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MULTIPLE SINGULAR INTEGRALS AND MAXIMAL OPERATORS
WITH MIXED HOMOGENEITY ALONG COMPOUND SURFACES

FENG L1U AND DAIQING ZHANG

(Communicated by J. Soria)

Abstract. In this paper we present the LP mapping properties for a class of multiple singular
integral operators along polynomial compound surfaces provided that the integral kernels are
given by the radial function h € Ay(or h € Uy) for some y > 1 and the sphere function Q €
jﬁ (8”1 x §"~1) for some B >0, which is distinct from L(log™ L)?(S"~! x §"~!). In addition,
the L? bounds for the related maximal operators are also established. Some previous results are
greatly extended and improved.

1. Introduction

Let R?(d = m orn),d > 2, be the d-dimensional Euclidean space and $¢~!
be the unit sphere in R? equipped with the induced Lebesgue measure do,. Let
041,042, ..,0q4 be fixed real numbers, oy ; > 1 (j=1,...,d). Define the func-
tion F : R? x (0,00) — R by F(x,pq) = Z?leﬁpd_md’-", x = (x1,X2,...,%g). Itis clear
that for each fixed x € R?, the function F (x, py) is a decreasing functionin p; > 0. We
let py(x) denote the unique solution of the equation F(x,p;) = 1. Fabes and Riviére
[12] showed that (R, p,) is a metric space, which is often called the mixed homogene-
ity space related to {0y, j}‘le. For A >0, we let A, ; be the diagonal d x d matrix
Agj = diag{A%1 .. A%} Let RT :=(0,00) and ¢ : R* — R", we denote Af;(y)
by AS (y) :Ad,q)(pd(y))yl for ye Rd, where y/ :Ad,pd(y)*ly S Sd_l .

The change of variables related to the spaces (R¢,p,) is given by the transforma-

tion
O 1
Xy =p,; " cosO---cos6, 2cosH, |,

o .
x =p,;cosBy-cosB,_2sin6,_i,

Oy g .
Xg—1 = p; """ cos O sin 6,
o, .
Xqg = pdd"d sin 0.
Mathematics subject classification (2010): 42B20, 42B25.
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Otd—

Thus dx = p,;* J4(x')dpsdoy(x'), where pg"_le( ') is the Jacobian of the above
transform and oy = 39_; 0 j, Ja(x¥') = £, g j(x)?. Obviously, Jy(¥') € C=($971)
and there exists M, > 0 such that

1< J(x) <My, Vi esd
It is easy to check that
pa(x)=|x|, if g1 =0y0=...= ttg4.
Let Q € L'(§™! x §"~1) satisfying the conditions

QA ex,Any) =Q(x,y), Vs,t>0and (x,y) e R" xR", (1.1)

o Q) (W)dow (') = - Q(-,V),(V)do,(v') = 0. (1.2)

The multiple singular integral operator with mixed homogeneity 7, o is defined by

Pm( ),Pn(v))
T; (x = v// x—u,y—v)dudv, 1.3
ie(xy)=pv [ pm Jonpavyn JF YY) (1.3)
where i € Aj. Here Ay (y > 1) denote the set of all measurable functions A(r,s) on
R x RT satisfying the condition

Ly

[Alla,= sup (R 'Ry! / / (r,s |ydrds> < oo,
R1>0,R2>0

Itis obvious that Ay, C Ay, for y; > 5, and A = L™

For h =1, wedenote T, o by T. For ay,i=a, j=1 (i=1,2,...,m; j=1,2,...,n),
the operator T is the classical multiple singular integral operator denoted by 7', which
was first considered by Fefferman and Stein (see [14, 15]) and has been studied exten-
sively by many authors (see [1 1, 25, 26] for examples). In particular, Ying [26] (also
see [25] for the multiple singular integrals along polynomial curves) proved that 7" is
bounded on LP(R™ x R") for 23/(2B —1) < p < 2B and B > 1, provided that Q
satisfies the following condition:

s ] QW IHGE NP o W)do, () <, (14)

(5/711/)65"171 xgn—1

where
G(&'\n') =log

+log +log

1 1 1 1 1
-lo .
R R IR I EOT R T
It should be pointed out that the condition (1.4) for one parameter case was origi-

nally defined in Walsh’s paper [23] and developed by Grafakos and Stefanov [16] (also
see [6] for its variant). For the sake of simplicity, we denote that for > 0,

F(S" xS ={QeL'(s" " x5 "): Qsatisfies (1.4)}.
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We remark that the variant of .7g(S"™ ! x §"°!) was introduced and studied by Al-
Salman in [4]. Employing the ideas in [16], one can verify that .Zg, (S™ ! x §"1) C
Fp, (8™ 1 x 8" 1) for By > B, and

() Fp(S" ' x 8" 1) ¢ L(log" L)*(S™ ' x " ') C Llog " L(S™ ' x s 1)
B>1

¢ U Zp(sm st Y.

B>1

For oy,; > 1 and oy, ; > 1 (i=1,2,...,m; j=1,2,...,n), Chen and Le [9] showed
that if Q € L(log™ L)?(S"~! x §"~1), then T is bounded on L”(R™ x R") for 1 < p <
oo, Subsequently, Lan et al. [17] extended the result of [9] to the multiple singular
integrals along certain compound curves. Recently, Liu and Wu [19] proved that T
(in more general form) is bounded on LP(R™ x R") for 2B/(2B —1) < p < 2B, if
Qe .Zg(s" 1 x 8" ") for some B> 1.

For oy =o,; =1 (i=1,2,....m;j=1,2,...,n), we denote T by Tj,.
Duoandikoetxea [11] obtained the LP (1 < p < o) boundedness of 7;, under the
weaker condition Q € LI(S"! x §"~1) with ¢ > 1 and h € L”(RT x R"). Subse-
quently, the result of [11] was improved by many authors (see [5, 8, 21, 24] et al.).
In particular, Al-Salman et al. [5] showed that if Q € L(log™L)*(S"~! x §*~!) and
h € A, for some y > 1, then T}, is bounded on LP(R™ x R") for p with satisfying
[1/p—1/2| <min{1/2,1/Y}. Recently, Ma et al. [21] introduced the following size
condition:

s // ()0, w)|
( csm—1y gn—1 sm—1y gn— 1
><{Ga’n/(O,W)}ﬁdcm(u’)dc,,(v’)dcfm(e)dcyn(w) < oo,
(1.5)
where
Ger i (0,w) =10 ! lo ! +lo ! +lo !
! ! ,W = T 2 v
S S =080 T =) R W — 0,80 R [ —wn)]

For simplicity, we set
Fp (S s = {Qe Ll (5™ x §"71) : Qsatisfies (1.5)}, VB >0.

Ma et al. [21] showed that the following result.

THEOREM A. Let Q be homogeneous of degree zero, integrable on S"! x §"~!
and satisfy

gn—1 Q(x/7y/)d6m(x/) = =1 Q('x/7y/)d0" (y/) = 0

Let Py,, Py, be two real polynomials on R with Py, (0) = Py, (0) = 0 and deg(Py,) =
N; (i=1,2). Suppose that h € Ay for some y> 1 and Q € Fg(S"~ U §"=1Y with
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B >max{2,7'}. Then the multiple singular integral operators along polynomial curves
Th7p defined by

ul,|v

() = v AT ID. iy Qs — P ()
"R Iu\ vl

is bounded on LP (R™ x R") for p with satisfying |1/p—1/2| <min{1/2,1/7}—1/p.

The bound is independent of the coefficients of Py, and Py,, but depends on Ny and

N;.

REMARK 1. We remark that the condition (1.5) for one parameter was originally
introduced by Fan and Sato in more general form in [15], and it was introduced by Ma
et al. in more general form in [21]. It follows from [21, Proposition 2.1] that ﬁﬁ (S L
SY) c Fp(S' x S'). When m > 2 or n > 2, the relation between g (5"~ x 5"~ 1)
and (S~ x §"~!) remains to be open.

A natural question, which arises from the above results, is the following:

QUESTION. Forthe general case 0 ; > 1(i=1,...,m) and o, ;> 1(j=1,...,n),
is T o bounded on LP(R™ x R") under the same assumptlons on Q and h as in The-
oremA?

In this paper, we will give a affirmative answer to this question by treating a family
of operators, which is broader than 7}, ;. Precise, let Py, and Py, be two non-negative
polynomials on R with Py,(0) =0 and deg(Py,) =N; (i =1,2). For suitable functions
@,y :RT — R and & defined on RT x R™, we define the multiple singular integral

operators T;f oV along surfaces S(Py, (¢). Py, (y)) by

V)h(Pm(u), pn(v)) Py, (9) Py, ()
TP(M' )(x V. // x—An U (u),y—A,? " (v))dudy,
y=py. ] pm omprryen (u),y (v))

where
S(Px, (0). Py, (W) = { (A P (). A Y () + (uv) e R7 x RY).

Obviously, Ty, o is the special case of Thpg"” for Py,(s) =@(s) =y(s) =s (i=
1,2). Also, in the special case 0y, ; =0y ;=1 (i=1,....m;j=1,...,n),

S(Px, (9), Py, (w)) = { (Pw, (@(Ju))u’, Py (w(v))v') : (,v) €R™ xR}

Moreover, for ¢(s) = y(s)=s and o, ;i =0 j=1 (i=1,...,m; j=1,...,n), thatis,
S(Pw, (), Py (W) = { (P, (Jul)ud', Py (V)v') + - (,v) € R x R"}.

In this paper we shall establish the following results.
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THEOREM 1. Let Py, and Py, be two real polynomials on R with Py,(0) =0
and Py,(t) > 0 for t # 0, where N; is the degree of Py, (i=1,2), andlet ¢,y € §,
where § is the set of functions ¢ satisfying the following properties:

(i) ¢ : RY — R is continuous strictly increasing and ¢ € €1 (R*) satisfying that
¢’ is monotonous;

(ii) there exist constants Cy, cy >0 such that t¢'(t) = Cy ¢ (1) and ¢(21) <cyd(1)
forall t > 0.

Suppose that h € Ay for some y > 1 and Q € jﬁ (S x ") for some B >

max{y,2} with satisfying (1.1)—(1.2). Then Th}_j’((f’w is bounded on LP(R™ x R") for
p with satisfying |1/p—1/2| <min{1/y,1/2} —1/B. The bounds are independent of
the coefficients of Py, and Py,, but depend on @, y, Ny, No,m,n and 3.

THEOREM 2. Let Py, Py,, @ and y be as in Theorem 1. Suppose that h
Ay for some y > 1, Q satisfies (1.1)—(1.2) and Q € ﬁﬁ(Sl x SY) for some B >
max{y,2}. Then Thpg’l’/ is bounded on LP(R? x R?) for p with satisfying |1/p —
1/2| < min{1/7, 1/27} —1/B. The bounds are independent of the coefficients of Py,
and Py,, but depend on @, y, N, N, and f3.

REMARK 2. Clearly, Theorem 2 directly follows from Theorem 1 and Remark 1.
We remark that Theorem 1.1 extends Theorem A to the mixed homogeneity setting,
even for the special case @(s) = y(s) = s. It should be pointed out that our results are
new even in the case 0y, ; =0y, ;=1 (i=1,...,m;j=1,...,n), ie., the Euclidean
setting.

REMARK 3. For any ¢ € §, there exists a constant By > 1 such that ¢(2r) >
By¢(r) forall r >0 (see [1, 3, 19]). We remark that there are some model examples
in the class &, such as 1% (& > 0), t*(In(1 +17))# (o, B > 0), tInln(e +1), real-valued
polynomials P on R with positive coefficients and P(0) =0 (see [1]).

In Theorem 1 or 2, for y > 2, the range of  is [2,0) and the range of p is
(B',B), but for 1 < y < 2, the range of B is [Y,e°) and the range of p is shrunk to
[1/p—1/2| < 1/y —1/B. Itis natural to ask the following question.

QUESTION. Can the range of B and p in Theorems 1-2 be enlarged for the case
1<y<?2?

The next aim of this paper is to address the above question by imposing some more
restrictive conditions on /. Precisely, for 1 <y < oo, let U, be the set of all measurable
functions & on Rt x R satisfying

[ drds\1/v
Iy = ([ [ o =) <o (16)

Obviously, Uy C Ay for 0 < y < e and U. = Ao = L™. The second one of our main
results can be formulated as follows.
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THEOREM 3. Let Py,, Py,, ¢ and y be as in Theorem 1. Suppose that h € Uy
Sor some v > 1, Q satisfies (1.1)—(1.2) and Q € ﬁﬁ(S’“_l x S for some B > 2.
Then Thl_)’((f’w is bounded on LP (R™ x R") if one of the following conditions holds:

() y=1,p=rce;

(i) y> 1, p satisfies |1/p—1/2| <1/2—min{2/y,1}/B.

The bounds are independent of the coefficients of Py, and Py,, but depend on
O, W,Ni,Ny,m,n and 3.

REMARK 4. Obviously, for y > 2, the ranges of 8 and p in Theorem 3 are coin-
cidence with ones of Theorem 1. However, for 1 < y < 2, the range of p in Theorem 3
is larger than one in Theorem 1 since 1/¥ —1/B <1/2—2/(yB), and the range of 8
is extended to (2,0]. Meanwhile, we also obtain the result at the endpoint case y=1.
Therefore, it is worth to impose the above restriction on 4. It is not clear whether the
restriction on & can be removed, which is interesting.

To prove Theorem 3, we need to establish the following L” -boundedness for the
related maximal operator M (32%!!/ by

MY (D) = sup TSV () )],

[[2lloy <1

which is interesting itself. When oy = o, =1 (i=1,2,...,m; j=1,2,...,n),
Py, (t) = Py, (t) = @(t) = y(t) = t, we shall denote Mt‘(’,)g,w by M), Historically, in
1999, Ding [10] proved that the operator M) is bounded on L> (R™ x R") provided
that Q € L(log™L)?(S™~! x §"~1). This result was greatly improved by Al-Salman
in [2]. In [2], Al-Salman obtained the L? boundedness of M 2 for 2 < p < oo under
the weaker condition that Q € L(log™ L)(S"~! x §"~!). Moreover, Al-Salman showed
that the condition Q € L(log™ L)(S"™~! x §"~!) cannot be replaced by any condition of
the form Q € L(log" L)1 ~¢(S™~! x §"~1),& > 0. Especially, Al-Qassem and Pan [7]
proved that the operator M(7) is bounded on L”(R™ x R") for Y <p<oo(fory=1,
p = o) provided that Q € L(log™ L)z/V, (§"=1 % §"~1) and 1 < y< 2 (also see [18] for
the non-isotropic case).

2

For the operator M 0.y

we will prove the following result.

THEOREM 4. Let Py,, Py,, ¢ and y be as in Theorem 1. Suppose that Q satis-
fies (1.1)—(1.2) and Q € j\ﬁ (8"~ x §"=1) for some B > 2. Then MI(;?;))’W is bounded
on LP(R™xR") for 1 <y<2 with Y <p <Yy B/2, and it is bounded on L=(R™ x R")
for y=1. The bounds are independent of the coefficients of Py, and Py,, but depend
on @, ¥, Ny,No,m,n and 3.

By Theorems 3—4 and Remark 1, we have the following results.
THEOREM 5. Let Py,, Py,, ¢ and y be as in Theorem 1 and h € U, for some

¥ > 1. Suppose that Q satisfies (1.1)—(1.2) and Q € Fg(S' x ') for B > 2. Then
T;f o s bounded on LP (R? x R?) if one of the following conditions holds:
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D y=1 p=ce;

(i) y> 1, p satisfies |1/p—1/2|<1/2—min{2/Y,1}/B.

The bounds are independent of the coefficients of Py, and Py,, but depend on
Q, l//,Nl,Nz and ﬁ

THEOREM 6. Let Py,, Py,, ¢ and y be as in Theorem 1. Suppose that Q satis-
fies (1.1)=(1.2) and Q € Fg(S' x S') for some B > 2. Then ng))y is bounded on
LP(R? x R?) for 1 <y <2 with ¥ < p < ¥B/2, and it is bounded on L*(R* x R?)
for y=1. The bound is independent of the coefficients of Py, and Py,, but depends on
Q, l//,Nl,Nz and ﬁ

REMARK 5. We remark that it is still an open problem whether the L”-boun-
dedness of M( ) o,y holds for 2 <y <o, even for the case Py, (1) = Py, () = ¢(t) =

y(t)=t. Also by Remark 1, all of our results are new, even in the special case:
Py, (t) = P, (1) = @(t) = y(t) =t, moreover, even in the Euclidean setting.

REMARK 6. It should be pointed out that all of main results are the multiple-
parameter case of the results in [20].

The rest of this paper is organized as follows. In Section 2 we will recall some
notation and establishing some preliminary lemmas. The proofs of main results will
be proved in Section 3. We remark that some ideas of our methods are taken from
[7, 11, 20], but our methods and technique are more delicate and complex than those
used in [7, 11, 20]. Throughout this paper, let p’ denote the conjugate index of p; that
is, 1/p+1/p’ =1 the letter C or ¢, sometimes with additional parameters, will stand
for positive constants, not necessarily the same one at each occurrence but independent
of the essential variables. We also set ¥ ;cga; =0 and [];cpa; = 1.

2. Some notations and auxiliary lemmas

For given positive polynomials Py, (t) = 25\711 i, Py, (1) = zﬁﬁl yit' and I €
N m i
{1,2,....m}, ke {1,2,...,n}, we set (Py,(1))% =3, 1? Ta; it and (Py, (t))%* =

Zyzf"kb,kt’ Then for x, £ € R™;y,n € R" and ¢, y € §, we can write

m Nlaml

! )&= ZPNI @ (pm(x))) % x)" - & = Z Z ai 19 (Pm(x ' &,

PN

n n N2k
Py, (w) : .
A0 =Y P (W )y =Y, Y biaw(pa(y) Ve i
k=1 k=1 j=1

We denote A7 :=max{N;0y,; : 1 <I<m}, A :=max{Nr0y,x: | <k <n} and set
a;; =0 whenever i > N0y, ; b =0 whenever j > N>a, ;. Thus

m N1 M

) g = Z Z ai 1 9(pm(x)) 31" & = D (Li(§) X ) (pm ()",

PN
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where L,(é) = (a,-71§17a,-72§27 e ,ai7m§m) . Similarly,

A,I;NZ(W)(})) n= Z(l;(rl) )W (pa (),

where 1;(n) = (bj1M,bj2M2,...,bjMn). Forany u€{0,1,...,.41} and ve {0,1,...,
M}, we set

I . a .
0u(®) = (X @i @(Pu(x))'- -, X i@ (Pn(x))').

i=1 i=1

Ry(y (ijlylwpn ijnyn ))

Hence,

\%
Z w(p. (), 0< v < A

For any r, s > 0, we define the measures {c/"} as follows.

C;rlf?v(ém) ://smflxsnflexl’(‘z’”@'Qu(Am7ru’)+n-Rv(Am_\.v')))
X Q' V) (W' )Jn (V' )d Oy (u')d o, (V');

Now we introduce the following result, which will paly key roles in the proofs of
our main results.

LEMMA 1. ([19, Lemma 2.5]) Suppose @,y € §. Then for u € {1,2,...,.4},
ve{l,2,...,.%} and r >0,

/r/rzexp( iG - Qu(Am,p, ))‘i,ﬂ <C(Q) Q)" Lu(8) x| 1/H;

m

’ . dpn -
L, expin Ryl ) 2 < COm )t )

n

The constant C(@) is independent of the coefficients of Py,, but depends on ¢; The
constant C(y) is independent of the coefficients of Py,, but depends on .

Applying Lemma 1 and combining with the similar arguments as in getting esti-
mates of measures in [25, 26] we have
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LEMMA 2. Suppose Q € 973 ("1 x §"1) for some B >0 and satisfies (1.1)—
(1.2). Thenfor pe{1,2,....M},ve{l,2,....M}, k, 1 €Z and ({,n) e R" xR",
there exists C > 0 such that

1)
sup |oB" (&.1m)] < 2.1)
r,s>0

(i1)

2]+l 2k+1 —

[ [ oB e m -t e MR <clo@H L@ 22)

2l+l 2k+l —

L[ 1R Em-ok @ mPeE <cye mPs @3)

2! 2k

(i) for [w(2") Iy (n)] > 1, then

ol+1

2k 1w drds
/2 /2 655V (&) — ol Y (E )P (2.4)
< Clp(2*) “Lu<é>| (log|w<2l+l>V1 m)))~ 3

(iv) for @2 )V Ly(§)| > 1, then

2k+l o — dd
u,v— 1 2 ras

/2 /2 Grs —ors  (E,m)] T (2.5)
<Cly(" )V () (10g|<P(2k“) Ly(&))7F;

) for @2 )Ly ()| > 1, then

2l+1

ol+1 2k+1

[ oB emr ™ <ctolo @) 2o
for |u/(2l+l)"lv(n)| > 1, then

2k+1
/2

drd
[ 1B Eemr e < clogy@ @)
for [ ELE)] > 1 and [w(2 )1, ()] > 1, hen

2l+1

[ [ 1R e mP e < cloglo( HLu(@)l) P toelw )1 P
(2.8)

(vi)
[ i em ot e m ok e m ok mp
< Conin{ (24P L(©) . W I (2 L () v D)
2.9

The constant C is independent of the coefficients of Py, and Py, .
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Proof. (2.1) is obvious. Let

2k+1

H .
Hou(w'0.8)= [ exp (=21 2 1,(8)- (/- 0)0) T

ol+1

ot = [ exp(~2mi 3 ) (/- @)wiof ) T

By Lemma 1, we have
\Hu(d,6,8)| < Cmin{1, |@(25 ML, () - (u/ — 0)]7V/HY.

When [@(2F )AL, (§)] > 1, since —L=5 is increasing in (e, 0), we have

(log )

(logeP2'/#|(Ly (§))'- (' — 0)[~*/H)P

|Hk,y(u/a97€)| <C (10g|q)(2k+1)“Lu(é)Dﬁ

Similarly, when |y(2*1)VL,(n)| > 1, we have

(logeP2'|(1y(n))- (v — )| /)P
(log [w(2+ 1)1y (n)])P

|Jl,v(‘/» @, n)‘ <
By the definition of Gr’f_ ;v, we have

OBV (&) — OB (E )

(2.10)

(2.11)

(2.12)

| //51 ot (FP(27EG - O (A i) = exp(=278 - Qe (Am ) 5 |3

x exp(—=27min - Ry (An V') Q' V) (') (V' )d O (u')d G, (V')
< Clo(r)HLu(8)|.

This together with the fact that ¢ is increasing in (0,0) implies (2.2). Similarly, (2.3)

holds. On the other hand,

—

G (E,m) — of IV (&)

‘ sm—1y gn—1
x exp(—2min - Ry (An V")) Qu' V) ('), (V' )d O (W )d oy (V)

2

(exp(—27iLy (&) /'@ (r)*) — 1) exp(—27i& - Q-1 (A )

= g0 P2 9() — 1) (exp 2Ly () 00(7)*) 1)
) : r) —2mi S (= $)k
X e p( 2mi ZL )e ( 2r kg‘llk(n) ( w)‘/’())

xQ(u, )9(9 (0) 1 (1)Jn (V)0 (0)Ju(@)d G (') d 0, (v )d Oy (6)d 0 ().
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Then

e —olv(E )

oS ] e
X |Q(u' V)Q (9 o)|do,(u')do,(V)do,(0)do, ().

I+1 k+1
/2 2 TR 2drds

Combining (2.12) with the fact that Q € j\p (§"=1 x §"~1) implies (2.4). Similarly,
(2.5) holds. On the other hand,

ERGRIE
B ‘ //Sm’l x =1 exp(—2mi(S - Qu (Am,r”/) +1n 'RV(An,SV/)))

QU VY (1 I (v ’)dam( Ndoy(v)|
—//Sm S exp( ZmZL ' — 0)p(r)! )Q(u/,\/)Q(G,w)Jm(e)Jn(w)

X exp ( _ 2mk§11k(n) : (v _ a))u/(s)k>Jm(u’) Tn(V)d G (1A G (V')A () d ().

Thus we have

/2l+l 2k+1 IJ v |2drds
rs

(Sm,lxsn,l)g Hi0,6.)

X T () (V) (0)J (0)d O (1 )d 0, (V' )d G (0)d O (o).

V0 om)QwWv)Q(60, 0)|

Combining (2.11)~(2.12) with the fact that Q € F5(S™~! x §"~1) yields (v). (vi) fol-
lows from

—

oRY (& m) — o (Em) — o (e )+ o T E )
=[] EXP(2HE - Ot (A )+ R a (A D) M), )
X (exp(~ 2Ly (€)' p(r)*) 1) (exp(~2miLu(&) - 69 (r)*) —~ 1) )do, (1)
< Clp() Lu(E)[W(s) T ().
This proves Lemma 2. [

Forany k,1€Z and u € {0,1,...,.41}, v 6 {0,1,...,.45}, we define the mea-

sures {’L’k ] Y1 and the related maximal operators T v as follows:

i (em) = ], SEEEROR xp(—2mi(E- Oute)+ 1 Ro(s) s

m u ampn(v



510 F. LIU AND D. ZHANG
Ty () (6y) = sup [|Tey [+ f(x,y)],
KLEZ ’
where Ak,l _ {(u,v) cR” xR" - 2k <pm( ) < 2k+1 2l <p ( ) < 21+1} and |TIJ,V| is

defined in the same way as 7%’ Y 7, but with 4 and Q replaced by |4| and |Q], respec-
tively. One can easily check that for any g € {0,1,...,.4{} and v € {0,1,...,.45},

TﬁiZ(%m)—T“o(é n) = (2.14)
and
L3 (f = > P flxy), (2.15)
kl€Z

LEMMA 3. Let h € Ay for some y> 1 and § = max{2,Y}. Suppose that Q
satisfies (1.1)—(1.2) and Q € Fg(S"' x S"~) for some B > 0. Then for u €
{1,2,...,.M},ve{l,2,...,M} and k,l € Z, there exists a constant C > 0 such
that

(1)
Sup \Tkl En)l< (2.16)
(ii) - -
iV (Em) =t Y (E M) < Clp@ L (&)]; (2.17)
Ifkl Em -5 l(é ml<Cly“) L (n)l; (2.18)

(i) for @2 ML, (E)] > 1, then

\Tkz Em-;" 7, M| < Cly*) 1 (m)|(log o2 LL(E))P/7: (2.19)

(iv) for \w(Z’“)VIv(nM > 1, then

/\

7, (5 )=t V(& m)] < Clo@ ) L (E)(log |y (2 1y (m))P/T; (2.20)

(v) for |qo(2"+1)”L,J(§)| > 1, then

|77 (&, m)| < Cllog (2L, (£))) /7. (221)
for |y, ()| > 1, then

75 ()] < Cllog [y ) 1y (m) ) P17 (222)

for |92 ML (E) > 1 and [w(2 )1y (n)] > 1, then

\T/ﬁ“‘\jv(é,n)l < Cllog|@(2 ) Ly (&))" P/ (log [y ) 1, (m))P/7; (2.23)
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(vi)
— —

e — s Em) — Y E ) e )

< Cmin{|@2 )Ly (§)] [y 2 ()] [@ 2R L (&) w2V I ()}
(2.24)
The constant C is independent of the coefficients of Py, and Py, .

Proof. By a change of variable and (2.1) we have

2l+1 2k+1

Sl gn-1exp(—2mi(& - Qu(Apm ') +1 - Ry(Ansv')))
drds ‘
rs

|Tkl (€. |—)
XQu' V) (') (V' )d O (' )d 0, (V') A1, 5)
éCHhHA,U f2k“|;f_;v(g,n)|)/%>w

141 Akt 1 N\ L/7
<c(F" B 1ot @ mp)

2l+1

which combining (2.1) with (2.6)-(2.8) implies (i) and (v). On the other hand, by a
change of variable and Holder’s inequality, we get form (2.13) that

|Tk1 (&,m)— (5 n)|
= ‘//Akl(exp(—ZEiéQy(u)) —exp(—2mi& - Qu—1(u))) exp(—2min - Ry (v))
h(pn (), pu (V)R V)

P (1) % P (v)
21+1 k1
‘/ ~/2 //Sm*lXS”*l(exp(—zﬂ:ig .Q’J(Amvru/>) _exp(_znié 'Q,U—l(Am,ru/)))
X exp(=2min - Ry (A"7Sv/))g(”/’"/)Jm(”/)Jn(‘/)dﬁm(M/)dGn(V/)h(r,S) o
e Y drd
=IL L — o T E M) |
I+1 k41 /\v 17
<C||h||Ay(f2 f2 SV (E 1) — 0”1 (&, )\Vdrds)
" T drds\1/7
<cvp(zk“>ﬂLu<é>\m““*2/%°}( / /2 o (E.m — ot (e P L)

This together with (2.2) and (2.4) implies (2.17) and (2.20). Similarly, (2.18) and (2.19)
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hold. (2.24) follows from the inequality

/\

) - 2V ) - e, n)+t LY=L )

2l+1
a1/
x (exp(~27tiLy (€) -1 p(r)*) — 1) (exp(~27ily () -V w(s)") — Dh(rs)

x Q' V) (), (V) d oy (d)do, (V)
[, lexp(=2miLu(&) () - 1

< // /
sm=1xgn—1
drds

x exp(—2ily (1) ¥ (5)") = 11h(5) Q0 V) o (')A (v).

2k+1

[ exp(=2mi(E - Quo (At +0 Ry-r(A')
drds

rs

ol+1 2k+1

This completes the proof of Lemma 3. [

LEMMA 4. ([19, Lemma 2.2]) Let P(t) = (Pi(t),P>(t),...,Py(t)) with P, (i =
1,...,d) being real polynomials defined on R* and ¢ € §. Then the maximal function
Mpy(f)(x) defined by

2r dt
Mpy (f)(x) =sup [ flx—P(9(r)))—

r>0Jr t

is bounded on LP(R?) for 1 < p < oo. The bound is independent of the coefficients of
P (i=1,2,...,d) and f, but depends on ¢.

Applying lemma 4, we have
LEMMA 5. Let Q € L' (S™"1 x §"~1) with satisfying (1.1)—(1.2) and h € Ay for

some y> 1. Then for p € {1,2,...,.41} and v € {1,2,..., .45}, there exists C,, >0
such that

1T (Dllp <Cpllfllp, for ¥ <p<eo

The constant C, is independent of the coefficients of Py, and Py,, but depends on
P, V.

Proof. We define the measures {|A};’ * by
Q)|

ALYI(E,m) // exp(—2mi(E - O n-Ry())——— "L gy

‘ A ( IJ( ) V( )))Pm(u)a’"Pn(V)a"

and
Aoy (N)(y) = sup [|ALY |+ fx,y)|-
k€7
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By a change of variable we have

Q
N (1)) = sup / NECEINOF: (v))%dud\)
< sup 2 fzk“ Jfsm1cgn1 [f (x = QuAmru),y — Ry (A "))
, . drd
120 ) a4 )do,(v) ==
2l+1 2k+l / / drds
<Ci//Sm Ly gn— lkZGZ/ ‘/2 x Ql'l mru>7y_Rv(An7_\~V ))| rs

< |Q(u' V)| d o (u')d o (V).
By Lemma 4, using iterated integration and Minkowski’s inequality, we have

HAZ,v(f)HpgcprHm 1 <p<ee. (2.25)
In addition, by Holder’s inequality

It el = | [, o= 0uta.y o)) EEE TR g

P (1) %m py (v)

2l+l 2k+l

<L 17 Qulnad)y = ReAna IR0 )
drds

XJ ( ) ( /)dcm(u/)dcn(\/”h(r,s” rs
oI+l okl
) C/ /2 //5””' xgn—1 f (= Qu (Am,,u’),y - Rv(An,sV/))P/

1y drd
<1 ()02 ()03 ()0 (1)) ()| ==
2l+1 2A+l
<l ([ [ [ 16— Qulmad )y = RAn I

I 0 11 3 i (1) 222

<SCA (AT )7,
which together with (2.25) completes the proof of Lemma 5. [

Now we take two radial functions ¢; € C5(R”) and ¢» € C5(R") such that
01(t) = ¢2(s) = 1 for max{|z],|s|} <1 and ¢;1(r) = ¢2(s) = 0 for min{[¢],|s]} >
min{By, By}, where By,By, are as in Remark 1.3. For u € {1,2,...,.41} and v €
{1,2,...,.45}, we define the measures {@/;"} and {/l,ffiv} by

0PV (E,1) = B (&) ()TTa(v) — 6A (&, 0T, (1 — 1)TTa(v)

—of" N E ML (W)Ta(v — 1)+ of Y (E m (u— DIy (v - 1),
and
A Em) = 75 (E I ()T (v) — 74 (&) (1 — 1)TT(v)

e E T ()T (v — 1)+ 2f, (& )Ty (i — Doy — 1),
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where 1y (1) =TT, ., 01(@(257 Y Li(E)), Tha(v) =TT/2,,, b2 (w21 (m)) . s
easy to see that
MM
ol = 2 2 (2.26)
u=lv=
and
T = lex,ﬁ‘lv. (2.27)
u=1lv

Applying Lemmas 2 and 3, combining with the arguments which are similar to
those in the proof of [19, Lemma 2.7], we can obtain

LEMMA 6. Let Q beasin Lemma 2. Thenfor pe{1,2,...,.4},ve{l,2,...,.4}
and any k, [ € 7, there exists a constant C > 0 such that

@
sup [|ofV|| < C; (2.28)
r,s>0
(i) for |@(2X"1)YL,(E)| > By, then
oI+l ok+l drd B
Lo L leh Em P < @) nm P log o2 Lu(E)])
(2.29)
(i) for [w(2""1)VI,(n)| > By, then
ol+1 2k+1 drd -B
L L 1B EmPTE < clo@ U Lu@) P (tog v ) R (m))
! (2.30)
() for [p(2- )ALy (§)] > By and [y(2'*)* ()| > By, then
2l+1 2A+l d
/; / M < Cllog o2 Lu(8))) ™ log [y (2" 1 (m))
(2.31)
2l+1 2k+l dd
/2 [, 1B EmPTE <clo@ L@ P ) LR (232)

The constant C is independent of the coefficients of Py, and Py, .

LEMMA 7. Let h and Q be as in Lemma 3. Then for p € {1,2,...,./},v €
{1,2,...,4} and k,1 € Z, there exists a constant C > 0 such that

)

sup ALY <G (2.33)
kleZ
(i) for |@(2*" ML, ()| > By, then

Iﬁ(é,n)l < Cly@™)Y 1 ()| (log o2 L (§)N) P77 (2.34)
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(i) for [w(2""1)VI,(n)| > By, then

IW((S,H)I < Clo@ MLy (8)|(og [y (2 ) I (m)]) P77 (2.35)

(V) for [ L(E)| > By and [y(2")1y(n)] > By, then

\W(é,n)l < Cllog|p(2 ) Ly (&))" P/ (log [y ) () P17 (2.36)

)
AL (€I < Clo@ D Ly ()] w ) I (). (2.37)

The constant C is independent of the coefficients of Py, and Py, .

Applying Lemma 5 and the definition of k,ff l’v, we can establish the following
lemma. ’

LEMMA 8. Let Q,h be as in Lemma 5. Then for u € {1,2,...,.4} and v €
{1,2,...,.M}, there exists a constant C > 0 such that

| sup 15" 71| <Clfllps ¥ <p<es
kl€Z 14

The constant C is independent of the coefficients of Py, and Py,, but depends on @, /.

Applying Lemma 8, by similar arguments to those used in the proof of [13, Theo-
rem 7.5], we have

LEMMA 9. Let Q, h be asin Lemma 5. Thenfor u € {1,2,...,.4},ve{l,2,...,
M} and any suitable functions {gi}, there exists a constant C > 0 such that

I3 b)), <l 5, ),

kleZ kleZ

for p with satisfying |1/p—1/2| < min{1/y,1/2}. The constant C is independent of
the coefficients of Py, and Py,, but depends on @, y.

LEMMA 10. Let Q€ L' (S ! x 8" 1), Thenfor uc{1,...,. M} and ve{l,...,
N3}, the operator % defined by

2k drds
2P =sw [ [0 0k )
k IEZ 2!

is bounded on LP (R X R") for 1 < p < eo. The bound is independent of the coefficients
of Py, and Py,, but depends on @, .

ol+1
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Proof. We define the operator .7Z by

2Hl drds
Ay =swp [ [ ) T,
kleZ2 rs

where |o/5"| is defined in the same way as of" , but with Q replaced by |Q|. Then

we have

H(f) = sup /
kleZ 2!

x IQ(MCV’)\Jm(u’) n()do(u)do(V)

<C sm—1 5 gn— lklEZ/Z
x Q' V)|do (u')do (V).

2l+1

ol+1 2k+1

// B S S (Amst'),y —Ry(ApsV'))
Sm—1x§n
drds

rs

zk“ drds
/ A ru/)»y_Rv(AnsV ))‘r—s

2l+1

Invoking Lemma 4, using iterated integration and Minkowski inequality, one can obtain
that

12Dy <CIAllp, 1<p<ee

This together with the definition of a)# ;V implies Lemma 10. [J

3. Proofs of main results

We will first prove Theorem 1.

Proof. Tt follows from (2.15) and (2.27) that

EEE%V*JC EETP(”' . (3.1)

nu=1v=1k|leZ n=1lv=

It suffices to show that for any u € {1,2,...,.41} and v € {1,2,...,.43},

1Y ()llp <Clflp  for [1/p—1/2] <min{1/¥,1/2}=1/B.  (3.2)

For fixed u € {1,2,...,41} and v € {1,2,...,.45}, we can choose two collections of
C> functions {A;};cz and {n;}cz on (0,c0) with the following properties:

() supp() C [@(2+1) 7, p(2-1) 4], supp(m;)  [W(2/+) Y, w(2i1)];

(i) 02 <1, St = Syemm(1)? = 1

@) |(d/dr)'Ai(r)| < Ci/t, |(d/dt)'n;(t)| < Ca/t, where Cy, Cy are indepen-
dentof i, j, 1

Define the multiplier operator S; ; on R x R" by

S (6,9) = Ai|Lya(¥) ) (s ()] f (. 9)- (3:3)
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Then
P, R
.97 (f) = . IZZ%&’V * (Zi,,/ez Si+k,j+15i+k,j+zf>
NAS

= 3 3 Sk jrtALY *Sivkjuif) (3.4)
1,jELkIEL ’

Now we consider the L?-boundedness of 7; ;. By the Littlewood-Paley theory and
Lemma 9, we have for any p with satisfying |1/p —1/2| < min{1/y,1/2},

1/2
Il <€ (2, 145" *Sisriaf ) |
kl€z p

<z )] )

<ClIflp
On the other hand, by the Littlewood-Paley theory and Plancherel’s theorem, we have
2

1/2
ITir I3 < || (3 12 S P) |
kl€Z

=3 [ AR E M PR (L) i (e (m)DPIAE, m)Pddn
k,l x

2

<C iﬁﬁ , 217 , 2d d ,
S J],..,. M EnR7E mPdgan

where

Eipijri = {(&,m) ER" X R" : (27 "1 |1y (§) < (247 1)7H,

W) < ()] < (), 20
Using Lemma 7 and Remark 3, we have
IT:,ifll2 < C(@, .11, V)Bi i fl2 (3.7)

where ) )
B,"B,", ij>-2
By P, i> -2, j< -2
Bij={ ° |{| . / (3.8)
|i|7ﬁ/yBl4/j ’ lg _27 J> _2’
il P < -2,
where 7= max{2, 7} . Interpolation between (3.5) and (3.7) yields that for any p satis-
fying [1/p—1/2| <min{1/y,1/2} — 1/, there exists § € (0, 1] such that §3/7 > 1
and
IT:iflp < Cl@w,v) °BY I fllpy 11/p—1/2] < min{1/¥,1/2} = 1/B.

)



518 F. L1U AND D. ZHANG

Then we have for any p with satisfying [1/p —1/2| < min{1/y,1/2} —1/B,

S Tfly <Clowuv)( 3 BB+ 5 BBl
i,j€Z i,j>-2 i>-2,j<-2
S R L e [ 1 P

i<-2,j>-2 ij<—

g C((P, W: u, )Hf“l’

This combining (3.1) with (3.4) completes the proof of Theorem 1. [
Next, we will prove Theorem 4.

Proof. By duality, Holder’s inequality, Minkowski’s inequality and (2.26) we have
Ml (F)(y) = sup

//f*(y/ﬂ/Vz(xy)h(rs)drds

HhHu<1 pe
//‘f*ff”’”z i 4y

Z //\f*muv ‘ydrds>1/7/ (3.9)

Tl

.§

<13
-2

So it suffices to obtain the L?(R™ x R")-bounds of M,SQ for 1 <y<2.
Case 1 (y=2). Let S;; be as in (3.3). Then by Minkowski’s inequality we have

1/2
M[(L / / \f*a)’““’ |2drdS)
2 /2l+l 2k+1 wu v )|2drds> 1/2
kjez’?
pl+1 ok+1 2drds 1/2
/ / (D” Yk Z S1+k /JrlSlJrk,jJrlf) (.X y) —>
kleZ 2 ijez rs
2l+l 2A+l 2drds 1/2
/2 /2 ik, j 1Sk, jif (X,Y)‘ " )
leZ kleZ
= 2 Gij(f)x,
i,jEZ
(3.10)
By Plancherel’s theorem we have
2I+l 2k+1

2drds
OFY % Sivk j11Sivk,j+1.f (x,Y) r—dxdy

J.

[ Iehr @ mPIfE mPagan

ol+1

ui-f. 2
G (B = [ T
2[+l 2A+l

kleZ/2 /
kleZ‘/Hrij‘/

2A+l ’
[ 10k EmPE 1 ) Pazan.
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where Ej ji¢ is asin (3.6). Then by Lemma 6 we get

1Gijfll2 < C(@, w1, v)Bi | fll2, (3.11)

where S
B,"B,", ij>-2
L BMIRR i> 2, <
Bij=1:" J . (3.12)
iI7P2B, ", i< =2, j> -2
il PR <2
Next, for p >2,let ¢ = (p/2)’, there exists a function g € LY(R" x R") with ||g|[, <1
such that

1G:; ()1

2l+1

k€7 / ‘/2
drds

<sup | [ 5[] [ S sSin oy Paf ) 2
kleZ

r,s>0 Rm xR ol ok RMxRA
x|g(x,y)|dxdy
<C [ S SinatSiangaf o) P (8l) (-~ ~)dxdy
Rm xR k€7

5\ 17212
CH( ‘Si+k,j+lSi+k,j+lf| ) H H%(|g|)”q7
kl€Z P

2kl 2drds
fY * (Sivk jriSivkjrif) () T\g(X,Y)dey

RmMxRn
2[ +1 2k+l

where the operator %/ is as in Lemma 10. Using (2.28), Littlewood-Paley theorem and
Lemma 10, we have

1Gi;(Dllp <Clfllp,  p>2. (3.13)

Interpolating between (3.11) and (3.13), for some 8 > 2 and any fixed p € [2,3), we
can choose 0, € (0,1] such that §,8/2 > 1 and

=5
1Gi,j(F)llp < CB | flp-

This combing (3.10) with Minkowski’s inequality yields

: —ipdy p—jv§ —iudy,
ME < 3 BMTB T Y B o

ij>—2 i>-2,j<2
= —Jjv§, .=
X TR Y i),
i<—2,j>-2 ij<-2

<Cf1lp-
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This together with (3.9) implies
2
1) (D)l <ClIflp B (3.14)
Case 2 (y=1).For f € L”(R" xR") and h € U}, we have

TS Y D =] [ [Ths) [ A Q)= Ryl
x Q(ul7 V/)Jm(l/t/)Jn (V/)dGm (u')do',, (vl) %)
rs
<C”Q”LI(S"’*'xs"*l)HhHUI||fHoo

holds for every (x,y) € R™ x R". Thus for every (x,y) € R” x R",

My (f)(6,3)] = sup 1755 (6,9)] < Cl| |

which implies
1
M.y (£l < CIIf

Case 3 (1 <y < 2). For convenience, let [ (f) = f * 0;7/_1/1”%. By Cases 1 and 2,
we have

HF(f)HLPO(R’”XR”,LZ(R+XR*,r’ls*Idrds)) < CPHf”Pm pPo € [2aB)7

||F(f)||L°°(]Rm><R",L°°(R+XR*,r’l.\"ldrds)) < CP”fH“’

The real interpolation theorem for Lebesgue mixed norm spaces tells us that

1 ) g i ittty < Collf s P € [V BY/2).

This together with (3.9) completes the proof of Theorem 4. [
Finally, we will prove Theorem 3.

Proof. Case 1 (1 <y <2). Without loss of generality, we may assume that
|Al|t;, = 1. Then

Po,
ITESY (Al < M5, (Al < CIF -
By Theorem 4, we have

P.o,
IT8Y (f)llo < C|[fllsor for y=1.

and
TS (Nl <Clfllp, pelY,VYB/2), for 1<y<2.

By a standard duality argument, we get

1T 8 Ny <Clfllps pe(WB/(YB=2),7), for 1<y<2.
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Hence, the interpolation theorem tell us that

T (Hllp <ClIflps 11/p—1/21<1/2=2/(YB), for 1<y<2.

Case 2 (y>2). Note that Uy C Ay for y> 1. The rest result of Theorem 3
directly follows from Theorem 1. [J
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