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MULTIPLE SINGULAR INTEGRALS AND MAXIMAL OPERATORS

WITH MIXED HOMOGENEITY ALONG COMPOUND SURFACES

FENG LIU AND DAIQING ZHANG

(Communicated by J. Soria)

Abstract. In this paper we present the Lp mapping properties for a class of multiple singular
integral operators along polynomial compound surfaces provided that the integral kernels are
given by the radial function h ∈ Δγ (or h ∈ Uγ ) for some γ > 1 and the sphere function Ω ∈
F̃β (Sm−1×Sn−1) for some β > 0 , which is distinct from L(log+ L)2(Sm−1×Sn−1) . In addition,
the Lp bounds for the related maximal operators are also established. Some previous results are
greatly extended and improved.

1. Introduction

Let Rd (d = m orn), d � 2, be the d -dimensional Euclidean space and Sd−1

be the unit sphere in Rd equipped with the induced Lebesgue measure dσd . Let
αd,1,αd,2, . . . ,αd,d be fixed real numbers, αd, j � 1 ( j = 1, . . . ,d) . Define the func-

tion F : Rd × (0,∞) → R by F(x,ρd) = ∑d
j=1 x2

jρ
−2αd, j
d , x = (x1,x2, . . . ,xd) . It is clear

that for each fixed x∈Rd , the function F(x,ρd) is a decreasing function in ρd > 0. We
let ρd(x) denote the unique solution of the equation F(x,ρd) = 1. Fabes and Riviére
[12] showed that (Rd ,ρd) is a metric space, which is often called the mixed homogene-
ity space related to {αd, j}d

j=1 . For λ > 0, we let Ad,λ be the diagonal d × d matrix

Ad,λ = diag{λ αd,1 , . . . ,λ αd,d} . Let R+ := (0,∞) and φ : R+ → R+ , we denote Aφ
d (y)

by Aφ
d (y) = Ad,φ(ρd(y))y

′ for y ∈ Rd , where y′ = Ad,ρd(y)−1y ∈ Sd−1 .

The change of variables related to the spaces (Rd ,ρd) is given by the transforma-
tion

x1 = ραd,1
d cosθ1 · · ·cosθn−2 cosθn−1,

x2 = ραd,2
d cosθ1 · · ·cosθn−2 sinθn−1,

· · ·
xd−1 = ραd,d−1

d cosθ1 sinθ2,

xd = ραd,d
d sinθ1.
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Thus dx = ραd−1
d Jd(x′)dρddσd(x′) , where ραd−1

d Jd(x′) is the Jacobian of the above
transform and αd = ∑d

j=1 αd, j,Jd(x′) = ∑d
j=1 αd, j(x′j)2 . Obviously, Jd(x′) ∈C∞(Sd−1)

and there exists Md > 0 such that

1 � Jd(x′) � Md , ∀ x′ ∈ Sd−1.

It is easy to check that

ρd(x) = |x|, if αd,1 = αd,2 = . . . = αd,d .

Let Ω ∈ L1(Sm−1×Sn−1) satisfying the conditions

Ω(Am,sx,An,t y) = Ω(x,y), ∀ s, t > 0 and (x,y) ∈ Rm ×Rn, (1.1)
∫

Sm−1
Ω(u′, ·)Jm(u′)dσm(u′) =

∫
Sn−1

Ω(·,v′)Jn(v′)dσn(v′) = 0. (1.2)

The multiple singular integral operator with mixed homogeneity Th,Ω is defined by

Th,Ω( f )(x,y) := p.v.
∫∫

Rm×Rn

Ω(u,v)h(ρm(u),ρn(v))
ρm(u)αmρn(v)αn

f (x−u, y− v)dudv, (1.3)

where h ∈ Δ1 . Here Δγ (γ � 1) denote the set of all measurable functions h(r,s) on
R+×R+ satisfying the condition

‖h‖Δγ = sup
R1>0,R2>0

(
R−1

1 R−1
2

∫ R1

0

∫ R2

0
|h(r,s)|γdrds

)1/γ
< ∞.

It is obvious that Δγ1 � Δγ2 for γ1 > γ2 , and Δ∞ = L∞ .
For h = 1, we denote Th,Ω by T . For αm,i=αn, j=1 (i=1, 2, . . . ,m; j=1, 2, . . . ,n) ,

the operator T is the classical multiple singular integral operator denoted by T̃ , which
was first considered by Fefferman and Stein (see [14, 15]) and has been studied exten-
sively by many authors (see [11, 25, 26] for examples). In particular, Ying [26] (also
see [25] for the multiple singular integrals along polynomial curves) proved that T̃ is
bounded on Lp(Rm ×Rn) for 2β/(2β − 1) < p < 2β and β > 1, provided that Ω
satisfies the following condition:

sup
(ξ ′,η ′)∈Sm−1×Sn−1

∫∫
Sm−1×Sn−1

|Ω(u′,v′)|{G(ξ ′,η ′)}β dσm(u′)dσn(v′) < ∞, (1.4)

where

G(ξ ′,η ′) = log
1

|ξ ′ ·u′| + log
1

|η ′ · v′| + log
1

|ξ ′ ·u′| · log
1

|η ′ · v′| .

It should be pointed out that the condition (1.4) for one parameter case was origi-
nally defined in Walsh’s paper [23] and developed by Grafakos and Stefanov [16] (also
see [6] for its variant). For the sake of simplicity, we denote that for β > 0,

Fβ (Sm−1×Sn−1) = {Ω ∈ L1(Sm−1×Sn−1) : Ω satisfies (1.4)}.
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We remark that the variant of Fβ (Sm−1 × Sn−1) was introduced and studied by Al-
Salman in [4]. Employing the ideas in [16], one can verify that Fβ1

(Sm−1 × Sn−1) �
Fβ2

(Sm−1×Sn−1) for β1 > β2 , and

⋂
β>1

Fβ (Sm−1×Sn−1) � L(log+ L)2(Sm−1×Sn−1) � L log+ L(Sm−1×Sn−1)

�
⋃

β>1

Fβ (Sm−1×Sn−1).

For αm,i � 1 and αn, j � 1 (i = 1, 2, . . . ,m; j = 1, 2, . . . ,n) , Chen and Le [9] showed
that if Ω ∈ L(log+ L)2(Sm−1×Sn−1) , then T is bounded on Lp(Rm ×Rn) for 1 < p <
∞ . Subsequently, Lan et al. [17] extended the result of [9] to the multiple singular
integrals along certain compound curves. Recently, Liu and Wu [19] proved that T
(in more general form) is bounded on Lp(Rm ×Rn) for 2β/(2β − 1) < p < 2β , if
Ω ∈ Fβ (Sm−1×Sn−1) for some β > 1.

For αm,i = αn, j = 1 (i = 1, 2, . . . ,m; j = 1, 2, . . . ,n) , we denote Th,Ω by Th .
Duoandikoetxea [11] obtained the Lp (1 < p < ∞) boundedness of Th under the
weaker condition Ω ∈ Lq(Sm−1 × Sn−1) with q > 1 and h ∈ L∞(R+ ×R+) . Subse-
quently, the result of [11] was improved by many authors (see [5, 8, 21, 24] et al.).
In particular, Al-Salman et al. [5] showed that if Ω ∈ L(log+ L)2(Sm−1 × Sn−1) and
h ∈ Δγ for some γ > 1, then Th is bounded on Lp(Rm ×Rn) for p with satisfying
|1/p− 1/2|< min{1/2,1/γ ′} . Recently, Ma et al. [21] introduced the following size
condition:

sup
(ξ ′,η ′)∈Sm−1×Sn−1

∫∫
(Sm−1×Sn−1)2

|Ω(u′,v′)Ω(θ ,w)|

×{Gξ ′,η ′(θ ,w)}β dσm(u′)dσn(v′)dσm(θ )dσn(w) < ∞,
(1.5)

where

Gξ ′,η ′(θ ,w)= log
1

|〈u′ −θ ,ξ ′〉| log
1

|〈v′ −w,η ′〉|+ log
1

|〈u′ −θ ,ξ ′〉|+ log
1

|〈v′ −w,η ′〉| .

For simplicity, we set

F̃β (Sm−1×Sn−1) := {Ω ∈ L1(Sm−1×Sn−1) : Ω satisfies (1.5)}, ∀ β > 0.

Ma et al. [21] showed that the following result.

THEOREM A. Let Ω be homogeneous of degree zero, integrable on Sm−1×Sn−1

and satisfy ∫
Sm−1

Ω(x′,y′)dσm(x′) =
∫

Sn−1
Ω(x′,y′)dσn(y′) = 0.

Let PN1 , PN2 be two real polynomials on R with PN1(0) = PN2(0) = 0 and deg(PNi) =
Ni (i = 1,2) . Suppose that h ∈ Δγ for some γ > 1 and Ω ∈ F̃β (Sm−1 × Sn−1) with



502 F. LIU AND D. ZHANG

β > max{2,γ ′} . Then the multiple singular integral operators along polynomial curves
T̃h,P defined by

T̃h,P( f )(x,y) = p.v.
∫∫

Rm×Rn

Ω(u,v)h(|u|, |v|)
|u|m|v|n f (x−PN1(|u|)u′,y−PN2(|v|)v′)dudv

is bounded on Lp(Rm×Rn) for p with satisfying |1/p−1/2|< min{1/2,1/γ ′}−1/β .
The bound is independent of the coefficients of PN1 and PN2 , but depends on N1 and
N2 .

REMARK 1. We remark that the condition (1.5) for one parameter was originally
introduced by Fan and Sato in more general form in [15], and it was introduced by Ma
et al. in more general form in [21]. It follows from [21, Proposition 2.1] that Fβ (S1×
S1) ⊂ F̃β (S1 × S1) . When m > 2 or n > 2, the relation between Fβ (Sm−1 × Sn−1)
and F̃β (Sm−1×Sn−1) remains to be open.

A natural question, which arises from the above results, is the following:

QUESTION. For the general case αm,i � 1(i = 1, . . . ,m) and αn, j � 1( j = 1, . . . ,n) ,
is Th,Ω bounded on Lp(Rm ×Rn) under the same assumptions on Ω and h as in The-
orem A?

In this paper, we will give a affirmative answer to this question by treating a family
of operators, which is broader than Th,Ω . Precise, let PN1 and PN2 be two non-negative
polynomials on R with PNi(0) = 0 and deg(PNi) = Ni (i = 1,2) . For suitable functions
ϕ , ψ : R+ → R+ and h defined on R+ ×R+ , we define the multiple singular integral
operators TP,ϕ,ψ

h,Ω along surfaces S(PN1(ϕ),PN2(ψ)) by

TP,ϕ,ψ
h,Ω ( f )(x,y)=p.v.

∫∫
Rm×Rn

Ω(u,v)h(ρm(u),ρn(v))
ρm(u)αmρn(v)αn

f
(
x−A

PN1(ϕ)
m (u),y−A

PN2 (ψ)
n (v)

)
dudv,

where

S(PN1(ϕ),PN2(ψ)) :=
{(

A
PN1

(ϕ)
m (u),A

PN2
(ψ)

n (v)
)

: (u,v) ∈ Rm ×Rn}.

Obviously, Th,Ω is the special case of TP,ϕ,ψ
h,Ω for PNi(s) = ϕ(s) = ψ(s) = s (i =

1, 2) . Also, in the special case αm,i = αn, j = 1 (i = 1, . . . ,m; j = 1, . . . ,n) ,

S(PN1(ϕ),PN2(ψ)) =
{
(PN1(ϕ(|u|))u′, PN2(ψ(|v|))v′) : (u,v) ∈ Rm ×Rn}.

Moreover, for ϕ(s) = ψ(s) = s and αm,i = αn, j = 1 (i = 1, . . . ,m; j = 1, . . . ,n) , that is,

S(PN1(ϕ),PN2(ψ)) =
{
(PN1(|u|)u′, PN2(|v|)v′) : (u,v) ∈ Rm ×Rn}.

In this paper we shall establish the following results.
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THEOREM 1. Let PN1 and PN2 be two real polynomials on R with PNi(0) = 0
and PNi(t) > 0 for t 
= 0 , where Ni is the degree of PNi (i = 1,2) , and let ϕ , ψ ∈ F ,
where F is the set of functions φ satisfying the following properties:

(i) φ : R+ →R+ is continuous strictly increasing and φ ∈C 1(R+) satisfying that
φ ′ is monotonous;

(ii) there exist constants Cφ , cφ > 0 such that tφ ′(t) �Cφ φ(t) and φ(2t) � cφ φ(t)
for all t > 0 .

Suppose that h ∈ Δγ for some γ > 1 and Ω ∈ F̃β (Sm−1 × Sn−1) for some β >

max{γ ′,2} with satisfying (1.1)–(1.2) . Then TP,ϕ,ψ
h,Ω is bounded on Lp(Rm ×Rn) for

p with satisfying |1/p−1/2|< min{1/γ ′,1/2}−1/β . The bounds are independent of
the coefficients of PN1 and PN2 , but depend on ϕ , ψ , N1, N2, m, n and β .

THEOREM 2. Let PN1 , PN2 , ϕ and ψ be as in Theorem 1 . Suppose that h ∈
Δγ for some γ > 1 , Ω satisfies (1.1)–(1.2) and Ω ∈ Fβ (S1 × S1) for some β >

max{γ ′,2} . Then TP,ϕ,ψ
h,Ω is bounded on Lp(R2 ×R2) for p with satisfying |1/p−

1/2| < min{1/γ ′,1/2}− 1/β . The bounds are independent of the coefficients of PN1

and PN2 , but depend on ϕ , ψ , N1, N2 and β .

REMARK 2. Clearly, Theorem 2 directly follows from Theorem 1 and Remark 1.
We remark that Theorem 1.1 extends Theorem A to the mixed homogeneity setting,
even for the special case ϕ(s) = ψ(s) = s . It should be pointed out that our results are
new even in the case αm,i = αn, j = 1 (i = 1, . . . ,m; j = 1, . . . ,n) , i.e., the Euclidean
setting.

REMARK 3. For any φ ∈ F , there exists a constant Bφ > 1 such that φ(2r) �
Bφ φ(r) for all r > 0 (see [1, 3, 19]). We remark that there are some model examples
in the class F , such as tα (α > 0), tα(ln(1+ t))β (α,β > 0), t ln ln(e+ t) , real-valued
polynomials P on R with positive coefficients and P(0) = 0 (see [1]).

In Theorem 1 or 2, for γ � 2, the range of β is [2,∞) and the range of p is
(β ′,β ) , but for 1 < γ < 2, the range of β is [γ ′,∞) and the range of p is shrunk to
|1/p−1/2|< 1/γ ′ −1/β . It is natural to ask the following question.

QUESTION. Can the range of β and p in Theorems 1-2 be enlarged for the case
1 < γ < 2?

The next aim of this paper is to address the above question by imposing some more
restrictive conditions on h . Precisely, for 1 � γ � ∞ , let Uγ be the set of all measurable
functions h on R+ ×R+ satisfying

‖h‖Uγ =
(∫ ∞

0

∫ ∞

0
|h(r,s)|γ drds

rs

)1/γ
< ∞. (1.6)

Obviously, Uγ � Δγ for 0 < γ < ∞ and U∞ = Δ∞ = L∞ . The second one of our main
results can be formulated as follows.
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THEOREM 3. Let PN1 , PN2 , ϕ and ψ be as in Theorem 1 . Suppose that h ∈ Uγ
for some γ � 1 , Ω satisfies (1.1)–(1.2) and Ω ∈ F̃β (Sm−1 ×Sn−1) for some β > 2 .

Then TP,ϕ,ψ
h,Ω is bounded on Lp(Rm ×Rn) if one of the following conditions holds:

(i) γ = 1, p = ∞;
(ii) γ > 1 , p satisfies |1/p−1/2|< 1/2−min{2/γ ′,1}/β .
The bounds are independent of the coefficients of PN1 and PN2 , but depend on

ϕ , ψ , N1, N2, m, n and β .

REMARK 4. Obviously, for γ > 2, the ranges of β and p in Theorem 3 are coin-
cidence with ones of Theorem 1. However, for 1 < γ < 2, the range of p in Theorem 3
is larger than one in Theorem 1 since 1/γ ′ −1/β < 1/2−2/(γ ′β ) , and the range of β
is extended to (2,∞] . Meanwhile, we also obtain the result at the endpoint case γ = 1.
Therefore, it is worth to impose the above restriction on h . It is not clear whether the
restriction on h can be removed, which is interesting.

To prove Theorem 3, we need to establish the following Lp -boundedness for the

related maximal operator M(γ)
P,ϕ,ψ by

M(γ)
P,ϕ,ψ ( f )(x,y) = sup

‖h‖Uγ �1
|TP,ϕ,ψ

h,Ω ( f )(x,y)|,

which is interesting itself. When αm,i = αn, j = 1 (i = 1,2, . . . ,m; j = 1,2, . . . ,n) ,
PN1(t) = PN2(t) = ϕ(t) = ψ(t) = t , we shall denote M(γ)

P,ϕ,ψ by M(γ) , Historically, in

1999, Ding [10] proved that the operator M(2) is bounded on L2(Rm ×Rn) provided
that Ω ∈ L(log+ L)2(Sm−1 × Sn−1) . This result was greatly improved by Al-Salman
in [2]. In [2], Al-Salman obtained the Lp boundedness of M(2) for 2 � p < ∞ under
the weaker condition that Ω ∈ L(log+ L)(Sm−1 ×Sn−1) . Moreover, Al-Salman showed
that the condition Ω ∈ L(log+ L)(Sm−1×Sn−1) cannot be replaced by any condition of
the form Ω ∈ L(log+ L)1−ε (Sm−1 × Sn−1),ε > 0. Especially, Al-Qassem and Pan [7]
proved that the operator M(γ) is bounded on Lp(Rm ×Rn) for γ ′ � p < ∞ (for γ = 1,

p = ∞) provided that Ω ∈ L(log+ L)2/γ
′
(Sm−1×Sn−1) and 1 � γ � 2 (also see [18] for

the non-isotropic case).

For the operator M(γ)
P,ϕ,ψ , we will prove the following result.

THEOREM 4. Let PN1 , PN2 , ϕ and ψ be as in Theorem 1 . Suppose that Ω satis-

fies (1.1)–(1.2) and Ω ∈ F̃β (Sm−1×Sn−1) for some β > 2 . Then M(γ)
P,ϕ,ψ is bounded

on Lp(Rm×Rn) for 1 < γ � 2 with γ ′ � p < γ ′β/2 , and it is bounded on L∞(Rm×Rn)
for γ = 1 . The bounds are independent of the coefficients of PN1 and PN2 , but depend
on ϕ , ψ , N1, N2, m, n and β .

By Theorems 3–4 and Remark 1, we have the following results.

THEOREM 5. Let PN1 , PN2 , ϕ and ψ be as in Theorem 1 and h ∈ Uγ for some
γ � 1 . Suppose that Ω satisfies (1.1)–(1.2) and Ω ∈ Fβ (S1 × S1) for β > 2 . Then
TP
h,Ω is bounded on Lp(R2×R2) if one of the following conditions holds:
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(i) γ = 1 , p = ∞;
(ii) γ > 1 , p satisfies |1/p−1/2|< 1/2−min{2/γ ′,1}/β .
The bounds are independent of the coefficients of PN1 and PN2 , but depend on

ϕ , ψ , N1, N2 and β .

THEOREM 6. Let PN1 , PN2 , ϕ and ψ be as in Theorem 1 . Suppose that Ω satis-

fies (1.1)–(1.2) and Ω ∈ Fβ (S1 × S1) for some β > 2 . Then M(γ)
P,ϕ,ψ is bounded on

Lp(R2 ×R2) for 1 < γ � 2 with γ ′ � p < γ ′β/2 , and it is bounded on L∞(R2 ×R2)
for γ = 1 . The bound is independent of the coefficients of PN1 and PN2 , but depends on
ϕ , ψ , N1, N2 and β .

REMARK 5. We remark that it is still an open problem whether the Lp -boun-

dedness of M(γ)
P,ϕ,ψ holds for 2 < γ < ∞ , even for the case PN1(t) = PN2(t) = ϕ(t) =

ψ(t) = t . Also, by Remark 1, all of our results are new, even in the special case:
PN1(t) = PN2(t) = ϕ(t) = ψ(t) = t , moreover, even in the Euclidean setting.

REMARK 6. It should be pointed out that all of main results are the multiple-
parameter case of the results in [20].

The rest of this paper is organized as follows. In Section 2 we will recall some
notation and establishing some preliminary lemmas. The proofs of main results will
be proved in Section 3. We remark that some ideas of our methods are taken from
[7, 11, 20], but our methods and technique are more delicate and complex than those
used in [7, 11, 20]. Throughout this paper, let p′ denote the conjugate index of p ; that
is, 1/p+1/p′ = 1 the letter C or c , sometimes with additional parameters, will stand
for positive constants, not necessarily the same one at each occurrence but independent
of the essential variables. We also set ∑ j∈ /0 a j = 0 and ∏ j∈ /0 a j = 1.

2. Some notations and auxiliary lemmas

For given positive polynomials PN1(t) = ∑N1
i=1 βit i , PN2(t) = ∑N2

i=1 γit i and l ∈
{1,2, . . . ,m} , k ∈ {1,2, . . . ,n} , we set (PN1(t))

αm,l := ∑
N1αm,l
i=1 ai,lt i and (PN2(t))

αn,k :=

∑
N2αn,k
j=1 b j,kt j . Then for x, ξ ∈ Rm; y, η ∈ Rn and ϕ , ψ ∈ F , we can write

A
PN1

(ϕ)
m (x) ·ξ =

m

∑
l=1

PN1(ϕ(ρm(x)))αm,l xl
′ ·ξl =

m

∑
l=1

N1αm,l

∑
i=1

ai,lϕ(ρm(x))ixl
′ ·ξl,

A
PN2 (ψ)
n (y) ·η =

n

∑
k=1

PN2(ψ(ρn(y)))αn,k y′k ·ηk =
n

∑
k=1

N2αn,k

∑
j=1

b j,kψ(ρn(y)) jy′k ·ηk.

We denote N1 := max{N1αm,l : 1 � l � m} , N2 := max{N2αn,k : 1 � k � n} and set
ai,l = 0 whenever i > N1αm,l ; b j,k = 0 whenever j > N2αn,k . Thus

A
PN1

(ϕ)
m (x) ·ξ =

m

∑
l=1

N1αm,l

∑
i=1

ai,lϕ(ρm(x))ixl
′ ·ξl =

N1

∑
i=1

(Li(ξ ) · x′)ϕ(ρm(x))i,
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where Li(ξ ) = (ai,1ξ1,ai,2ξ2, . . . ,ai,mξm) . Similarly,

A
PN2 (ψ)
n (y) ·η =

N2

∑
j=1

(I j(η) · y′)ψ(ρn(y)) j,

where I j(η)= (b j,1η1,b j,2η2, . . . ,b j,nηn). For any μ ∈{0,1, . . . ,N1} and ν ∈{0,1, . . . ,
N2} , we set

Qμ(x) =
( μ

∑
i=1

ai,1x
′
1ϕ(ρm(x))i, . . . ,

μ

∑
i=1

ai,mx′mϕ(ρm(x))i
)
,

Rν(y) =
( ν

∑
j=1

b j,1y
′
1ψ(ρn(y)) j, . . . ,

ν

∑
j=1

b j,ny
′
nψ(ρn(y)) j

)
.

Hence,

Qμ(x) ·ξ =
μ

∑
i=1

(Li(ξ ) · x′)ϕ(ρm(x))i, 0 � μ � N1;

Rν(y) ·η =
ν

∑
j=1

(I j(η) · y′)ψ(ρn(y)) j, 0 � ν � N2.

For any r, s > 0, we define the measures {σ μ,ν
r,s } as follows.

σ̂ μ,ν
r,s (ξ ,η) =

∫∫
Sm−1×Sn−1

exp
(−2π i(ξ ·Qμ(Am,ru

′)+ η ·Rν(An,sv
′))

)
×Ω(u′,v′)Jm(u′)Jn(v′)dσm(u′)dσn(v′);

Now we introduce the following result, which will paly key roles in the proofs of
our main results.

LEMMA 1. ([19, Lemma 2.5]) Suppose ϕ , ψ ∈ F . Then for μ ∈ {1,2, . . . ,N1} ,
ν ∈ {1,2, . . . ,N2} and r > 0 ,

∫ r

r/2
exp(−iξ ·Qμ(Am,ρmx′))

dρm

ρm
� C(ϕ)|ϕ(r)μLμ(ξ ) · x′|−1/μ ;

∫ r

r/2
exp(−iη ·Rν(An,ρny

′))
dρn

ρn
� C(ψ)|ψ(r)ν Iν(η) · y′|−1/ν .

The constant C(ϕ) is independent of the coefficients of PN1 , but depends on ϕ ; The
constant C(ψ) is independent of the coefficients of PN2 , but depends on ψ .

Applying Lemma 1 and combining with the similar arguments as in getting esti-
mates of measures in [25, 26] we have
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LEMMA 2. Suppose Ω ∈ F̃β (Sm−1×Sn−1) for some β > 0 and satisfies (1.1)–
(1.2) . Then for μ ∈ {1,2, . . . ,N1}, ν ∈ {1,2, . . . ,N2} , k, l ∈Z and (ξ ,η)∈Rm×Rn ,
there exists C > 0 such that

(i)

sup
r,s>0

|σ̂ μ,ν
r,s (ξ ,η)| � C; (2.1)

(ii)

∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)− σ̂ μ−1,ν
r,s (ξ ,η)|2 drds

rs
� C|ϕ(2k+1)μLμ(ξ )|2; (2.2)

∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)− σ̂ μ,ν−1
r,s (ξ ,η)|2 drds

rs
� C|ψ(2l+1)ν Iν(η)|2; (2.3)

(iii) for |ψ(2l+1)ν Iν(η)| > 1 , then

∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)− σ̂ μ−1,ν
r,s (ξ ,η)|2 drds

rs
� C|ϕ(2k+1)μLμ(ξ )|2(log |ψ(2l+1)ν Iν(η)|)−β ;

(2.4)

(iv) for |ϕ(2k+1)νLμ(ξ )| > 1 , then

∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)− σ̂ μ,ν−1
r,s (ξ ,η)|2 drds

rs
� C|ψ(2l+1)ν Iν(η)|2(log |ϕ(2k+1)μLμ(ξ )|)−β ;

(2.5)

(v) for |ϕ(2k+1)μLμ(ξ )| > 1 , then

∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)|2 drds
rs

� C(log |ϕ(2k+1)μLμ(ξ )|)−β ; (2.6)

for |ψ(2l+1)ν Iν(η)| > 1 , then

∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)|2 drds
rs

� C(log |ψ(2l+1)ν Iν(η)|)−β ; (2.7)

for |ϕ(2k+1)μLμ(ξ )| > 1 and |ψ(2l+1)ν Iν(η)| > 1 , then

∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)|2 drds
rs

� C(log |ϕ(2k+1)μLμ(ξ )|)−β (log |ψ(2l+1)ν Iν(η)|)−β ;

(2.8)
(vi)

∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)− σ̂ μ,ν−1
r,s (ξ ,η)− σ̂ μ−1,ν

r,s (ξ ,η)+ ̂σ μ−1,ν−1
r,s (ξ ,η)|2 drds

rs
� Cmin{|ϕ(2k+1)μLμ(ξ )|2, |ψ(2l+1)ν Iν(η)|2, |ϕ(2k+1)μLμ(ξ )|2|ψ(2l+1)ν Iν(η)|2}.

(2.9)
The constant C is independent of the coefficients of PN1 and PN2 .
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Proof. (2.1) is obvious. Let

Hk,μ(u′,θ ,ξ ) =
∫ 2k+1

2k
exp

(
−2π i

μ

∑
j=1

Lj(ξ ) · (u′ −θ )ϕ(r) j
)dr

r
;

Jl,ν (v′,ω ,η) =
∫ 2l+1

2l
exp

(
−2π i

ν

∑
k=1

Ik(η) · (v′ −ω)ψ(s)k
)ds

s
.

By Lemma 1, we have

|Hk,μ(u′,θ ,ξ )| � Cmin{1, |ϕ(2k+1)μLμ(ξ ) · (u′ −θ )|−1/μ}. (2.10)

When |ϕ(2k+1)μLμ(ξ )| > 1, since t
(logt)β is increasing in (eβ ,∞) , we have

|Hk,μ(u′,θ ,ξ )| � C
(logeβ 21/μ |(Lμ(ξ ))′ · (u′ −θ )|−1/μ)β

(log |ϕ(2k+1)μLμ(ξ )|)β . (2.11)

Similarly, when |ψ(2l+1)νLν(η)| > 1, we have

|Jl,ν(v′,ω ,η)| � C
(logeβ 21/ν |(Iν(η))′ · (v′ −ω)|−1/ν)β

(log |ψ(2�+1)ν Iν(η)|)β . (2.12)

By the definition of σ μ,ν
r,s , we have

|σ̂ μ,ν
r,s (ξ ,η)− σ̂ μ−1,ν

r,s (ξ ,η)|
=

∣∣∣∫∫
Sm−1×Sn−1

(exp(−2π iξ ·Qμ(Am,ru
′))− exp(−2π iξ ·Qμ−1(Am,ru

′)))

× exp(−2π iη ·Rν(An,sv′))Ω(u′,v′)Jm(u′)Jn(v′)dσm(u′)dσn(v′)
∣∣∣

� C|ϕ(r)μLμ(ξ )|.

(2.13)

This together with the fact that ϕ is increasing in (0,∞) implies (2.2) . Similarly, (2.3)
holds. On the other hand,

|σ̂ μ,ν
r,s (ξ ,η)− σ̂ μ−1,ν

r,s (ξ ,η)|2
=

∣∣∣∫∫
Sm−1×Sn−1

(exp(−2π iLμ(ξ ) ·u′ϕ(r)μ)−1)exp(−2π iξ ·Qμ−1(Am,ru
′))

× exp(−2π iη ·Rν(An,sv′))Ω(u′,v′)Jm(u′)Jn(v′)dσm(u′)dσn(v′)
∣∣∣2

=
∣∣∣∫∫

(Sm−1×Sn−1)2
(exp(−2π iLμ(ξ ) ·u′ϕ(r)μ)−1)(exp(2π iLμ(ξ ) ·θϕ(r)μ)−1)

×exp
(
−2π i

μ−1

∑
j=1

Lj(ξ ) · (u′ −θ )ϕ(r) j
)

exp
(
−2π i

ν

∑
k=1

Ik(η) · (v′ −ω)ψ(s)k
)

×Ω(u′,v′)Ω(θ ,ω)Jm(u′)Jn(v′)Jm(θ )Jn(ω)dσm(u′)dσn(v′)dσm(θ )dσn(ω).
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Then

∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)− σ̂ μ−1,ν
r,s (ξ ,η)|2 drds

rs

� C|ϕ(2k+1)μLμ(ξ )|2
∫∫

(Sm−1×Sn−1)2
|Jl,ν(v′,w,η)|

×|Ω(u′,v′)Ω(θ ,ω)|dσm(u′)dσn(v′)dσm(θ )dσn(ω).

Combining (2.12) with the fact that Ω ∈ F̃β (Sm−1 × Sn−1) implies (2.4) . Similarly,
(2.5) holds. On the other hand,

|σ̂ μ,ν
r,s (ξ ,η)|2

=
∣∣∣∫∫

Sm−1×Sn−1
exp(−2π i(ξ ·Qμ(Am,ru

′)+ η ·Rν(An,sv
′)))

×Ω(u′,v′)Jm(u′)Jn(v′)dσm(u′)dσn(v′)
∣∣∣2

=
∫∫

(Sm−1×Sn−1)2
exp

(
−2π i

μ

∑
j=1

Lj(ξ ) · (u′ −θ )ϕ(r) j
)

Ω(u′,v′)Ω(θ ,ω)Jm(θ )Jn(ω)

× exp
(
−2π i

ν
∑

k=1
Ik(η) · (v′ −ω)ψ(s)k

)
Jm(u′)Jn(v′)dσm(u′)dσn(v′)dσm(θ )dσn(ω).

Thus we have

∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)|2 drds
rs

�
∫∫

(Sm−1×Sn−1)2
|Hk,μ(u′,θ ,ξ )||Jl,ν(v′,ω ,η)||Ω(u′,v′)Ω(θ ,ω)|

×Jm(u′)Jn(v′)Jm(θ )Jn(ω)dσm(u′)dσn(v′)dσm(θ )dσn(ω).

Combining (2.11)–(2.12) with the fact that Ω ∈ F̃β (Sm−1 ×Sn−1) yields (v). (vi) fol-
lows from

|σ̂ μ,ν
r,s (ξ ,η)− σ̂ μ,ν−1

r,s (ξ ,η)− σ̂ μ−1,ν
r,s (ξ ,η)+ ̂σ μ−1,ν−1

r,s (ξ ,η)|

=
∣∣∣∫∫

Sm−1×Sn−1
exp(−2π i(ξ ·Qμ−1(Am,ru

′)+ η ·Rν−1(An,sv
′)))Ω(u′,v′)Jm(u′)Jn(v′)

×(exp(−2π iLμ(ξ ) ·u′ϕ(r)μ)−1)(exp(−2π iLμ(ξ ) ·θϕ(r)μ)−1)dσm(u′)dσn(v′)
∣∣∣

� C|ϕ(r)μLμ(ξ )||ψ(s)ν Iν(η)|.

This proves Lemma 2. �

For any k, l ∈ Z and μ ∈ {0,1, . . . ,N1}, ν ∈ {0,1, . . . ,N2} , we define the mea-
sures {τμ,ν

k,l } and the related maximal operators τ∗μ,ν as follows:

τ̂ μ,ν
k,l (ξ ,η) =

∫∫
�k,l

Ω(u,v)h(ρm(u),ρn(v))
ρm(u)αmρn(v)αn

exp(−2π i(ξ ·Qμ(x)+ η ·Rν(y)))dudv,
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τ∗μ,ν ( f )(x,y) = sup
κ ,�∈Z

∣∣|τμ,ν
κ ,� | ∗ f (x,y)

∣∣,
where �k,l = {(u,v) ∈ Rm×Rn : 2k � ρm(u) < 2k+1,2l � ρn(v) < 2l+1} and |τμ,ν

κ ,� | is

defined in the same way as τμ,ν
κ ,� , but with h and Ω replaced by |h| and |Ω| , respec-

tively. One can easily check that for any μ ∈ {0,1, . . . ,N1} and ν ∈ {0,1, . . . ,N2} ,

τ̂0,ν
κ ,� (ξ ,η) = τ̂ μ,0

κ ,� (ξ ,η) = 0 (2.14)

and
TP,ϕ,ψ
h,Ω ( f )(x,y) = ∑

k,l∈Z
τN1,N2
k,l ∗ f (x,y). (2.15)

LEMMA 3. Let h ∈ Δγ for some γ > 1 and γ̃ = max{2,γ ′} . Suppose that Ω
satisfies (1.1)–(1.2) and Ω ∈ F̃β (Sm−1 × Sn−1) for some β > 0 . Then for μ ∈
{1,2, . . . ,N1}, ν ∈ {1,2, . . . ,N2} and k, l ∈ Z , there exists a constant C > 0 such
that

(i)

sup
k,l∈Z

|τ̂ μ,ν
k,l (ξ ,η)| � C; (2.16)

(ii)

|τ̂ μ,ν
k,l (ξ ,η)− τ̂ μ−1,ν

k,l (ξ ,η)| � C|ϕ(2k+1)μLμ(ξ )|; (2.17)

|τ̂ μ,ν
k,l (ξ ,η)− τ̂ μ,ν−1

k,l (ξ ,η)| � C|ψ(2�+1)ν Iν(η)|; (2.18)

(iii) for |ϕ(2k+1)μLμ(ξ )| > 1 , then

|τ̂ μ,ν
k,l (ξ ,η)− τ̂ μ,ν−1

k,l (ξ ,η)| � C|ψ(2l+1)ν Iν(η)|(log |ϕ(2k+1)μLμ(ξ )|)−β/γ̃ ; (2.19)

(iv) for |ψ(2l+1)ν Iν(η)| > 1 , then

|τ̂ μ,ν
k,l (ξ ,η)− τ̂ μ−1,ν

k,l (ξ ,η)| � C|ϕ(2k+1)μLμ(ξ )|(log |ψ(2l+1)ν Iν(η)|)−β/γ̃ ; (2.20)

(v) for |ϕ(2k+1)μLμ(ξ )| > 1 , then

|τ̂ μ,ν
k,l (ξ ,η)| � C(log |ϕ(2k+1)μLμ(ξ )|)−β/γ̃ ; (2.21)

for |ψ(2l+1)ν Iν(η)| > 1 , then

|τ̂ μ,ν
k,l (ξ ,η)| � C(log |ψ(2l+1)ν Iν(η)|)−β/γ̃ ; (2.22)

for |ϕ(2k+1)μLμ(ξ )| > 1 and |ψ(2l+1)ν Iν(η)| > 1 , then

|τ̂ μ,ν
k,l (ξ ,η)| � C(log |ϕ(2k+1)μLμ(ξ )|)−β/γ̃(log |ψ(2l+1)ν Iν(η)|)−β/γ̃ ; (2.23)
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(vi)

|τ̂ μ,ν
k,l (ξ ,η)− τ̂ μ,ν−1

k,l (ξ ,η)− τ̂ μ−1,ν
k,l (ξ ,η)+ ̂τμ−1,ν−1

k,l (ξ ,η)|
� Cmin{|ϕ(2k+1)μLμ(ξ )|, |ψ(2l+1)ν Iν(η)|, |ϕ(2k+1)μLμ(ξ )||ψ(2l+1)ν Iν(η)|}.

(2.24)
The constant C is independent of the coefficients of PN1 and PN2 .

Proof. By a change of variable and (2.1) we have

|τ̂ μ,ν
k,l (ξ ,η)| =

∣∣∣∫ 2l+1

2l

∫ 2k+1

2k

∫∫
Sm−1×Sn−1 exp(−2π i(ξ ·Qμ(Am,ru′)+ η ·Rν(An,sv′)))

×Ω(u′,v′)Jm(u′)Jn(v′)dσm(u′)dσn(v′)h(r,s)
drds
rs

∣∣∣
� C‖h‖Δγ

(∫ 2l+1

2l

∫ 2k+1

2k |σ̂ μ,ν
r,s (ξ ,η)|γ ′ drds

rs

)1/γ ′

� C
(∫ 2l+1

2l

∫ 2k+1

2k |σ̂ μ,ν
r,s (ξ ,η)|2 drds

rs

)1/γ̃
,

which combining (2.1) with (2.6)-(2.8) implies (i) and (v). On the other hand, by a
change of variable and Hölder’s inequality, we get form (2.13) that

|τ̂ μ,ν
k,l (ξ ,η)− τ̂ μ−1,ν

k,l (ξ ,η)|

=
∣∣∣∫∫

Δk,l

(exp(−2π iξ ·Qμ(u))− exp(−2π iξ ·Qμ−1(u)))exp(−2π iη ·Rν(v))

× h(ρm(u),ρn(v))Ω(u′,v′)
ρm(u)αmρn(v)αn

dudv
∣∣∣

=
∣∣∣∫ 2l+1

2l

∫ 2k+1

2k

∫∫
Sm−1×Sn−1

(exp(−2π iξ ·Qμ(Am,ru
′))− exp(−2π iξ ·Qμ−1(Am,ru

′)))

× exp(−2π iη ·Rν(An,sv
′))Ω(u′,v′)Jm(u′)Jn(v′)dσm(u′)dσn(v′)h(r,s)

drds
rs

∣∣∣
=

∣∣∣∫ 2l+1

2l

∫ 2k+1

2k
(σ̂ μ,ν

r,s (ξ ,η)− σ̂ μ−1,ν
r,s (ξ ,η))h(r,s)

drds
rs

∣∣∣
� C‖h‖Δγ

(∫ 2l+1

2l

∫ 2k+1

2k |σ̂ μ,ν
r,s (ξ ,η)− σ̂ μ−1,ν

r,s (ξ ,η)|γ ′ drds
rs

)1/γ ′

� C|ϕ(2k+1)μLμ(ξ )|max{1−2/γ ′,0}
(∫ 2l+1

2l

∫ 2k+1

2k
|σ̂ μ,ν

r,s (ξ ,η)− σ̂ μ−1,ν
r,s (ξ ,η)|2 drds

rs

)1/γ̃
.

This together with (2.2) and (2.4) implies (2.17) and (2.20). Similarly, (2.18) and (2.19)
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hold. (2.24) follows from the inequality

|τ̂ μ,ν
k,l (ξ ,η)− τ̂ μ,ν−1

k,l (ξ ,η)− τ̂ μ−1,ν
k,l (ξ ,η)+ ̂τμ−1,ν−1

k,l (ξ ,η)|

=
∣∣∣∫∫

Sm−1×Sn−1

∫ 2l+1

2l

∫ 2k+1

2k
exp(−2π i(ξ ·Qμ−1(Am,ru

′)+ η ·Rν−1(An,sv
′)))

×(exp(−2π iLμ(ξ ) ·u′ϕ(r)μ)−1)(exp(−2π iIν(η) · v′ψ(s)ν )−1)h(r,s)
drds
rs

×Ω(u′,v′)Jm(u′)Jn(v′)dσm(u′)dσn(v′)
∣∣∣

� C
∫∫

Sm−1×Sn−1

∫ 2l+1

2l

∫ 2k+1

2k
|exp(−2π iLμ(ξ ) ·u′ϕ(r)μ)−1|

×|exp(−2π iIν(η) · v′ψ(s)ν )−1||h(r,s)|drds
rs

|Ω(u′,v′)|dσm(u′)dσn(v′).

This completes the proof of Lemma 3. �

LEMMA 4. ([19, Lemma 2.2]) Let P(t) = (P1(t),P2(t), . . . ,Pd(t)) with Pi (i =
1, . . . ,d) being real polynomials defined on R+ and φ ∈ F . Then the maximal function
MP,φ ( f )(x) defined by

MP,φ ( f )(x) = sup
r>0

∫ 2r

r
f (x−P(φ(t)))

dt
t

is bounded on Lp(Rd) for 1 < p < ∞ . The bound is independent of the coefficients of
Pi (i = 1,2, . . . ,d) and f , but depends on φ .

Applying lemma 4, we have

LEMMA 5. Let Ω ∈ L1(Sm−1×Sn−1) with satisfying (1.1)–(1.2) and h ∈ Δγ for
some γ > 1 . Then for μ ∈ {1,2, . . . ,N1} and ν ∈ {1,2, . . . ,N2} , there exists Cp > 0
such that

‖τ∗μ,ν( f )‖p � Cp‖ f‖p, for γ ′ < p � ∞.

The constant Cp is independent of the coefficients of PN1 and PN2 , but depends on
ϕ , ψ .

Proof. We define the measures {|Λμ,ν
k,l |} and maximal operator Λ∗

μ,ν by

|̂Λμ,ν
k,l |(ξ ,η) =

∫∫
Δk,l

exp(−2π i(ξ ·Qμ(u)+ η ·Rν(v)))
|Ω(u′,v′)|

ρm(u)αmρn(v)αn
dudv

and
Λ∗

μ,ν( f )(x,y) = sup
k,l∈Z

∣∣|Λμ,ν
k,l | ∗ f (x,y)

∣∣.
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By a change of variable we have

Λ∗
μ,ν ( f )(x,y) = sup

k,l∈Z

∣∣∣∫∫
Δk,l

f (x−Qμ(u),y−Rν(v))
|Ω(u,v)|

ρm(u)αmρn(v)αn
dudv

∣∣∣
� sup

k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k

∫∫
Sm−1×Sn−1 | f (x−Qμ(Am,ru′),y−Rν(An,sv′))|

×|Ω(u′,v′)|Jm(u′)Jn(v′)dσm(u′)dσn(v′)
drds
rs

� C
∫∫

Sm−1×Sn−1
sup
k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k
| f (x−Qμ(Am,ru

′),y−Rν(An,sv
′))|drds

rs
×|Ω(u′,v′)|dσm(u′)dσn(v′).

By Lemma 4, using iterated integration and Minkowski’s inequality, we have

‖Λ∗
μ,ν( f )‖p � Cp‖ f‖p, 1 < p < ∞. (2.25)

In addition, by Hölder’s inequality

||τμ,ν
k,l | ∗ f (x,y)| =

∣∣∣∫∫
Δk,l

f (x−Qμ(u),y−Rν(v))
|Ω(u′,v′)h(ρm(u),ρn(v))|

ρm(u)αmρn(v)αn
dudv

∣∣∣
�

∫ 2l+1

2l

∫ 2k+1

2k

∫∫
Sm−1×Sn−1

| f (x−Qμ(Am,ru
′),y−Rν(An,sv

′))||Ω(u′,v′)|

×Jm(u′)Jn(v′)dσm(u′)dσn(v′)|h(r,s)|drds
rs

� C
∫ 2l+1

2l

∫ 2k+1

2k

(∫∫
Sm−1×Sn−1

| f (x−Qμ(Am,ru
′),y−Rν(An,sv

′))|γ ′

×|Ω(u′,v′)|Jm(u′)Jn(v′)dσm(u′)dσn(v′)
)1/γ ′ |h(r,s)|drds

rs

� C‖h‖Δγ

(∫ 2l+1

2l

∫ 2k+1

2k

∫∫
Sm−1×Sn−1

| f (x−Qμ(Am,ru
′),y−Rν(An,sv

′))|γ ′

×|Ω(u′,v′)|Jm(u′)Jn(v′)dσm(u′)dσn(v′)
drds
rs

)1/γ ′

� C(Λ∗
μ,ν(| f |γ ′)(x,y))1/γ ′ ,

which together with (2.25) completes the proof of Lemma 5. �
Now we take two radial functions φ1 ∈ C∞

0 (Rm) and φ2 ∈ C∞
0 (Rn) such that

φ1(t) = φ2(s) ≡ 1 for max{|t|, |s|} � 1 and φ1(t) = φ2(s) ≡ 0 for min{|t|, |s|} >
min{Bϕ ,Bψ} , where Bϕ ,Bψ are as in Remark 1.3. For μ ∈ {1,2, . . . ,N1} and ν ∈
{1,2, . . . ,N2} , we define the measures {ω μ,ν

r,s } and {λ μ,ν
k,l } by

ω̂ μ,ν
r,s (ξ ,η) = σ̂ μ,ν

r,s (ξ ,η)Π1(μ)Π2(ν)− σ̂ μ−1,ν
r,s (ξ ,η)Π1(μ −1)Π2(ν)

−σ̂ μ,ν−1
r,s (ξ ,η)Π1(μ)Π2(ν −1)+ ̂σ μ−1,ν−1

r,s (ξ ,η)Π1(μ −1)Π2(ν −1),

and

λ̂ μ,ν
k,l (ξ ,η) = τ̂ μ,ν

k,l (ξ ,η)Π1(μ)Π2(ν)− τ̂ μ−1,ν
k,l (ξ ,η)Π1(μ −1)Π2(ν)

−τ̂ μ,ν−1
k,l (ξ ,η)Π1(μ)Π2(ν −1)+ ̂τμ−1,ν−1

k,l (ξ ,η)Π1(μ −1)Π2(ν −1),
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where Π1(μ) = ∏N1
i=μ+1 φ1(ϕ(2k+1)iLi(ξ )), Π2(ν) = ∏N2

j=ν+1 φ2(ψ(2l+1) jI j(η)) . It is
easy to see that

σN1,N2
r,s =

N1

∑
μ=1

N2

∑
ν=1

ω μ,ν
r,s (2.26)

and

τN1,N2
k,l =

N1

∑
μ=1

N2

∑
ν=1

λ μ,ν
k,l . (2.27)

Applying Lemmas 2 and 3, combining with the arguments which are similar to
those in the proof of [19, Lemma 2.7], we can obtain

LEMMA 6. Let Ω be as in Lemma 2 . Then for μ ∈{1,2, . . . ,N1}, ν ∈{1,2, . . . ,N2}
and any k, l ∈ Z , there exists a constant C > 0 such that

(i)
sup
r,s>0

‖ω μ,ν
r,s ‖ � C; (2.28)

(ii) for |ϕ(2k+1)νLμ(ξ )| > Bϕ , then

∫ 2l+1

2l

∫ 2k+1

2k
|ω̂ μ,ν

r,s (ξ ,η)|2 drds
rs

� C|ψ(2l+1)ν Iν(η)|2(log |ϕ(2k+1)μLμ(ξ )|
)−β

;

(2.29)
(iii) for |ψ(2l+1)ν Iν(η)| > Bψ , then

∫ 2l+1

2l

∫ 2k+1

2k
|ω̂ μ,ν

r,s (ξ ,η)|2 drds
rs

� C|ϕ(2k+1)μLμ(ξ )|2
(

log |ψ(2l+1)ν Iν(η)|
)−β

;

(2.30)
(iv) for |ϕ(2k+1)μLμ(ξ )| > Bϕ and |ψ(2l+1)ν Iν(η)| > Bψ , then

∫ 2l+1

2l

∫ 2k+1

2k
|ω̂ μ,ν

r,s (ξ ,η)|2 drds
rs

�C(log |ϕ(2k+1)μLμ(ξ )|)−β (log |ψ(2l+1)ν Iν(η)|)−β ;

(2.31)
(v)

∫ 2l+1

2l

∫ 2k+1

2k
|ω̂ μ,ν

r,s (ξ ,η)|2 drds
rs

� C|ϕ(2k+1)μLμ(ξ )|2|ψ(2l+1)ν Iν(η)|2. (2.32)

The constant C is independent of the coefficients of PN1 and PN2 .

LEMMA 7. Let h and Ω be as in Lemma 3 . Then for μ ∈ {1,2, . . . ,N1}, ν ∈
{1,2, . . . ,N2} and k, l ∈ Z , there exists a constant C > 0 such that

(i)
sup
k,l∈Z

‖λ μ,ν
k,l ‖ � C; (2.33)

(ii) for |ϕ(2k+1)μLμ(ξ )| > Bϕ , then

|λ̂ μ,ν
k,l (ξ ,η)| � C|ψ(2l+1)ν Iν(η)|(log |ϕ(2k+1)μLμ(ξ )|)−β/γ̃ ; (2.34)
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(iii) for |ψ(2l+1)ν Iν(η)| > Bψ , then

|λ̂ μ,ν
k,l (ξ ,η)| � C|ϕ(2k+1)μLμ(ξ )|(log |ψ(2l+1)ν Iν(η)|)−β/γ̃ ; (2.35)

(iv) for |ϕ(2k+1)μLμ(ξ )| > Bϕ and |ψ(2l+1)Iν(η)| > Bψ , then

|λ̂ μ,ν
k,l (ξ ,η)| � C(log |ϕ(2k+1)μLμ(ξ )|)−β/γ̃(log |ψ(2l+1)ν Iν(η)|)−β/γ̃ ; (2.36)

(v)

|λ̂ μ,ν
k,l (ξ ,η)| � C|ϕ(2k+1)μLμ(ξ )||ψ(2l+1)ν Iν(η)|. (2.37)

The constant C is independent of the coefficients of PN1 and PN2 .

Applying Lemma 5 and the definition of λ μ,ν
k,l , we can establish the following

lemma.

LEMMA 8. Let Ω, h be as in Lemma 5 . Then for μ ∈ {1,2, . . . ,N1} and ν ∈
{1,2, . . . ,N2} , there exists a constant C > 0 such that∥∥∥ sup

k,l∈Z

∣∣|λ μ,ν
k,l | ∗ f

∣∣∥∥∥
p
� C‖ f‖p, γ ′ < p � ∞.

The constant C is independent of the coefficients of PN1 and PN2 , but depends on ϕ , ψ .

Applying Lemma 8, by similar arguments to those used in the proof of [13, Theo-
rem 7.5], we have

LEMMA 9. Let Ω, h be as in Lemma 5. Then for μ ∈{1,2, . . . ,N1}, ν ∈{1,2, . . . ,
N2} and any suitable functions {gk,l} , there exists a constant C > 0 such that

∥∥∥(
∑

k,l∈Z
|λ μ,ν

k,l ∗ gk,l|2
)1/2∥∥∥

p
� C

∥∥∥(
∑

k,l∈Z
|gk,l|2

)1/2∥∥∥
p

for p with satisfying |1/p−1/2|< min{1/γ ′,1/2} . The constant C is independent of
the coefficients of PN1 and PN2 , but depends on ϕ , ψ .

LEMMA 10. Let Ω∈L1(Sm−1×Sn−1) . Then for μ ∈{1, . . . ,N1} and ν ∈{1, . . . ,
N2} , the operator U defined by

U ( f )(x,y) = sup
k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k
||ω μ,ν

r,s | ∗ f (x,y)|drds
rs

is bounded on Lp(Rm×Rn) for 1< p < ∞ . The bound is independent of the coefficients
of PN1 and PN2 , but depends on ϕ , ψ .
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Proof. We define the operator H by

H ( f )(x,y) = sup
k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k
||σ μ,ν

r,s | ∗ f (x,y)|drds
rs

,

where |σ μ.ν
r,s | is defined in the same way as σ μ,ν

r,s , but with Ω replaced by |Ω| . Then
we have

H ( f )(x,y) = sup
k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k

∣∣∣∫∫
Sm−1×Sn−1

f (x−Qμ(Am,ru
′),y−Rν(An,sv

′))

×|Ω(u′,v′)|Jm(u′)Jn(v′)dσ(u′)dσ(v′)
∣∣∣drds

rs

� C
∫

Sm−1×Sn−1
sup
k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k
| f (x−Qμ(Am,ru

′),y−Rν(An,sv
′))|drds

rs
×|Ω(u′,v′)|dσ(u′)dσ(v′).

Invoking Lemma 4, using iterated integration and Minkowski inequality, one can obtain
that

‖H ( f )‖p � C‖ f‖p, 1 < p < ∞.

This together with the definition of ω μ,ν
r,s implies Lemma 10. �

3. Proofs of main results

We will first prove Theorem 1.

Proof. It follows from (2.15) and (2.27) that

TP,ϕ,ψ
h,Ω ( f ) =

N1

∑
μ=1

N2

∑
ν=1

∑
k,l∈Z

λ μ,ν
k,l ∗ f :=

N1

∑
μ=1

N2

∑
ν=1

TP,ϕ,ψ
μ,ν ( f ). (3.1)

It suffices to show that for any μ ∈ {1,2, . . . ,N1} and ν ∈ {1,2, . . . ,N2} ,

‖TP,ϕ,ψ
μ,ν ( f )‖p � C‖ f‖p for |1/p−1/2|< min{1/γ ′,1/2}−1/β . (3.2)

For fixed μ ∈ {1,2, . . . ,N1} and ν ∈ {1,2, . . . ,N2} , we can choose two collections of
C∞ functions {λi}i∈Z and {η j} j∈Z on (0,∞) with the following properties:

(i) supp(λi) ⊂ [ϕ(2i+1)−μ ,ϕ(2i−1)−μ ], supp(η j) ⊂ [ψ(2 j+1)−ν ,ψ(2 j−1)−ν ] ;
(ii) 0 � λi, η j � 1, ∑i∈Z λi(t)2 = ∑ j∈Z η j(t)2 = 1;
(iii) |(d/dt)ιλi(t)| � C1/t , |(d/dt)ιη j(t)| � C2/t , where C1, C2 are indepen-

dent of i, j, ι .
Define the multiplier operator Si, j on Rm ×Rn by

Ŝi, j f (x,y) = λi(|Lμ(x)|)η j(|Iν(y)|) f̂ (x,y). (3.3)
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Then
TP,ϕ,ψ

μ,ν ( f ) = ∑
k,l∈Z

λ μ,ν
k,l ∗

(
∑i, j∈Z Si+k, j+lSi+k, j+l f

)
= ∑

i, j∈Z
∑

k,l∈Z
Si+k, j+l(λ

μ,ν
k,l ∗ Si+k, j+l f )

:= ∑
i, j∈Z

Ti, j f .

(3.4)

Now we consider the Lp -boundedness of Ti, j . By the Littlewood-Paley theory and
Lemma 9, we have for any p with satisfying |1/p−1/2|< min{1/γ ′,1/2} ,

‖Ti, j f‖p � C
∥∥∥(

∑
k,l∈Z

|λ μ,ν
k,l ∗ Si+k, j+l f |2

)1/2∥∥∥
p

� C
∥∥∥(

∑
k,l∈Z

|Si+k, j+l f |2
)1/2∥∥∥

p

� C‖ f‖p

(3.5)

On the other hand, by the Littlewood-Paley theory and Plancherel’s theorem, we have

‖Ti, j f‖2
2 � C

∥∥∥(
∑

k,l∈Z
|λ μ,ν

k,l ∗ Si+k, j+l f |2
)1/2∥∥∥2

2

= C∑
k,l

∫∫
Rm×Rn

|λ̂ μ,ν
k,l (ξ ,η)|2|λi+k(|Lμ(ξ )|)η j+l(|Iν(η)|)|2| f̂ (ξ ,η)|2dξdη

� C∑
k,l

∫∫
Ei+k, j+l

|λ̂ μ,ν
k,l (ξ ,η)|2| f̂ (ξ ,η)|2dξdη ,

where

Ei+k, j+l = {(ξ ,η) ∈ Rm ×Rn : ϕ(2i+k+1)−μ � |Lμ(ξ )| � ϕ(2i+k−1)−μ ,
ψ(2 j+l+1)−ν � |Iν(η)| � ψ(2 j+l−1)−ν}. (3.6)

Using Lemma 7 and Remark 3, we have

‖Ti, j f‖2 � C(ϕ ,ψ ,μ ,ν)Bi, j‖ f‖2, (3.7)

where

Bi, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B−iμ
ϕ B− jν

ψ , i, j > −2;

B−iμ
ϕ | j|−β/γ̃ , i > −2, j � −2;

|i|−β/γ̃B− jν
ψ , i � −2, j > −2;

|i j|−β/γ̃ , i, j � −2.

(3.8)

where γ̃ = max{2,γ ′} . Interpolation between (3.5) and (3.7) yields that for any p satis-
fying |1/p−1/2|< min{1/γ ′,1/2}−1/β , there exists δ ∈ (0,1] such that δβ/γ̃ > 1
and

‖Ti, j f‖p � C(ϕ ,ψ ,μ ,ν)1−δ Bδ
i, j‖ f‖p, |1/p−1/2|< min{1/γ ′,1/2}−1/β .
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Then we have for any p with satisfying |1/p−1/2|< min{1/γ ′,1/2}−1/β ,

∑
i, j∈Z

‖Ti, j f‖p � C(ϕ ,ψ ,μ ,ν)
(

∑
i, j>−2

B−iμδ
ϕ B− jνδ

ψ + ∑
i>−2, j�−2

B−iμδ
ϕ | j|−δβ/γ̃

+ ∑
i�−2, j>−2

|i|−δβ/γ̃B− jνδ
ψ + ∑

i, j�−2
|i j|−δβ/γ̃

)
‖ f‖p

� C(ϕ , ψ , μ , ν)‖ f‖p

This combining (3.1) with (3.4) completes the proof of Theorem 1. �
Next, we will prove Theorem 4.

Proof. By duality, Hölder’s inequality, Minkowski’s inequality and (2.26) we have

M(γ)
P,ϕ,ψ ( f )(x,y) = sup

‖h‖Uγ �1

∣∣∣∫ ∞

0

∫ ∞

0
f ∗σN1,N2

r,s (x,y)h(r,s)
drds
rs

∣∣∣
�

(∫ ∞

0

∫ ∞

0
| f ∗σN1,N2

r,s (x,y)|γ ′ drds
rs

)1/γ ′

�
N1

∑
μ=1

N2

∑
ν=1

(∫ ∞

0

∫ ∞

0
| f ∗ω μ,ν

r,s (x,y)|γ ′ drds
rs

)1/γ ′

:=
N1

∑
μ=1

N2

∑
ν=1

M(γ ′)
μ,ν ( f )(x,y).

(3.9)

So it suffices to obtain the Lp(Rm ×Rn)-bounds of M(γ ′)
μ,ν for 1 � γ � 2.

Case 1 (γ = 2) . Let Si, j be as in (3.3). Then by Minkowski’s inequality we have

M(2)
μ,ν( f )(x,y) =

(∫ ∞

0

∫ ∞

0
| f ∗ω μ,ν

r,s (x,y)|2 drds
rs

)1/2

=
(

∑
k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k
| f ∗ω μ,ν

r,s (x,y)|2 drds
rs

)1/2

=
(

∑
k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k

∣∣∣ω μ,ν
r,s ∗

(
∑

i, j∈Z
Si+k, j+lSi+k, j+l f

)
(x,y)

∣∣∣2 drds
rs

)1/2

� ∑
i, j∈Z

(
∑

k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k

∣∣∣ω μ,ν
r,s ∗ Si+k, j+lSi+k, j+l f (x,y)

∣∣∣2 drds
rs

)1/2

:= ∑
i, j∈Z

Gi, j
(
f
)
(x,y).

(3.10)
By Plancherel’s theorem we have

‖Gi, j
(
f
)‖2

2 =
∫

Rm×Rn
∑

k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k

∣∣∣ω μ,ν
r,s ∗ Si+k, j+lSi+k, j+l f (x,y)

∣∣∣2 drds
rs

dxdy

= ∑
k,l∈Z

∫ 2l+1

2l

∫ 2k+1

2k

∫
Ei+k, j+l

|ω̂ μ,ν
r,s (ξ ,η)|2| f̂ (ξ ,η)|2dξdη

drds
rs

= ∑
k,l∈Z

∫
Ei+k, j+l

∫ 2l+1

2l

∫ 2k+1

2k
|ω̂ μ,ν

r,s (ξ ,η)|2 drds
rs

| f̂ (ξ ,η)|2dξdη .
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where Ei+κ , j+� is as in (3.6). Then by Lemma 6 we get

‖Gi, j f‖2 � C(ϕ ,ψ ,μ ,ν)B̃i, j‖ f‖2, (3.11)

where

B̃i, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B−iμ
ϕ B− jν

ψ , i, j > −2;

B−iμ
ϕ | j|−β/2, i > −2, j � −2;

|i|−β/2B− jν
ψ , i � −2, j > −2;

|i j|−β/2, i, j � −2.

(3.12)

Next, for p > 2, let q = (p/2)′ , there exists a function g∈ Lq(Rm×Rn) with ‖g‖q � 1
such that

‖Gi, j
(
f
)‖2

p

=
∫

Rm×Rn

∑
k,l∈Z

2l+1∫
2l

∫ 2k+1

2k

∣∣∣ω μ,ν
r,s ∗ (Si+k, j+lSi+k, j+l f )(x,y)

∣∣∣2 drds
rs

|g(x,y)|dxdy

� sup
r,s>0

‖ω μ,ν
r,s ‖

∫
Rm×Rn

∑
k,l∈Z

2l+1∫
2l

2k+1∫
2k

∫
Rm×Rn

|(Si+k, j+lSi+k, j+l f )(x−u,y−v)|2dω μ,ν
r,s (u,v)

drds
rs

×|g(x,y)|dxdy

� C
∫

Rm×Rn

∑
k,l∈Z

|Si+k, j+lSi+k, j+l f (x,y)|2U
(|g|)(−x,−y)dxdy

� C
∥∥∥(

∑
k,l∈Z

|Si+k, j+lSi+k, j+l f |2
)1/2∥∥∥2

p
‖U (|g|)‖q,

where the operator U is as in Lemma 10. Using (2.28), Littlewood-Paley theorem and
Lemma 10, we have

‖Gi, j( f )‖p � C‖ f‖p, p > 2. (3.13)

Interpolating between (3.11) and (3.13), for some β > 2 and any fixed p ∈ [2,β ) , we
can choose δp ∈ (0,1] such that δpβ/2 > 1 and

‖Gi, j( f )‖p � CB̃
δp
i, j‖ f‖p.

This combing (3.10) with Minkowski’s inequality yields

‖M(2)
μ,ν( f )‖p � C

(
∑

i, j>−2
B
−iμδp
ϕ B

− jνδp
ψ + ∑

i>−2, j�−2
B
−iμδp
ϕ | j|−δpβ/2

+ ∑
i�−2, j>−2

|i|−δpβ/2B
− jνδp
ψ + ∑

i, j�−2
|i j|−δpβ/2

)
‖ f‖p

� C‖ f‖p.
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This together with (3.9) implies

‖M (2)
P,ϕ,ψ( f )‖p � C‖ f‖p, p ∈ [2,β ). (3.14)

Case 2 (γ = 1) . For f ∈ L∞(Rm ×Rn) and h ∈U1 , we have

|TP,ϕ,ψ
h,Ω ( f )(x,y)| =

∣∣∣∫ ∞

0

∫ ∞

0
h(r,s)

∫
Sm−1×Sn−1

f (x−Qμ(Am,ru
′),y−Rν(An,sv

′))

×Ω(u′,v′)Jm(u′)Jn(v′)dσm(u′)dσn(v′)
drds
rs

∣∣∣
� C‖Ω‖L1(Sm−1×Sn−1)‖h‖U1‖ f‖∞

holds for every (x,y) ∈ Rm ×Rn . Thus for every (x,y) ∈ Rm ×Rn ,

|M(1)
P,ϕ,ψ ( f )(x,y)| = sup

h∈U1

|TP
Ω,h( f )(x,y)| � C‖ f‖∞,

which implies

‖M(1)
P,ϕ,ψ ( f )‖∞ � C‖ f‖∞.

Case 3 (1 < γ < 2) . For convenience, let �( f ) = f ∗σN1,N2
r,s . By Cases 1 and 2,

we have

‖�( f )‖Lp0(Rm×Rn,L2(R+×R+,r−1s−1drds)) � Cp‖ f‖p0 , p0 ∈ [2,β );

‖�( f )‖L∞(Rm×Rn,L∞(R+×R+,r−1s−1drds)) � Cp‖ f‖∞.

The real interpolation theorem for Lebesgue mixed norm spaces tells us that

‖�( f )‖Lp(Rm×Rn,Lγ′ (R+×R+,r−1s−1drds)) � Cp‖ f‖p, p ∈ [γ ′,β γ ′/2).

This together with (3.9) completes the proof of Theorem 4. �
Finally, we will prove Theorem 3.

Proof. Case 1 (1 � γ � 2) . Without loss of generality, we may assume that
‖h‖Uγ = 1. Then

‖TP,ϕ,ψ
h,Ω ( f )‖p � ‖M(γ)

P,ϕ,ψ( f )‖p � C‖ f‖p.

By Theorem 4, we have

‖TP,ϕ,ψ
h,Ω ( f )‖∞ � C‖ f‖∞, for γ = 1.

and
‖TP,ϕ,ψ

h,Ω ( f )‖p � C‖ f‖p, p ∈ [γ ′,γ ′β/2), for 1 < γ � 2.

By a standard duality argument, we get

‖TP,ϕ,ψ
h,Ω ( f )‖p � C‖ f‖p, p ∈ (γ ′β/(γ ′β −2),γ), for 1 < γ � 2.
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Hence, the interpolation theorem tell us that

‖TP,ϕ,ψ
h,Ω ( f )‖p � C‖ f‖p, |1/p−1/2|< 1/2−2/(γ ′β ), for 1 < γ � 2.

Case 2 (γ > 2) . Note that Uγ � Δγ for γ > 1. The rest result of Theorem 3
directly follows from Theorem 1. �
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