASSUMPTION A. We assume that a,b : [0,∞) → [0,∞) are continuous functions
which are strictly positive on (0,∞) and such that

(a)
∫ 1
0 a(s)/sds < ∞ ,

∫ ∞
1

a(s)
s ds = +∞ ;

(b) b(·) is non-decreasing, lims→∞ b(s) = +∞ .

(c) there exist constants c1 > 0,s0 � 0 such that∫ s

0

a(t)
t

dt � c1b(c1s) for all s > s0,

and in the case s0 > 0 a mapping s �→ a(s)
s is bounded when s �= 0 is close to 0.

We define

Φ(t) :=
∫ t

0
a(s)ds and Ψ(t) :=

∫ t

0
b(s)ds, where t � 0.

2.4.2. Operator of trace

Let us recall the concept of the trace of a function and of the trace operator.
Suppose that for given Orlicz-functions Φ and Ψ an inequality

‖u‖YΨ,Φ(∂Ω) � D‖u‖W1,Ψ(Ω),
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holds for every Lipschitz function u defined on Ω . Let u ∈W 1,Ψ
L (Ω) and consider any

sequence of Lipschitz functions um converging to u in the norm of W 1,Ψ(Ω) . Then
{um} is a Cauchy sequence in YΨ,Φ(∂Ω) (norm convergence) so that it converges to
some element û ∈Y Ψ,Φ

L (∂Ω) . It is easy to check that û is independent of the choice of
Lipschitz sequence {um} , converging to u . It allows to extend the standard definition
of the trace operator:

Tru := lim
m→∞

um = û ∈ YΨ,Φ
L (∂Ω). (2.1)

In the same way we can define the trace operator in weighted case

Tr : W 1,Ψ
ρ ,L (Ω) �−→ Y Φ,Ψ

ω,L (∂Ω),

if we only have the inequality

‖u‖
YΨ,Φ

ω (∂Ω) � D‖u‖
W1,Ψ

ρ (Ω),

holding within Lipschitz functions. In that case, when the sequence of Lipschitz func-
tions {um} converges to u in W 1,Ψ

ρ (Ω) , then the sequence of restrictions {um|∂Ω}
converges to some û in YΨ,Φ

ω (∂Ω) , and we have

Tru := lim
m→∞

um = û ∈Y Ψ,Φ
ω,L (∂Ω).

2.4.3. Trace embedding theorem (unweighted)

The following theorem was obtained in [30].

THEOREM 2.8. (embedding theorem) Let the N -functions Φ and Ψ satisfy the
Assumption A and Ω be a bounded domain of class C 0,1 . Then we have:

(i) There is an inequality :

‖u‖YΨ,Φ(∂Ω) � D‖u‖W1,Ψ(Ω), (2.2)

with D independent of u-an arbitrary Lipschitz function defined on Ω;

(ii) The trace operator Tr : W 1,Ψ
L (Ω) �→ Y Ψ,Φ

L (∂Ω) is well defined by (2.1) and for

every u ∈W 1,Ψ
L (Ω) we have

‖Tru‖YΨ,Φ(∂Ω) � D‖u‖W1,Ψ(Ω),

where D is the same as in (2.2).

REMARK 2.9. We always Φ(s)≺Ψ(cs) , with some universal constant c , see e.g.

Proposition 5.1 in [32]. When Φ and Ψ satisfy the Assumption A with b(s) =
∫ s
0

a(t)
t dt
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and one of the functions Φ∗ or Ψ∗ satisfies Δ2 condition, then we have Φ ∼ Ψ as Or-
licz functions (i. e. there exist constants c1,c2 > 0 such that Φ(c1s) ≺ Ψ(s) ≺ Φ(c2s)
for every s > 0), see e.g. Proposition 5.1 in [32]. The same holds when there ex-
ist constants c1,c2 > 0 such that c2b(c1s) =

∫ s
0

a(t)
t dt for every t > 0. The condi-

tion c2b(c1s) =
∫ s
0

a(t)
t dt above cannot be substituted by the essentially weaker one

c1b(c1s) �
∫ s
0

a(t)
t dt defined in part (c) in Assumption A, to still have the property (X):

if one of the functions Φ∗ or Ψ∗ satisfies Δ2 condition then we have Φ ∼ Ψ . This
is confirmed by the example a(t) = t2

2 ,b(t) = exp(t)− 1, presented to us by the ref-
eree. In this case the condition (c) in Assumption A is satisfied and we have Φ = 1

6λ 3 ,
Φ∗ = 2

3λ 3/2 , Ψ = exp(t)− t − 1, Ψ∗ = (1 + λ ) ln(1 + λ )− λ (see [38], Section I.2,
Example 3). In particular both functions Φ∗ and Ψ∗ satisfy the Δ2 condition however
Φ and Ψ are not equivalent as Orlicz functions. Consequently, the condition (X) does
not hold for them.

It is claimed in Remark 2.6 in [12], Remark 5.3 in [31] and Remark 3.2 in [30] that
property (X) still holds with condition (c) in Assumption A. The fact that the property
(X) requires stronger assumption has been overlooked there. Let us emphasize however
that all three mentioned remarks have the form of the additional comment about Kita
pairs (Φ,Ψ) and they are not used in any other places in the mentioned papers.

2.5. Extension theorem for cube

Let ρ : [0,1]→ [0,∞) be a given weight function,
∫ 1
0 ρ(t)dt < ∞ and let us define

the following transforms (global and local) of the weight ρ :

ωρ(z) := |z|n−1
∫ 1

0

1
tn

χ{ z
t ∈(− 3

4 , 3
4 )n−1} ρ(t)dt, z ∈ Rn−1, (2.3)

ωρ ,κ(z) := |z|n−1
∫ κ

0

1
tn

χ{ z
t ∈(− 3

4 , 3
4 )n−1} ρ(t)dt, κ ∈ (0,1) z ∈ Rn−1.

Moreover, let φt : Rn−1 → R (t > 0) be Lipschitz molifier function, i.e.

φt(x) = t−(n−1)φ(x/t), φ(x1, . . . ,xn−1) = ψ(x1) · . . . ·ψ(xn−1), (2.4)

where ψ is the Lipschitz one variable even function defined by

ψ(t) =

⎧⎪⎪⎨⎪⎪⎩
1 when 0 � t � 1

4 ,

−2t + 3
2 when 1

4 � t � 3
4 ,

0 when t > 3
4 .

, for t � 0.

In particular 0 � φ � 1, suppφ ⊆ 3Q′ , φ ≡ 1 in 1
2Q′ , and

∫
Rn−1 φdx = 1.

We will deal with weighted Sobolev space W 1,Ψ
ρ̃ (Q) where ρ̃(x′,t) = ρ(t) . The

following result was obtained in [12].
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THEOREM 2.10. Let Ψ be the given Orlicz function, n � 2 , Q′ = (− 1
2 , 1

2)n−1 ,
Q = Q′ × (0,1) , v : Q′ → R be Lipschitz and compactly supported in (1−d)Q′ , where
d ∈ (0,1) and

ṽ(x, t) = v∗φt(x) :=
{∫

Rn−1 v(y)φt(x− y)dy when t > 0,
v(x) when t = 0,

where φt is as in (2.4). Moreover, let ρ : [0,1] → [0,∞) be a given weight function,∫ 1
0 ρ(t)dt = C(ρ) < ∞ and ρ̃(x′,t) = ρ(t) . Then we have:

(i) ∫
Q′

∫ 1

0
Ψ(|ṽ(x,t)|)ρ(t)dxdt � C(ρ)

∫
Q′

Ψ(|v(x)|) dx

and there exists constant B̃1 independent of u such that

‖ṽ‖LΨ
ρ̃ (Q) � B̃1‖v‖LΨ(Q′).

(ii) ∫
Q′

∫ 1

0
Ψ(|∇ṽ|)ρ(t)dtdx � L

∫
x∈Q′

∫
y∈Q′

Ψ
(

I|v(y)− v(x)|
|x− y|

)
ωρ(x− y)
|x− y|n−2 dydx

(2.5)

+
C(ρ)

2

∫
Q′

Ψ(J|v(x)|)dx,

where I = 5n
2

( 3
2

)n√ n−1
3 , J =

( 3
2d

)n−1 n+7
2 , L = 1

2

( 4
3

)n e√
n−1

, e is the Euler

number, ωρ is defined by (2.3) and ∇ṽ denotes full gradient of ṽ and there exists
constant B̃2 independent of u such that

‖∇ṽ‖LΨ
ρ̃ (Q) � B̃2‖v‖YΨ,Ψ

ωρ (Q′).

(iii) there exists a constant B̃3 independent of u such that

‖ṽ‖
W1,Ψ

ρ̃ (Q) � B̃3‖v‖YΨ,Ψ
ωρ (Q′).

REMARK 2.11. It is easy to check that ṽ is Lipschitz in space direction whenever
v is Lipschitz. What is less trivial is its Lipschitzity in the t direction as well. For this
verification we only give the hint, leaving the details to the reader. We have∣∣∣∣ ṽ(x, t)− ṽ(x,0)

t

∣∣∣∣� ∫
{ |y|

t � 3
2

√
n−1}

∣∣∣∣v(x− y)− v(x)
t

∣∣∣∣φt(y)dy

� ‖∇v‖∞
3
2

√
n−1

∫
Rn−1

φt(y)dy = ‖∇v‖∞
3
2

√
n−1.

REMARK 2.12. Weight ωρ can be substituted by smaller weight function ωρ , d
3

with the same constants, see Remark 4.3 in [12].
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3. Formulation of main results

Our main results deal with two cases: the case when Ω is Lipschitz subgraph and
more general case, when Ω is a Lipschitz boundary domain. In this section we only
formulate and discuss them, postponing their proofs to the preceding sections.

3.1. Inequalities on Lipschitz subgraph

For our considerations we deal with the following assumption.

ASSUMPTION B. There are given:

(a) a Lipschitz function α : aQ′ → R and sets

V+ := {(x′,xn) ∈ aQ′ ×R : α(x′) < xn < α(x′)+b},
S := {(x′,xn) ∈ aQ′ ×R : α(x′) = xn},

where a,b > 0, being the subset of the subgraph of α and the graph of α , respec-
tively;

(b) a bilipschitz mapping

α̃ : Qa,b := aQ′ × [0,b] �→V+, α̃(x′,xn) = (x′,α(x′)+ xn),

α̃−1(y′,yn) = (y′,yn−α(y′));

(c) a linear mapping

T : Qa,b := aQ′ × [0,b]→ Q =
[
−1

2
,
1
2

]n−1

× [0,1], T (x′,xn) =
(

x′

a
,
xn

b

)
;

(d) a weight ρ defined on V+ which is of the form ρ(x) = τ(dist(x,S)) , involving
continuous function τ : (0,∞) → (0,∞) and the following transforms of τ

τ̃(t) = τe1,e2(t) := sup{τ(s) : s ∈ (e1t,e2t)}, where t > 0 and

e1 =
1

(1+a0)b
, e2 =

1
b
, a0 = ‖∇α‖∞,

∫ 1

0
τ̃(s)ds < ∞,

ω̃(s) = ω̃τ̃(s) := sn−1
∫ 1

min{s,1}
1
tn

τ̃(t)dt;

(e) a number d > 0 and the nonempty set Lipd(S) consisting of all Lipschitz function
g : S → R which are compactly supported in S (treated as an open n− 1 dimen-
sional submanifold in Rn ) and such that

dist
(
supp

(
g ◦ α̃ ◦T−1|Q′×{0}

)
, ∂Q′ × {0})� d. (3.1)

Main statement of this subsection reads as follows.
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THEOREM 3.1. Suppose that Assumption B is satisfied and Ψ is an Orlicz func-
tion. Then there exists a linear operator ExtLd : Lipd(S) → Lip(V+) such that when
g ∈ Lipd(S) then g̃ := ExtLd (g) satisfies g̃ = g on S and

i) For every λ > 0 we have∫
V+

Ψ
( |g̃(x)|

λ

)
ρ(x)dx � C1

∫
S

Ψ
( |g(x)|

λ

)
dσ(x);∫

V+
Ψ
( |∇g̃(x)|

λ

)
ρ(x)dx � B0

∫
S

∫
S

Ψ
(

B2

λ
|g(x)−g(y)|

|x−y|
)

ω̃(B4|x−y|)
|x−y|n−2 dσ(x)dσ(y)

+B1

∫
S

Ψ
(

B3

λ
|g(x)|

)
dσ(x),

with constants C1,B0,B1,B2,B3,B4 independent of g but depending on S,ρ and
d .

ii) There exist constants B̃1 , B̃2 independent of g such that

‖g̃‖LΨ
ρ (V+) � B̃1‖g‖LΨ(S), (3.2)

‖∇g̃‖LΨ
ρ (V+) � B̃2‖g‖YΨ,Ψ

ω (S),

where ω(x,y) = ω̃(B4|x− y|) .

REMARK 3.2. Constants C1,B0,B2,B3,B4 in our estimations are described in ta-
ble below.

Constant

C1 b · ∫ 1
0 τ̃(t)dt

B0
1
2

(
4
3

)n e√
n−1

·b ·an−2c−(n−1)
n ·a2n−3

1

B1 2−1 ·b · ∫ 1
0 τ̃(t)dt

B2
5n
2

( 3
2

)n√ n−1
3 ·a ·max{ 1

a , 1
b} · (1+a0)

ap

√
p+‖∇α‖2

∞, p � 0

B3
( 3

2d

)n−1 n+7
2 ·max{ 1

a , 1
b} · (1+a0)

B4 cn
1

a·a1

cn
4

3
√

n−1

d dist
(
supp

(
g ◦ α̃ ◦T−1|Q′×{0}

)
,∂Q′ × {0})� d

Proof of Theorem 3.1 will be provided in Section 4.3.
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3.2. Inequalities on Lipschitz boundary domains

As a direct consequence we obtain the following theorem, which generalizes The-
orem 3.1 to Lipschitz boundary domains when we select the admitted measures. The
proof of this statement will be provided in Section 6.

THEOREM 3.3. Suppose that Ψ is Orlicz function, Ω is a domain of class C 0,1 ,
ρ(x) = τ (dist(x,∂Ω)) and τ : (0,∞) → R+ is continuous, monotonic,

∫ 1
0 τ(t)dt < ∞ ,

τ satisfies one of the following conditions i) or ii) for small arguments:

i) τ is nondecreasing, absolutely continuous, satisfies the Δ2 condition and sτ ′(s) �
F · τ(s) , where F

n−1 < 1 ;

ii) τ is nonincreasing and τ satisfies Δ 1
2
-condition i.e. τ( 1

2 s) < cτ(s) , where c is

independent of s.

Then there exists a linear operator ExtL : Lip(∂Ω)→ Lip(Ω) such that when u : ∂Ω→
R is Lipschitz then the function ũ := ExtL(u) ∈ Lip(Ω) is such that ũ = u on ∂Ω and

a) For every λ > 0 we have∫
Ω

Ψ
( |ũ(x)|

λ

)
τ(dist(x,∂Ω))dx ≺

∫
∂Ω

Ψ
(

E|u(x)|
λ

)
dσ(x);

(3.3)∫
Ω

Ψ
( |∇ũ(x)|

λ

)
τ(dist(x,∂Ω))dx

≺
∫

∂Ω

∫
∂Ω

Ψ
(

B
λ
|u(x)−u(y)|

|x− y|
)

τ(|x− y|)
|x− y|n−2 dσ(x)dσ(y)

+
∫

∂Ω
Ψ
(

D
λ
|u(x)|

)
dσ(x),

(3.4)

where constants E,B,D, as well as constants involved in the inequalities “ ≺′′ ,
are independent of u .

b) We have

‖ũ‖LΨ
ρ (Ω) ≺ ‖u‖LΨ(∂Ω), (3.5)

‖∇ũ‖LΨ
ρ (Ω) ≺ ‖u‖

YΨ,Ψ
ω (∂Ω), (3.6)

where ω(x,y) = τ(|x− y|) , ρ(x) = τ(dist(x,∂Ω)) , constants involved in the in-
equalities “ ≺′′ are independent of u .

REMARK 3.4. We recall that the notation ≺ means that inequalities hold up to
some constants which are not dependent on u but only on geometric properties of the
domain, properties of function τ and the choice of an extension operator.
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REMARK 3.5. As a consequence we obtain that under the assumptions of Theo-
rem 3.3 there exists a bounded linear operator Ext : Y Ψ,Ψ

ω,L (∂Ω) →W 1,Ψ
ρ ,L (Ω) such that

inequalities (3.5) and (3.6) hold with ũ = Ext(u) where u ∈ Y Ψ,Ψ
ω,L (∂Ω) . The equation

ũ|∂Ω = u is interpreted in the following sense: when um ’s converge to u in Y Ψ,Ψ
ω (∂Ω)

and um -s are Lipschitz, then Ext(um) are Lipschitz, converge to ũ in W 1,Ψ
ρ (Ω) and

their restrictions to ∂Ω converge to u in Y Ψ,Ψ
ω (∂Ω) .

REMARK 3.6. If we relax the Lipschitzity assumptions on u all the estimates
obtained in this paper are valid, provided that their right hand sides are finite. In
such a case the constructed (“extension”) operator is still linear and continuous from
YΨ,Ψ

ρ(|x−y|)(∂Ω) to W 1,Ψ
ρ(dist(·,∂Ω))(Ω) but we do not understand then how to interpret the

fact that u is the restriction of ũ to ∂Ω .

3.3. Links with literature

We are now to discuss links of our results with those existing in the literature.

REMARK 3.7. (Extensions to weighted Sobolew spaces with power weights)
When Ψ(λ ) = λ p the following result has been obtained by Mitrea and Taylor [52],
Proposition 4.1. We present it as example result and some other related results have
been already listed in the Introduction. In the formulation Bp,p

s (∂Ω) are the related
Besov spaces defined on ∂Ω (see Remark 2.6).

PROPOSITION 3.8. Assume that the metric tensor on M has continuous coef-
ficients and fix a Lipschitz subdomain Ω of M . Also, let 1 < p < ∞ , 0 < s < 1 ,
s = 1− 1

p − α
p . Then the trace operator:

Tr : W 1,p
dist(x,∂Ω)α (Ω) → Bp,p

s (∂Ω)

is well defined and bounded. Furthermore, this operator is onto has a continuous right
inverse. In particular, there exists an extension operator

Ext : Bp,p
s (∂Ω) →W 1,p

dist(x,∂Ω)α (Ω),

which is linear and bounded and such that Tr◦Ext = I .

A classical result dealing with Ω = Rn
+ was obtained by Uspienski [71] and can be

adopted to domains of class C 0,1 as we do in details in this paper (under this constraints
the procedure is standard).

We already know (Remark 2.6) that when Ω ∈ C 0,1 then we have Y λ p,λ p

|x−y|α (∂Ω) =

Bp,p
1− 1

p− α
p
(∂Ω) when 0 < 1− 1

p − α
p < 1. Therefore second part of statement above

gives extension operator

Ext : Yλ p,λ p

|x−y|α (∂Ω) →W 1,p
dist(x,∂Ω)α (Ω),
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whenever −1 < α < p−1. In our approach the extension is independent of the choice
of convex function Ψ(λ ) = λ p . This forces the restriction on parameter: −1 < α <
n−1 (the conditions i) and ii)), which is different than in the statement above. As n � 2,
it works always when −1 < α < 1, but in general sets (−1, p−1) and (−1,n−1) are
independent.

For other related results see also [61].

REMARK 3.9. (Extensions within classical Besov spaces) The following theorem
is known in the theory of classical Besov spaces (see e.g. Theorem 2.1 in [50] and older
source, Theorem 3 from Chapter 6.2.1 in [28]).

PROPOSITION 3.10. Let Ω ⊆ Rn be a bounded domain of class C 0,1 and let
1 > α̃ − 1

p > (n−1)( 1
p −1)+ , 0 < q � ∞ . Then the trace operator:

Tr : Bp,q
α̃ (Ω) → Bp,q

α̃− 1
p
(∂Ω)

is well defined and bounded. Moreover, this operator is onto and has a continuous right
inverse. In particular, there exist an extension operator

Ext : Bp,q
α̃− 1

p
(∂Ω) → Bp,q

α̃ (Ω), (3.7)

which is linear and bounded and such that Tr◦Ext = I .

We are interested in the situation p = q only. According to Remark 2.6, we have
Yλ p,λ p

|x−y|α (∂Ω) = Bp,p
1− 1

p− α
p
(∂Ω) whenever 0 < 1− 1

p − α
p < 1, equivalently α ∈ (−1, p−

1) . Applying (3.7) with α̃ = 1− α
p , we obtain that existence of continuous extension

operator
Ext : Yλ p,λ p

|x−y|α (∂Ω) → Bp,p
1− α

p
(Ω).

Next, by Remark 2.3 we observe that for α ∈ (−1,0) , Bp,p
1− α

p
(Ω) ⊆W 1,p

dist(·,∂Ω)α (Ω) . It

implies that, under this constraints, Proposition 3.8 and a special variant of our The-
orem 3.3 can be deduced from Proposition 3.10 which deals with the unweighted
Besov spaces. On the other hand, when α ∈ (0, p) we have by Remark 2.3 that
W 1,p

dist(·,∂Ω)α (Ω) ⊆ Bp,p
1− α

p
(Ω) .

Therefore for that range of parameters Proposition 3.10 follows from Theorem 3.3
(with Ψ = λ p , ρ = dist(x,∂Ω)α ) as well as from Proposition 3.8.

REMARK 3.11. (Extensions to weighted Sobolew spaces with Muckenhoput
weights) We are interested now in extension results dealing with Muckenhouptweights.

Recall that a positive function ω ∈ L1
loc(R

n) belongs to Muchenhoupt class Ap

where 1 < p < ∞ , if there exists a constant 0 < A < ∞ such that for all cubes Q ⊆ Rn

(
1
|Q|

∫
Q

ω(x) dx

)
·
(

1
|Q|

∫
Q

ω(x)
−1
p−1 dx

)p−1

� A.
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This is exactly the class of weights for which Hardy Littlewood maximal function
M f (x) := supQ�x

1
|Q|
∫
Q | f (y)| dy is bounded operator as an operator from Lp

ω (Rn)
to Lp

ω(Rn) (see [66], Theorem 1, Chapter V). When E ⊆ Rn is a subset we say that
ω ∈ Ap(E) if it is a restriction of some weight from the class Ap(Rn) to E . We have
the following remarks.

1) In paper [69] by Tulyanev, Theorem 3.1, one finds the following statement. We
present its simplified variant and omit the details.

PROPOSITION 3.12. ([69]) Let 1 < p < ∞ and let γ ∈Ap((0,1)) and we consider
weight function ρ(x, t) = γ(x) where (x,t) ∈ (0,1)× (0,1) . Then

Tr |y=0W
1,p(Q,γ(x)) = B̃

1− 1
p

p ((0,1),γ).

The author uses the following definition of weighted Besov type space where 0 <
s < 1:

‖φ‖B̃s
p((0,1),γ) :=

(∫ 1

0
γ(x)|φ(x)|pdx

) 1
p

+
(∫ 1

0

1
zps

∫ 1

0
γ(x)

1
zp {

∫ z

−z
|(Δ1φ)(x,t)|dt}pdx

dz
z

) 1
p

,

where (Δ1φ)(x, t) := (−1)(φ(x)−φ(x+ t)) if [x,x+ t] ⊆ (0,1) and (Δ1φ)(x, t) := 0
otherwise.

Let us note that in the above approach the weight function ρ = ρ(x,t) defined on
cube depends on longitudinal coordinate x only and it is not dependent on t . In our
case ρ depends on the transversal coordinate t only. Therefore the approach presented
there is different and functions spaces appearing are also different. Unified approach
linking the two issues would be of interest.

For other related issues in this direction we refer to papers Krbec [1], Tyulenev [68].

2) In paper by Frazier and Roudenko [18] the authors study trace and extension
results between weighted Besov spaces Bα ,q

p (W ) where W is a matrix weight on Rn

being p -admissible, in particular satisfying the matrix Ap condition (we omit the de-
tailed formulation). Among other results, the authors find the necessary conditions on
two p -admissible weights V,W which allow to define the continuous liner map

Ext : Ḃ
α− 1

p ,q
p (W ) → Ḃα ,q

p (V ),

between Besov type spaces (Theorem 1.3 in [18]) of vectorial functions. Those spaces
are defined by using the atomic decomposition constructed by using suitable molifier φ
belonging to the Schwartz space from class A :

‖ f‖Ḃαq
p (W) =

∥∥∥{2να‖φν ∗−→f ‖Lp(W )

}
ν

∥∥∥
lq

,
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where φν (x) = 2νnφ(2νx) for ν ∈ Z ,
−→
f = ( f1, · · · , fm)T and φν ∗−→f = (φν ∗ f1,φν ∗

f2, · · · ,φν ∗ fm)T .
Let us mention that even in the scalar case and situation: Ψ(λ ) = λ p , α = 1,

q = p our statements seem to deal with different spaces and admit different class of
weights. Our measures depend only on the distance from the boundary but are not
necessary in Muckenhopt class. Therefore the approaches seem to be different.

REMARK 3.13. The definition of Orlicz-Slobodetskii type space, we used, does
not involve atomic decompositions. Those spaces appeared in papers by Fougéres [16,
17] Lacroix [42, 43] for needs of trace type theorems expressed in Orlicz setting. We
think that such a (nonatomic) definition is more convenient when one studies Besov
type spaces dealing with general class of Orlicz functions and measures.

3.4. Examples of admissible weights

Below we present several examples of weights τ(t) which obey assumptions of
Theorems 3.1 and 3.3.

EXAMPLE 3.14. Let ρ(x) = τ(dist(x,∂Ω)) . The following functions τ are ad-
mitted to Theorems 3.1 and 3.3. Easy verification is left to the reader.

(a) τ ≡ 1, we retrieve the classical (unweighted) result;

(b) τ(t) = tα , −1 < α < n−1;

(c) τ(t) = tα (ln(2+ 1
t

))β
, −1 < α < n−1,β > 0;

(d) τ(t) = (log(2+ 1
t ))

−α ,α > 0;

(e) τ(t) = 1− eαt , α < 0, n > 2.

4. Inequalities on Lipschitz subgraph

4.1. Construction of extension

Having two bilipschitz dipheomorphisms T and α̃−1 such that:

V+ α̃−1�→ Qa,b
T�→ Q,

we define the bi-Lipschitz dipheomorphism φ̃ by expression

φ̃ := α̃ ◦T−1 : Q �→V+, so that φ̃−1 : V+ �→ Q.

Note that
φ̃ |Q′×{0} : Q′ × {0} �→ S and φ̃−1|S : S �→ Q′ × {0}

are also Lipschitz, therefore φ̃ |Q′×{0} is bi-Lipschitz dipheomorphism.
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Having Lipschitz function

g : S → R

as in Assumption B, (3.1), we define the subordinated function h : Q′ × {0} → R by
the formulae

h(x) = g(φ̃(x)).

Let us note that h is supported in (1−d)Q′ × {0} . Therefore we can extend it by 0 to
the whole Rn−1×{0} . We denote such extension by the same expression.

We extend function h to Rn−1× [0,∞) by formulae:

h̃(x, t) = (h(·,0)∗φt)(x) :=
{∫

Q′ h(y,0)φt(x− y)dy when t > 0,

h(x,0) when t = 0.

where {φt} is Lipschitz molifier as in (2.4).
The extension of g to V+ is defined by

g̃(·) := h̃(φ̃−1(·)) : V+ → R. (4.1)

We will also deal with the following constants:

Constant Constant

ap
√

p+‖∇α‖2
∞, p � 0 G max{ 1

a , 1
b}

c(τ̃)
∫ 1
0 τ̃(t)dt cn

4
3
√

n−1

(4.2)

In the remaining part of this section we prove that the proposed extension satisfies
assertion of Theorem 3.1. This will be done in the sequence of substeps presented in
the preceding subsections which end up with the proof of Theorem 3.1.

4.2. Auxilary tools

4.2.1. Reduction to the analysis on unit cube

This will be done with help of two lemmas. Proof of the first lemma is presented
in the Appendix for readers convenience, while the proof of second statement is abbre-
viated as it is rather standard.

Before their formulations let us introduce the notation which will be used also
later.

AUXILLIARY FUNCTIONS. We will deal with the following functions defined on
[0,∞) , subordinated to analysis on abstract Lipschitz subgraph, rectangle and cube,
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respectively, assuming that ρ and ω are given weights:

I1(s) :=
∫

S
Ψ(s|g(x)|)dσ(x),

J1(s) :=
∫

S

∫
S

Ψ
(

s
|g(x)−g(y)|

|x− y|
)

ω(|x− y|)
|x− y|n−2 dσ(x)dσ(y),

K1(s) :=
∫
V+

Ψ(s|g̃(y)|)ρ(y)dy,

L1(s) :=
∫
V+

Ψ(s|∇g̃(y)|)ρ(y)dy; (4.3)

I2(s) :=
∫

aQ′×{0}
Ψ(s| f (x)|)dσ(x),

J2(s) :=
∫

aQ′×{0}

∫
aQ′×{0}

Ψ
(

s
| f (x)− f (y)|

|x− y|
)

ω(|α̃(x)− α̃(y)|)
|x− y|n−2 dσ(x)dσ(y),

K2(s) :=
∫

Qa,b

Ψ
(
s| f̃ (x)|

)
ρ(α̃(x))dx,

L2(s) :=
∫

Qa,b

Ψ
(
s|∇ f̃ (x)|

)
ρ(α̃(x))dx;

I3(s) :=
∫

Q′×{0}
Ψ(s|h(x)|)dσ(x),

J3(s) :=
∫

Q′×{0}

∫
Q′×{0}

Ψ
(

s
|h(x)−h(y)|

|x−y|
)

ω(|α̃ ◦T−1(x)−α̃ ◦T−1(y)|)
|x−y|n−2 dσ(x)dσ(y),

K3(s) :=
∫

Q
Ψ
(
s|h̃(x)|

)
ρ(α̃ ◦T−1(x))dx,

L3(s) :=
∫

Q
Ψ
(
s|∇h̃(x)|

)
ρ(α̃ ◦T−1(x))dx;

where weight ω will be indicated later.
We have the following results. Their proofs are given in the Appendix.

LEMMA 4.1. (reduction to the analysis on rectangles) Let g : S → R, f : aQ′ ×
{0}→ R and g̃ : V+ → R, f̃ : Qa,b → R be related to g and f via:

g(x) = f (α̃−1(x)), g̃(x) = f̃ (α̃−1(x)),

where α̃,S,V+ are as in Assumption B.
Then for any number s ∈ R+ we have

I2(s) � I1(s), (4.4)

J2(s) � an−2
1 J1(s), (4.5)

K2(s) = K1(s), (4.6)

L2(s(1+a0)) � L1(s). (4.7)
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LEMMA 4.2. (reduction to the analysis on unit cube) Let h : Q′ × {0} → R, f :
aQ′ × {0}→ R and h̃ : Q → R, f̃ : Qa,b → R be related to h and f via:

h(x) = f (T−1(x)), h̃(x) = f̃ (T−1(x)),

where T is as in Assumption B.
Then for any constant s ∈ R+ we have

I3(s) =
1

an−1 I2(s)

J3

( s
a

)
=

1
an J2(s),

K3(s) =
1

an−1b
K2(s),

L3(sG) � 1
an−1b

L2(s), where G := max

{
1
a
,
1
b

}
. (4.8)

4.2.2. Inequalities on Lipschitz subgraph under technical assumption

In this subsection we will be dealing with the following technical assumption.

ASSUMPTION C.

(a) the weight ρ1 is defined on (0,1) and weight ρ is defined on V+ . They satisfy
the following inequality:

ρ(α̃ ◦T−1(x′,t)) � ρ1(t), (4.9)

for almost every (x′,t) ∈ Q ;

(b) we deal with the following weight function ω̃ρ1 , defined on R+ , being the trans-
formation of ρ1 :

ω̃ρ1(s) := sn−1
∫ 1

min{s,1}
1
tn

ρ1(t)dt (4.10)

and its renormalizations:

ω̃C
ρ1

(s) := C−(n−1)ω̃ρ1(Cs) = sn−1
∫ 1

min{Cs,1}
1
tn

ρ1(t)dt (4.11)

involving parameter C which we will establish later.

We have the following result.

LEMMA 4.3. Assume that Ψ is an Orlicz function, g : S → R is Lipschitz and
satisfies (3.1) with given constant d , g̃ : V+ → R is defined by (4.1) and Assumptions
B, C are satisfied. Then we have



EXTENSION THEOREM WITH WEIGHTED ORLICZ-SLOBODETSKII SPACE 473

i) For every λ > 0 we have∫
V+

Ψ
( |g̃(x)|

λ

)
ρ(x)dx � C1

∫
S

Ψ
( |g(x)|

λ

)
dσ(x); (4.12)∫

V+
Ψ
( |∇g̃(x)|

λ

)
ρ(x)dx � D0

∫
S

∫
S

Ψ
(

D2

λ
|g(x)−g(y)|

|x−y|
)

v(|x−y|)
|x−y|n−2 dσ(x)dσ(y)

+D1

∫
S

Ψ
(

D3

λ
|g(x)|

)
dσ(x). (4.13)

where v(s) = ω̃D4
ρ1 (s) (see (4.11)). Constants C1,D0,D1,D2,D3,D4, are inde-

pendent of g but dependent only on S,ρ ,b,d .

ii) There exists a constant D̃ independent of g but dependent only on S,ρ ,b,d such
that

‖g̃‖
W 1,Ψ

ρ (V+) � D̃‖g‖
YΨ,Ψ
v (S).

REMARK 4.4. Constants in our estimations (4.12) and (4.13) are described in ta-
ble below.

Constant

C1 b · ∫ 1
0 τ̃(t)dt

D0
1
2

(
4
3

)n e√
n−1

an−2
1 ·b ·a−1

D1 2−1 ·b · ∫ 1
0 ρ1(t)dt

D2
5n
2

( 3
2

)n√ n−1
3 ·a ·max{ 1

a , 1
b} · (1+a0)

D3
( 3

2d

)n−1 n+7
2 ·max{ 1

a , 1
b} · (1+a0)

D4
4

3
√

n−1
1

a·a1

d see (3.1)

ap
√

p+‖∇α‖2
∞, p � 0

Proof. We use the notation from Subsection 4.1 and of (4.3).

Proof of (4.12). According to Theorem 2.10, part (ii), we have

K

(
1
λ

)
:=

∫
Q′

∫ 1

0
Ψ

(
|h̃(x,t)|

λ

)
ρ1(t)dxdt � c(ρ1)

∫
Q′

Ψ
( |h(x,0)|

λ

)
dx

= c(ρ1)I3

(
1
λ

)
, (4.14)

where c(ρ1) :=
∫ 1
0 ρ1(t)dt .
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Using condition (4.9) and a chain of inequalities resulting from Lemmas 4.2, 4.1,
we get

K

(
1
λ

)
�

∫
Q

Ψ

(
|h̃(x)|

λ

)
ρ(α̃(T−1(x)))dx = K3

(
1
λ

)
(4.15)

Lemma 4.2=
1

an−1b
K2

(
1
λ

)
Lemma 4.1

� 1
an−1b

K1

(
1
λ

)
.

On the other hand,

c(ρ1)I3

(
1
λ

)
Lemma 4.2=

c(ρ1)
an−1 I2

(
1
λ

)
Lemma 4.1

� c(ρ1)
an−1 I1

(
1
λ

)
. (4.16)

We obtain from (4.14),(4.16) and (4.15):

c(ρ1)
an−1 I1

(
1
λ

)
� c(ρ1)I3

(
1
λ

)
� K

(
1
λ

)
� 1

an−1b
K1

(
1
λ

)
.

From there inequality (4.12) follows. �

Proof of (4.13). At first we note that when z
t ∈ 3

2Q′ , we have |z|
t �

√
n−13

4 = 1
cn

(see (4.2)), so that cn|z| � t . Using formulae (2.3) involving weight ρ1 and formulae
(4.10) for ω̃ρ1 , we get

ωρ1(z)
(2.3)
� |z|n−1

∫ 1

min{cn|z|,1}
1
tn

ρ1(t)dt
(4.11)
= ω̃cn

ρ1
(|z|) =: V1(|z|),

and so we can apply Theorem 2.10, inequality (2.5), to get

L

(
1
λ

)
:=

∫
Q′

∫ 1

0
Ψ

(
|∇h̃(x,t)|

λ

)
ρ1(t)dtdx (4.17)

� L
∫

x∈Q′×{0}

∫
y∈Q′×{0}

Ψ
(

I|h(x)−h(y)|
λ |x− y|

)
V1(|x− y|)
|x− y|n−2 dσ(x)dσ(y)

+
c(ρ1)

2

∫
Q′×{0}

Ψ
(

J
λ
|h(x)|

)
dσ(x),

=: LJ

(
I
λ

)
+

c(ρ1)
2

I3

(
J
λ

)
,

where I = 5n
2

( 3
2

)n√ n−1
3 , J =

( 3
2d

)n−1 n+7
2 , L = 1

2

( 4
3

)n e√
n−1

, d � dist(supph,∂ (Q′ ×
{0})) (and h = u ◦ φ̃ ), c(ρ1) =

∫ 1
0 ρ1(t)dt .

The condition (4.9) and Lemmas 4.2 and 4.1 imply a chain of inequalities:

L

(
1
λ

)
�

∫
Q′

∫ 1

0
Ψ

(
|∇h̃(x,t)|

λ

)
ρ(α̃ ◦T−1(x))dx = L3

(
1
λ

)
Lemma 4.2

� 1
an−1b

L2

(
1

Gλ

)
Lemma 4.1

� 1
an−1b

L1

(
1

G(1+a0)λ

)
. (4.18)
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Now we will deal with first term in (4.17).
We observe that for any x,y ∈ Q′ × {0} we have

1
aa1

|α̃ ◦T−1(x)− α̃ ◦T−1(y)| � |x− y|� 1
a
|α̃ ◦T−1(x)− α̃ ◦T−1(y)|.

Indeed, we have for x = (x′,0) , y = (y′,0) :

|α̃ ◦T−1(x)−α̃ ◦T−1(y)|= |(ax′,α(ax′)
)−(ay′,α(ay′)

) |� a
√

1+‖∇α‖2
∞|x−y|, and

|x− y|= 1
a
|(ax′,0)− (ay′,0)| � 1

a
|(ax′,α(ax′))− (ay′,α(ay′))|

=
1
a
|α̃(T−1(x))− α̃(T−1(y))|.

In particular |x− y| ∈ (e1s,e2s) where s = |α̃ ◦T−1(x)− α̃ ◦T−1(y)| and e1 = 1
aa1

,

e2 = 1
a .
We note that

sup
r∈(e1s,e2s)

V1(r) = sup
r∈(e1s,e2s)

rn−1
∫ 1

min{cnr,1}
1
tn

ρ1(t)dt � (e2s)n−1
∫ 1

min{cne1s,1}
1
tn

ρ1(t)dt

=
1

an−1 ω̃
cn
aa1

ρ1 (s) =: V2(s).

Therefore
V1(|x− y|) � V2(|α̃ ◦T−1(x)− α̃ ◦T−1(y)|).

Applying Lemmas 4.2 and 4.1 with ω =V2 , we get

J

(
I
λ

)
� J3

(
I
λ

)
= J3

(
( I

λ )a
a

)
Lemma 4.2=

1
an J2

(
I
λ

a

)
Lemma 4.1

� an−2
1

an J1

(
I
λ

a

)
. (4.19)

We also have

I3

(
J
λ

)
=

∫
Q′×{0}

Ψ
(

J
λ
|h(x)|

)
dσ(x)

Lemma 4.2=
1

an−1 I2

(
J
λ

)
Lemma 4.1

� 1
an−1 I1

(
J
λ

)
. (4.20)

We derive from (4.17),(4.19) and (4.20):

L

(
1
λ

)
� LJ

(
I
λ

)
+

c(ρ1)
2

I3

(
J
λ

)
� L

an−2
1

an J1

(
I
λ

a

)
+

c(ρ1)
2

1
an−1 I1

(
J
λ

)
,
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which together with (4.18) gives

1
an−1b

∫
V+

Ψ
( |∇g̃(x)|

G(1+a0)λ

)
ρ(x)dx

� L
an−2

1

an

∫
S

∫
S

Ψ
(

Ia
λ

|g(x)−g(y)|
|x− y|

)
V2(|x− y|)
|x− y|n−2 dσ(x)dσ(y)

+
c(ρ1)

2
1

an−1

∫
S

Ψ
(

J
λ
|g(x)|

)
dσ(x).

Multiplying both sides of the inequality by an−1b , then substituting λ = λ̃ (G(1+a0))
−1

gives the assertion. The proof of part ii) follows from Lemma 2.7. �

REMARK 4.5. Using estimates (4.17),(4.18),(4.20), we obtain a more precise in-
equality:∫

V+
Ψ
( |∇g̃(x)|

G(1+a0)λ

)
ρ(x)dx

� Lan−1b
∫

x∈Q′×{0}

∫
y∈Q′×{0}

Ψ
(

I|ug ◦ φ̃(x)−g ◦ φ̃(y)|
λ |x− y|

)
V1(|x− y|)
|x− y|n−2 dσ(x)dσ(y)

+
c(ρ1)b

2

∫
Λ

Ψ
(

J
λ
|g(x)|

)
dσ(x),

recalling that φ̃(x) = α̃ ◦T−1(x) , V1(s) = ω̃cn
ρ1(s) .

4.3. Proof of Theorem 3.1

Our first goal is to find estimate (4.9) in case when ρ is of the form

ρ(x) = τ(dist(x,S))

involving function τ . This will be done with help of the following lemma which is the
crucial observation for this issue.

LEMMA 4.6. Let parts (a)-(d) in Assumption B be satisfied. Then we have:

ρ(α̃ ◦T−1(x′,t)) � τe1,e2(t) = τ̃(t).

Proof. It suffices to prove the inequality:

t
(1+a0)b

� dist(α̃ ◦T−1(x′,t),S) � t
b
. (4.21)

We observe that

dist(α̃ ◦T−1(x′,t),S) � dist(α̃ ◦T−1(x′,t), α̃ ◦T−1(x′,0))

=
∣∣∣∣(α̃

(
x′

a
,
t
b

))
−
(

α̃
(

x′

a
,0

))∣∣∣∣
=
∣∣∣∣(x′

a
,α
(

x′

a
)+

t
b

))
−
(

x′

a
,α
(

x′

a

))∣∣∣∣= t
b
.



EXTENSION THEOREM WITH WEIGHTED ORLICZ-SLOBODETSKII SPACE 477

This gives the second inequality in (4.21). To derive the first inequality we compute
that having an arbitrary x = (x ′, xn), y = (y ′, yn) ∈V+ , we have

|α̃−1(x)− α̃−1(y)| = |α̃−1(x ′, xn)− α̃−1(y ′, yn)|
= |(x ′, xn −α(x ′))− (y ′, yn−α(y ′))|
� |x − y|+‖∇α‖∞|x − y| = (1+a0)|x − y|.

Consequently

|x − y | � 1
1+a0

|α̃−1(x)− α̃−1(y)|.

Applying the above inequality to x = α̃ ◦ T−1(x′,t) , y = α̃ ◦ T−1(y′,0) , where y is
such that dist(x ,S) = dist(x , y) , we get

|x − y| = dist(α̃ ◦T−1(x′,t),S) � 1
1+a0

|T−1(x′,t)−T−1(y′,0)|

=
1

1+a0

∣∣∣∣(x′

a
,
t
b

)
−
(

y′

a
,0

)∣∣∣∣� 1
1+a0

t
b
.

This finishes the proof of the lemma. �

Proof of Theorem 3.1. The proof of part i) follows directly from Lemmas 4.3 and
4.6 with ρ1 = τ̃ , where τ̃ is as in Assumption B, ρ1 is as in Assumption C. To obtain
part ii) we use part i) and Proposition 2.7. �

5. Selection of admitted weights

Theorem 3.1 shows that the measure transformation ω can strongly depend on
geometric properties of the domain Ω . In this section we show that it is not always
the case. In some cases the transformed measure ω̃ can be compared with function τ
which defines measure ρ .

We have the following result.

LEMMA 5.1. Suppose that τ : (0,∞) → R+ is continuous and monotonic, n � 2
and one of the following conditions hold:

i) τ is nondecreasing, absolutely continuous on (0,1) , satisfies the Δ2 condition on
every interval (0,K) where K < ∞ and there exists F < n−1 such that

sτ ′(s) � F · τ(s) a.e.in some neighborhood of 0; (5.1)

ii) τ is nonincreasing, and τ satisfies Δ 1
2
-condition for small arguments, i.e. τ( 1

2 s) <

Cτ(s) on every interval (0,K) with some constant C = CK independent of s.

Moreover, let τ̃ and ω̃ be defined by (3.1) and (3.1), respectively.
Then for any numbers e1,e2 such that 0 < e1 � e2 we have

τ̃ = τe1,e2 ≺ τ, and ωτ̃(s) ≺ τ(s).
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REMARK 5.2. Conditions τ(0) = 0 and τ(0) = ∞ are the only special interesting
cases for our issue. Otherwise τ ∼Const (we use continuity assumption) and so that
the cases reduce to the situation without weights.

REMARK 5.3. Suppose that τ is nondecreasing, lims→0 τ(s) = 0. Then we have.
a) When τ is convex (τ ′ is nondecreasing) in some neighborhood of zero, we

have τ(s) � sτ ′(s) for almost all s , in some neighborhood of 0. When additionally
τ satisfies the Δ2 condition in some neighborhood of 0, i.e. τ(2s) � Cτ(s) in some
neighborhood of 0, with s independent constant C , then we have τ(s) ∼ sτ ′(s) , more
precisely Csτ ′(s) �Cτ(s) � sτ ′(s) . Inequality (5.1) holds with F =C . This is because

Cτ(s)� τ(2s)=
∫ 2s

0
τ ′(t)dt �

∫ 2s

s
τ ′(t)dt � sτ ′(s), for almost every sufficiently small s.

b) When τ is concave (τ ′ is nonincreasing), then we have τ(s) � sτ ′(s) for almost
all s , in some neighborhood of 0. Inequality (5.1) holds with F = 1.

When additionally τ satisfies the condition: Cτ(s) � τ(2s) in some neighborhood
of 0, where C > 1 is independent of s , then we have sτ ′(s) ∼ τ(s) in some neighbor-
hood of zero, more precisely sτ ′(s) � τ(s) � 1

C−1 sτ ′(s) . This is because

(C−1)τ(s) � τ(2s)−τ(s) =
∫ 2s

s
τ ′(t)dt � sτ ′(s), for almost every sufficiently small s.

Proof of Lemma 5.1.

Proof under condition i). At first we show that τ̃ ≺ τ . As τ and τ̃ are continuous
and positive, it suffices to verify the domination for small arguments only. We have

τ̃(t) = sup
x∈(e1t,e2t)

τ(x) � τ(2Nt),

where N = �log2e2�+ 1, so that e2t � 2Nt . Since τ is nondecreasing for N � 0, we
have 2Nt � t , and so τ(2Nt) � τ(t) . For N > 0, since τ satisfies Δ2 -condition, we get,

τ(2Nt) � CNτ(t) = C�log2 e2�+1τ(t).

Take C̃ = max{1,C�log2 e2�+1} , to get:

τ̃ � C̃τ.

Next we show that ωτ̃ ≺ τ in some neighborhood of zero.
For this, we observe that when τ̃ � C̃τ , we have (see (2.3))

ω̃τ̃(s) =sn−1
∫ 1

min{s,1}
1
tn

τ̃(t) dt � C̃sn−1
∫ 1

min{s,1}
1
tn

τ(t) dt =: C̃ωτ(s).

Therefore ω̃τ̃ ≺ ωτ and it suffices to show that ωτ ≺ τ .
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We compute that for 0 < s � 1

ωτ(s) = sn−1
∫ 1

s

1
tn

τ(t)dt = sn−1
∫ 1

s

(
t−n+1

−n+1

)′
τ(t) dt

= sn−1
(

1
−n+1

)(
τ(1)− s−n+1τ(s)

)− sn−1
∫ 1

s

(
t−n+1

−n+1

)
τ ′(t) dt

� 1
n−1

τ(s)+
1

n−1
sn−1

∫ 1

s
t−n+1τ ′(t) dt

� 1
n−1

τ(s)+
F

n−1
sn−1

∫ 1

s
t−n+1 τ(t)

t
dt � 1

n−1
τ(s)+

F
n−1

ωτ(s).

Therefore (1− F
n−1)ωτ (s) � 1

n−1τ(s) and the statement follows.

Proof under condition ii). At first we show that τ̃ ≺ τ . For this we note that
τ̃(t) = supx∈(e1t,e2t) τ(x) � τ(2Nt), where N = �log2e1� . Since τ is non-increasing for
N � 0, we have 2Nt � t , and so τ(2Nt) � τ(t) . For N < 0, consider N = −|N| and
since τ satisfies Δ 1

2
-condition, we get, τ(2−|N|t) � C|N|τ(t) = C−�log2 e1�τ(t). Take

C̃ = max{1,C−�log2 e1�} , to get: τ̃ � C̃τ. To show that ωτ̃ ≺ τ in some neighborhood
of zero, we compute that when 0 < s � 1 we have

ωτ̃(s) = sn−1
∫ 1

min{s,1}
1
tn

τ̃(t) dt � C̃sn−1
∫ 1

min{s,1}
1
tn

τ(t) dt � C̃sn−1τ(s)
∫ 1

s

1
tn

dt

� C̃sn−1τ(s)
1

−n+1
(1− s−n+1) dt � C̃sn−1τ(s)

1
n−1

s−n+1 dt � C̃
n−1

τ(s).

This ends the proof of the lemma. �

REMARK 5.4. Note that condition i) depends on number n interpreted as the di-
mension, while the condition ii) is independent of the dimension.

6. Inequalities on Lipschitz boundary domains. Proof of Theorem 3.3

We are now to prove Theorem 3.3. For this we will use Theorem 3.1 and select
the admitted measures using results of Section 5. The proof follows by the following
steps introduced below.

Let u ∈ Lip(∂Ω) .

Step 1. We establish localization arguments.
We cover ∂Ω by the open sets in ∂Ω , Λ1, · · · ,Λm ⊆ ∂Ω and consider sets U+

r ,
U−

r , Ur , r = 1, . . . ,m , such that {Ur}r=1,...,m cover ∂Ω and

Ur = U+
r ∪U−

r ∪Λr; r = 1, · · · ,m,
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where U+
r ⊆Ω, U−

r ⊆Rn\Ω are described in Definition 2.1. Then we take φ1, · · · ,φm ,
a Lipschitz partition of unity subordinated to {Ur}r=1,...,m . In particular, φr ∈ Lip0(Rn) ,
suppφr ⊂Ur , 0 � φr � 1 and ∑m

r=1 φr ≡ 1. We define

ur := φru.

Step 2. We extend u locally, i. e. we extend each ur separately inside U+
r .

For this we consider at first function gr(x) = ur(Ã−1
r (x)) ∈ Lip(Sr) , where Sr =

Ãr(Λr) is Lipschitz graph. We apply Theorem 3.1 with g = gr , obtaining the extension
g̃r inside set V+

r , the subgraph of Sr . Then function ũr(x) := g̃r(Ãr(x)) is extension of
ur inside U+

r and satisfies the following inequalities holding for every λ > 0∫
U+

r

Ψ
( |ũr(x)|

λ

)
ρ(x)dx ≺

∫
Λr

Ψ
( |ur(x)|

λ

)
dσ(x) ≺

∫
∂Ω

Ψ
( |u(x)|

λ

)
dσ(x);

(6.1)∫
U+

r

Ψ
( |∇ũr(x)|

λ

)
ρ(x)dx ≺

∫
Λr

∫
Λr

Ψ
(

B2

λ
|ur(x)−ur(y)|

|x− y|
)

τ(|x− y|)
|x− y|n−2dσ(x)dσ(y)

+
∫

Λr

Ψ
(

B3

λ
|ur(x)|

)
dσ(x), (6.2)

with constants B2,B3 independent of u and r = 1, . . . ,m , where ρ(x)= τ(dist(x,∂Ω))dx .

Step 3. We finish the construction. We define final extension in the following
way. We take κ ∈ Lip0(Rn) such that κ ≡ 1 in some neighborhood of ∂Ω and κ ≡ 0
outside

⋃m
r=1Ur , 0 � κ � 1 (use Tietz theorem), then we set

ũ(x) = κ(x) ·
(

m

∑
r=1

ũr(x)

)
.

We are now to prove that ũ obeys the required properties of Theorem3.1 as an extension
of u .

For abbreviation let us denote

I (s) :=
∫

∂Ω
Ψ(s|u(x)|)dσ(x),

J (s) :=
∫

∂Ω

∫
∂Ω

Ψ
(

s
|u(x)−u(y)|

|x− y|
)

τ(|x− y|)
|x− y|n−2 dσ(x)dσ(y),

L (s) :=
∫

Ω
Ψ(s|∇ũ(x)|)ρ(x)dx.

Inequalities Ψ(∑k
i=1 ai) � 1

k ∑k
i=1 Ψ(kai) will be used frequently with possibly different

k . They imply∫
Ω

Ψ
( |ũ(x)|

λ

)
ρ(x)dx ≺

m

∑
r=1

∫
U+

r

Ψ
(

m|ũr(x)|
λ

)
ρ(x)dx

(6.1)≺
∫

∂Ω
Ψ
(

m|u(x)|
λ

)
dσ(x) = I

(m
λ

)
,
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which gives (3.3). We also have

L

(
1
λ

)
≺

m

∑
r=1

∫
U+

r

Ψ
(

m|∇(κ(x) · ũr(x)) |
λ

)
ρ(x)dx �

m

∑
r=1

(Ar +Br), where

Ar :=
∫
U+

r

Ψ
(

2m‖∇κ‖∞|ũr(x)|
λ

)
ρ(x)dx

(6.1)≺
∫

∂Ω
Ψ
(

2m‖∇κ‖∞|u(x)|
λ

)
dσ(x)

= I
(c1

λ

)
, where c1 = 2m‖∇κ‖∞,

Br :=
∫
U+

r

Ψ
(

2m|κ ||∇ũr(x)|
λ

)
ρ(x)dx

(6.2)≺
∫

Λr

∫
Λr

Ψ
(

2mB2

λ
|ur(x)−ur(y)|

|x− y|
)

τ(|x− y|)
|x− y|n−2 dσ(x)dσ(y)

+
∫

Λr

Ψ
(

2mB3

λ
|ur(x)|

)
dσ(x) =: Cr +Dr.

Clearly,

Dr ≺
∫

∂Ω
Ψ
(

2mB3

λ
|u(x)|

)
dσ(x) = I

(c2

λ

)
, where c2 = 2mB3.

To estimate Cr , we note that when x,y ∈ Λr we have

|ur(x)−ur(y)|
|x− y| =

|u(x)φr(x)−u(y)φr(y)|
|x− y|

� |u(x)| |φr(x)−φr(y)|
|x− y| + |φr(y)| |u(x)−u(y)|

|x− y|
� |u(x)| · c3 +

|u(x)−u(y)|
|x− y| ,

where c3 = max{‖∇φ1‖∞,‖∇φ2‖∞, · · · ,‖∇φm‖∞} . Therefore Cr ≺ Er +Fr , where

Er :=
∫

Λr

∫
Λr

Ψ
(

c4|u(x)|
λ

)
τ(|x− y|)
|x− y|n−2 dσ(x)dσ(y), where c4 = 4mB2c3,

Fr :=
∫

Λr

∫
Λr

Ψ
(

c5

λ
|u(x)−u(y)|

|x− y|
)

τ(|x− y|)
|x− y|n−2 dσ(x)dσ(y)

≺
∫

∂Ω

∫
∂Ω

Ψ
(

c5

λ
|u(x)−u(y)|

|x− y|
)

τ(|x− y|)
|x− y|n−2 dσ(x)dσ(y) = J

(c5

λ

)
,

where c5 = 4mB2 . For further estimation of Er we show that

sup
r=1,...,m

sup
x∈Λr

∫
Λr

τ(|x− y|)
|x− y|n−2dσ(y) � Const. (6.3)

This gives

Er ≺
∫

∂Ω
Ψ
(

c4|u(x)|
λ

)
dσ(x) = I

(c4

λ

)
.
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Combining all the estimates we get

L

(
1
λ

)
≺

m

∑
r=1

(Ar +Br) ≺ I
(c1

λ

)
+

m

∑
r=1

(Cr +Dr)

≺ I
(c1

λ

)
+I

(c2

λ

)
+

m

∑
r=1

(Er +Fr)

≺ I
(c1

λ

)
+I

(c2

λ

)
+I

(c4

λ

)
+J

(c5

λ

)
≺ I

(
D
λ

)
+J

(
B
λ

)
,

where D := max{c1,c2,c4} , B = c5 . This would imply (3.4), wile to obtain norm
inequalities (3.2) and (3.6) we have to apply Lemma 2.7. The linearity of the mapping
follows from the construction.

We are left with the proof of (6.3). For this, we note that Λr = Ã−1
r (Sr) , where Sr =

{(x′,αr(x′)),x′ ∈ aQ′} is the graph of Lipschitz function (Definition 2.1). Therefore

Gr(x) :=
∫

Λr

τ(|x− y|)
|x− y|n−2dσ(y) =

∫
Sr

τ(|x− y|)
|x− y|n−2 dσ(y)

as Ãr changes neither Hausdorff measure nor distances. Using the bi-Lipschitz map-
ping lr(x) := α̃r ◦T−1 ◦ i where α̃r is as Assumption B instead of α̃ , i : Q′ �→Q′ ×{0}
is an embedding x′ �→ (x′,0) , we recognize that

Gr(x) =
∫

lr(Q′)

τ(|x− y|)
|x− y|n−2 dσ(y) =

∫
Q′

τ(|lr(x′)− lr(y′)|)
|lr(x′)− lr(y′)|n−2 |Dlr(y′)|d(y′).

Because of bi-Lipschitzity of lr we have |Dlr(y′)| ≺ 1 and there exist constants e1,e2 >
0 such that e1|x′ − y′| � |lr(x′)− lr(y′)| � e2|x′ − y′| . Therefore

τ(|lr(x′)− lr(y′)|) ≺ τe1,e2(|x′ − y′|) Lemma 5.1≺ τ(|x′ − y′|)
and

τ(|lr(x′)− lr(y′)|)
|lr(x′)− lr(y′)|n−2 |Dlr(y′)| ≺ τ(|x′ − y′|)

|x′ − y′|n−2 .

This together with change of variables z = x′ − y′ and using polar coordinates implies

Gr(x) ≺
∫

z∈x+Q′
τ(|z|)
|z|n−2 dz ≺

∫
B(0,2

√
n−1)

τ(|z|)
|z|n−2 dz = θn−2

∫ 2
√

n−1

0
τ(r)dr < ∞.

This shows (6.3) and completes the arguments. �

7. Appendix. Proofs of Lemmas 4.1 and 4.2

Proof of the Lemma 4.1. Let β : aQ′ �→ S , β (x′) = (x′,α(x′)) . As β forms the
map on S , we have∫

S
Ψ(s|g(x)|)dσ(x) =

∫
aQ′

Ψ
(
s|g(β (x′))|)‖Dβ (x′)‖dx′ �

∫
aQ′

Ψ
(
s|g(β (x′))|) dx′.
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Last inequality holds because

Dβ (x′) =

⎡⎢⎢⎢⎢⎣
1 0 . . . 0 ∂α(x′)

∂x1

0 1 . . . 0 ∂α(x′)
∂x2

. . . . . . . . . . . . . . .

0 . . . 0 1 ∂α(x′)
∂xn−1

⎤⎥⎥⎥⎥⎦ ,

so that ‖Dβ (x′)‖ =
√

1+ |∇α(x′)|2 � 1. Note that∫
aQ′

Ψ
(
s|g(β (x′))|) dx′ =

∫
aQ′×{0}

Ψ(s| f (x)|)dσ(x).

This gives (4.4).
To obtain inequality (4.5), we use similar arguments dealing with product measure:

J2(s) =
∫

S

∫
S

Ψ
(

s
|g(x)−g(y)|

|x− y|
)

ω(|x− y|)
|x− y|n−2 dσ(x)dσ(y)

�
∫

aQ′

∫
aQ′

Ψ
(

s
|g(β (x′))−g(β (y′))|

|β (x′)−β (y′)|
)

ω(|β (x′)−β (y′)|)
|β (x′)−β (y′)|n−2 dx′dy′.

As

|x′ − y′| � |β (x′)−β (y′)| �
√

1+‖∇α‖2
∞ · |x′ − y′| = a1|x′ − y′|,

and β (x′) = α̃(x′,0) , we get

ω(|β (x′)−β (y′)|)
|β (x′)−β (y′)|n−2 � 1

an−2
1

· ω(|β (x′)−β (y′)|)
|x′ − y′|n−2 =

ω(|α̃(x′,0)− α̃(y′,0)|)
an−2

1 · |x′ − y′|n−2
.

From there inequality (4.5) follows.
To obtain (4.6) we compute that:

K1(s) =
∫
V+

Ψ(s|g̃(y)|)ρ(y)dy =
∫

α̃(Qa,b)
Ψ
(
s| f̃ (α̃−1(y))|

)
ρ(y)dy

=
∫

Qa,b

Ψ
(
s| f̃ (x)|

)
|detDα̃(x)|ρ((α̃(x)))dx

and it suffices to note that |detDα̃(x)| = 1. Inequality (4.7) holds by almost the same
arguments as above, but in place of |g̃(y)| we deal with

|∇g̃(y)| = |∇ f̃ (α̃−1(y)) ·∇α̃−1(y))| � |∇ f̃ (α̃−1(y)| · (1+a0). (7.1)

To justify (7.1) we observe that

(
∇α̃−1

)
(y′,yn) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 . . . 0 − ∂ α(y′)

∂y1

0 1 . . . 0 − ∂ α(y′)
∂y2

. . . . . . . . . . . . . . .

0 . . . 0 1 − ∂ α(y′)
∂yn−1

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦=:

⎡⎢⎢⎢⎢⎣
1 0 . . . 0 a1
0 1 . . . 0 a2
. . . . . . . . . . . . . . .
0 . . . 0 1 an−1
0 0 0 0 1

⎤⎥⎥⎥⎥⎦= B.
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Therefore ⎛⎜⎜⎝
x1
. . .

xn−1
xn

⎞⎟⎟⎠B = x1

⎛⎜⎜⎝
1
0
. . .
0

⎞⎟⎟⎠+x2

⎛⎜⎜⎝
0
1
. . .
0

⎞⎟⎟⎠+ . . .+xn−1

⎛⎜⎜⎝
0
. . .
1
0

⎞⎟⎟⎠+xn

⎛⎜⎜⎝
a1
. . .

an−1
1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
x1 +xna1

. . .
xn−1 +xnan−1

xn

⎞⎟⎟⎠= Y.

Consequently, for a = (a1, . . . ,an−1) and x′ = (x1, . . . ,xn−1) we have

|Y |2 =
n−1

∑
i=1

(x2
i +x2

na
2
i +2xnaixi)+x2

n � |x′|2 +(|xn||a|)2 +2|xn||a · x′|+x2
n

�
(
|x′|2 +(|xn||a|)2 +2|xn||a||x′|

)
+x2

n � |x|2(1+ |a|)2.

This ends the proof of the lemma. �

Proof of the Lemma 4.2 (sketched). We only explain the computation of (4.8). As
Qa,b = T−1(Q) and |DT−1| = an−1b , we have

L2(s) =
∫

Qa,b

Ψ
(
s|∇ f̃ (x)|)ρ(α̃(x))dx = an−1b

∫
Q

Ψ
(
s|(∇ f̃ )(T−1y)|)ρ(α̃(T−1y))dy

and as f̃ (x) = h̃(T (x)) , we have

∇ f̃ (z) = ∇h̃(T (z))DT (z) = ∇h̃(T (z)) ·

⎡⎢⎢⎣
a−1 0 . . . 0
0 a−1 . . . 0
0 . . . a−1 0
0 . . . 0 b−1

⎤⎥⎥⎦=: Y.

When ∇h̃(T (z)) =

⎛⎝α1

. . .
αn

⎞⎠= w , we have Y =

⎛⎝α1
. . .
αn

⎞⎠ ·

⎡⎢⎢⎣
a−1 0 . . . 0
0 a−1 . . . 0
0 . . . a−1 0
0 . . . 0 b−1

⎤⎥⎥⎦= α1

⎛⎜⎜⎝
a−1

0
. . .
0

⎞⎟⎟⎠+α2

⎛⎜⎜⎝
0

a−1

. . .
0

⎞⎟⎟⎠+ . . .+αn

⎛⎜⎜⎝
0
0
. . .
b−1

⎞⎟⎟⎠=

⎛⎜⎜⎝
α1a−1

. . .

αn−1a−1

αnb−1

⎞⎟⎟⎠ .

Therefore |Y |� max{ 1
a , 1

b}|w| and so |∇ f̃ (T−1(y))|� G|∇h̃(T (T−1(y)))|= G|∇h̃(y)| .
Consequently L2(s) � an−1bL3(sG) and (4.8) follows. �
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