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UNCERTAINTY PRINCIPLES FOR ORTHONORMAL
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Abstract. In this paper, we deal with Laguerre hypergroup K = [0,+∞) ×R . We prove an
analogous of a time-frequency localization theorem for orthonormal sequences in L2(K) . As
consequence we obtain an analogous of Shapiro’s Umbrella theorem. Also, we provide a mean
dispersion inequality. Finally, we get a strong version of the uncertainty inequality for orthonor-
mal bases of L2(K) .

1. Introduction

The uncertainty principle states that a nonzero function and its Fourier transform
cannot both be sharply localized. A mathematical formulation of this physical ideas is
firstly developed by Heisenberg [9] in 1927.

(∫
R

x2| f (x)|2dx

)(∫
R

ξ 2| f̂ (ξ )|2dξ
)

� 1
4

(∫
R

| f (x)|2dx

)2

.

It is known that Heisenberg inequality may be also written in the form

‖x f‖2
2 +‖ξ f̂ (ξ )‖2

2 � 1
2
‖ f‖2

2

where f ∈ L2(R) . Since that other formulations of this principle have been given in
several surveys. We refer the reader to [8, 2, 14]. A first generalization of this principle
is to consider a generalized Fourier transform T like Hankel, Dunkl, Chebli-Trimeche
transforms, etc... For Laguerre transform, A. Rahmouni proved Heisenberg-Pauli-Weyl
inequality

‖ |(x,t)|β f‖2,mα .‖ |(λ ,m)| β
2 FL f‖2,γα � C‖ f‖2

2,mα . (1)

A second generalization consists on seeing the uncertainty principle as a statement on
the degradation of localization when one considers successive elements of an orthonor-
mal basis. For some of works related to uncertainty inequalities for orthonormal bases,
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one can cite [13, 18, 10, 11, 16]. In particular, Shapiro in [18] proves that we can not
find an infinite orthonormal sequence {ek} such that

|ek(x)| � |ϕ(x)| and |êk(x)| � |ψ(x)|

where ϕ and ψ ∈ L2(R) . This result is known as Shapiro’s Umbrella theorem. Further-
more, Shapiro provide a mean dispersion principle which states that if the elements of
an orthonormal sequence and their Fourier transforms have uniformly bounded means
and dispersions then the sequence is finite.

A quantitative version of Shapiro’s results was established by Jaming and Powel
in [11] using Prolate Spheroidal wave functions. In this paper, we are motivated by
the work of Malinnikova [12] which gives a time frequency localization theorem that
implies Shapiro’s Umbrella theorem, a mean dispersion inequality and a number of un-
certainty inequalities invoking orthonormal bases for L2(Rd) . We try to find analogous
results by considering orthonormal bases of L2(K) .

The outline of the content of the paper is as follows.
In section 2 we deal with Laguerre hypergroup K and the Fourier Laguerre trans-

form FL . We give a few results about this transformation which can be useful later.
In section 3, first, we provide an analogous of time-frequency theorem invoking a

series of orthonormal sequences in L2(K) . As application we get an analogous version
of Shapiro’s Umbrella theorem. Second, in Theorem 4, we prove a Mean Dispersion
localization for orthonormal sequence in L2(K) :

∀ p,q > 0,
N

∑
n=1

(‖ |(x,t)|pφn‖2
2,mα +‖ |(λ ,m)|qFLφn‖2

2,γα

)
� CN1+ 2p

3α+6

Moreover

∑
n

(‖ |(x, t)|pφn‖2,mα +‖ |(λ ,m)|qFLφn‖2,γα

)− 1
2 (3α+6)−ε

< +∞.

Finally, we find in Theorem 6 the uncertainty principle: for {en}∞
n=1 an orthonormal

basis in L2(K) ,

sup
n

‖ |(x,t)|pen‖2,mα ‖ |(λ ,m)| p
2 FLen‖2,γα = +∞.

This result is stronger for bases than Heisenberg-Pauli-Weyl inequality (1).

2. Preliminaries

In this paper we consider the Laguerre hypergroup K = [0,+∞)×R which can be
seen as a deformation of the hypergroup of radial functions on the Heisenberg group.
For more details one can see [1, 7, 15, 19]. We consider the following system of partial
differential operators:



UNCERTAINTY PRINCIPLES FOR ORTHONORMAL SEQUENCES 525

For all (x, t) ∈ K and α � 0,

⎧⎪⎨
⎪⎩

D1 =
∂
∂ t

D2 =
∂ 2

∂x2 +
2α +1

x
∂
∂x

+ x2 ∂ 2

∂ t2

For α = n−1, n ∈ N\ {0} , the operator D2 is the radial part of the sub-Laplacian on
the Heisenberg group Hn .

For (λ ,m) ∈ R×N , the initial problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1u = iλ u,

D2 u = −4|λ |
(

m+
α +1

2

)
u

u(0,0) = 1,
∂u
∂x

(0,t) = 0 for all t ∈ R,

has a unique solution ϕλ ,m given by

∀(x,t) ∈ K, ϕλ ,m(x,t) = eiλ tL
(α)
m (|λ |x2)

where L
(α)
m is the Laguerre function defined on R+ by

L
(α)
m (x) = e−

x
2

Lα
m(x)

Lα
m(0)

and Lα
m is the Laguerre polynomial of degree m and order α .

The Fourier Laguerre transform of a suitable function is given by

FL f (λ ,m) =
∫

K

f (x,t)ϕ−λ ,m(x, t)dmα(x,t)

where

dmα(x,t) =
x2α+1

πΓ(α +1)
dxdt.

From [15], it is well known that Fourier Laguerre transform can be inverted to

F−1
L f (x,t) =

∫
R×N

f (λ ,m)ϕλ ,m(x,t)dγα(λ ,m)

where
dγα(λ ,m) = Lα

m(0)δm ⊗|λ |α+1dλ .

For all (x, t) ∈ K , we denote |(x,t)|K = |(x,t)| = (x4 + 4t2)
1
4 the homogeneous norm

on K . Let Br(x, t) be the ball centred at (x,t) of radius r . i.e

Br(x,t) = {(y,s) ∈ K; |(y− x,s− t)|K < r}
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It was seen in [7] that for all (x,t) ∈ K , mα(Br(x,t)) = Ω2r2α+4 , where

Ω2 =
Γ(α+1

2 )
4
√

π(α +1)Γ(α +1)Γ(α
2 +1)

.

We denote L2(K) = L2(K,dmα) the space of mesurable functions f : K −→ C such
that

‖ f‖2,mα =
(∫

K

| f (x,t)|2dmα(x,t)
) 1

2

< +∞.

Now we consider the quasinorm defined on R×N by

N (λ ,m) = |(λ ,m)| = 4|λ |(m+
α +1

2
).

We denote

Br(0,0) = {(λ ,m) ∈ R×N; |(λ ,m)| = N (λ ,m) < r}
and we have from [17]

γα(Br(0,0)) =
2rα+2

α +2 ∑
m�0

Lα
m(0)

(4m+2α +2)α+2 .

We introduce L2(R×N) the space of measurable function g : R×N −→ C which
verifies

‖g‖2,γα =
(∫

R×N

|g(λ ,m)|2dγα(λ ,m)
) 1

2

< +∞.

Nessibi and Trimèche proved in [15] the following Plancherel formula

‖FL f‖2,γα = ‖ f‖2,mα .

We introduce the dilated of (x,t) ∈ K by δr(x,t) = (rx,r2t) and the dilated of (λ ,m) ∈
R×N by δ ′

r(λ ,m) = (r2λ ,m) . For fr(x,t) = r−(2α+4) f (δ 1
r
(x, t)) we have

∫
K

fr(x,t)dmα(x,t) =
∫

K

f (x,t)dmα (x,t).

As in [6], we define Dr f = r−(α+2) f (δ 1
r
(x,t)) . By a change of variables, we get

FLDr f = D̂ 1
r
FL f (2)

where

D̂r f (λ ,m) = r−(α+2) f (δ ′
1
r
(λ ,m)).
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3. Main results

3.1. Time frequency localization related to Laguerre hypergroup

THEOREM 1. Let {φn}N
n=1 be an orthonormal system in L2(K) , T be a measur-

able subset of K and W be a measurable subset of R×N . Assume that∫
T
|φn|2dmα = 1−a2

n and
∫
W
|FLφn|2dγα = 1−b2

n.

Then
N

∑
n=1

(1− 3
2
an− 3

2
bn) � mα(T )γα(W ).

Proof. Let T ⊂K and W ⊂R×N be two measurable subsets such that mα(T ) <
+∞ and γα(W ) < +∞ . We denote χT and χW the characteristic functions of T and
W . If f ∈ L2(K) , we consider similarly to [3, 6] PT and PW the operators given by

PT f = χT f and PW f = F−1
L (χWFL f ).

We have

PW PT f (x, t) =
∫

R×N

χW (λ ,m)FLPT f (λ ,m)ϕλ ,m(x,t)dγα(λ ,m).

Using Fubini’s theorem, we get

PW PT f (x,t) =
∫

K

f (x′,t ′)N (x′,t ′,x, t)dmα (x′,t ′)

where
N (x′,t ′,x,t) = χT (x′,t ′)F−1

L g(x′,t′)(x,t)

and
g(x′,t′)(λ ,m) = χW (λ ,m)ϕ−λ ,m(x′, t ′).

This shows that PWPT is an integral operator with kernel N verifying

‖N ‖2
L2(K)⊗L2(K) =

∫
K

|χT (x′,t ′)|2
(∫

K

|F−1
L g(x′,t′)(x,t)|2 dmα(x,t)

)
dmα(x′,t ′).

From Plancherel formula, we have

‖N ‖2
L2(K)⊗L2(K) =

∫
K

|χT (x′,t ′)|
(∫

R×N

|χW (λ ,m)ϕ−λ ,m(x′,t ′)|2 dγα(λ ,m)
)

dmα(x′, t ′)

� mα(T )γα (W ).

Therefore the Hilbert-Schmidt norm of PWPT

‖PWPT‖2
HS = ‖N ‖2

L2(K)⊗L2(K) � mα(T )γα(W ). (3)
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Now, we consider the corresponding self-adjoint operator

Q = (PWPT )∗PW PT = PT PWPT .

Since
tr(Q) = ‖PWPT‖2

HS � mα(T )γα(W )

then
N

∑
n=1

〈Qφn,φn〉 � tr(Q) � mα(T )γα (W ).

On the other hand
〈Qφn,φn〉 = 〈PWPT φn,PT φn〉.

Denote Tc = K\T and Wc = R×N\W , we can see that

〈Qφn,φn〉 = 〈φn,φn〉− 〈φn,PTcφn〉− 〈PTφn,PWcφn〉− 〈PWPT φn,PTcφn〉.
Applying Cauchy-Schwartz inequality, we obtain

〈Qφn,φn〉 � 1−2an−bn

which implies
N

∑
n=1

1−2an−bn � mα(T )γα (W ). (4)

Furthermore, if we consider Q̃ = (PT PW )∗PTPW then we get similary

N

∑
n=1

1−an−2bn � mα(T )γα(W ) (5)

Relations (4) and (5) allows us to conclude the desired time-frequency localization
inequality. �

The following corollary is an immediate consequence of Theorem 1.

COROLLARY 1. Let {φn}N
n=1 be an orthonormal system in L2(K) , such that φn

is ε -concentrated on the ball Br0(0,0) of K and FLφn is ε -concentrated on the ball
Bρ0(0,0) of R×N , for each n = 1, ...,N , i.e∫

|(x,t)|<r0
|φn|2dmα � 1− ε2,

∫
|(λ ,m)|<ρ0

|FLφn|2dγα � 1− ε2.

Then

N � c(α)
1−3ε

r2α+4
0 ρα+2

0

where

c(α) =
Γ(α+1

2 )
2
√

π(α +2)2Γ(α +1)Γ(α
2 +1) ∑

m�0

Lα
m(0)

(4m+2α +2)α+2 .
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Another immediate application of Theorem 1 is the so called Shapiro’s Umbrella
theorem

THEOREM 2. Let φ and ψ be nonnegative functions in L2(K) and L2(R×N)
and let {en}N

n=1 be an orthonormal sequence that satisfies

|en| � φ and |FLen| � ψ .

Then, for all ε ∈ (0, 1
3 ) , there exists Rε,φ > 0 and Rε,ψ > 0 such that

N � CR2α+4
ε,φ Rα+2

ε,ψ (6)

where C depends only on α and ε .

Proof. Let ε > 0. Since φ belongs to L2(K) and ψ belongs to L2(R×N) then
there exist Rε,φ > 0 and Rε,ψ > 0 such that∫

Bc
Rε,φ

(0,0)
|φ |2 dmα � ε2 and

∫
Bc

Rε,ψ (0,0)
|ψ |2 dγα � ε2.

Therefore∫
BRε,φ (0,0)

|en|2 dmα � 1− ε2 and
∫

BRε,ψ (0,0)
|FLen|2 dγα � 1− ε2.

Relation (6) yields from Corollary 1. �

This theorem is a quantitative version of Shapiro’s Umbrella theorem: it proves
that the sequence {en} is finite but also it gives a quantitative estimation of the number
of the sequence elements.

3.2. Mean Dispersion inequality related to Laguerre hypergroup

To prove an analogous of Mean Dispersion inequality related to Laguerre hyper-
group, we need to introduce the following notations. For p, q > 0 and f ∈ L2(K) , we
denote

τ p
p ( f ) =

∫
K

|(x,t)|2p| f (x,t)|2 dmα(x,t)

and
νq

q (FL f ) =
∫

R×N

|(λ ,m)|2q |FL f (λ ,m)|2 dγα(λ ,m).

Then we have similarly as Theorem 2

THEOREM 3. Let p, q be positive numbers and {φn}N
n=1 be an orthonormal sys-

tem in L2(K) that satisfies

τp(φn) � J and νq(FLφn) � K.

Then
N � c(α, p,q)Jα+2K

1
2 (α+2).
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Proof. Let ε ∈ (0, 1
3) . Clearly, each φn is ε -concentrated on the ball {|(x,t)|2p �

ε−2Jp} and each FLφn is ε -concentrated on the ball {|(λ ,m)|2q � ε−2Kq} . We de-
duce the wanted result from Corollary 1. �

THEOREM 4. Let p and q be positive and let {φn}n be an orthonormal sequence
in L2(K) . Then

N

∑
n=1

(‖ |(x,t)|pφn‖2
2,mα +‖ |(λ ,m)|qFLφn‖2

2,γα

)
� CN1+ 2p

3α+6 (7)

where C depends on α , p and q. Furthermore, for all ε > 0 , we have

∑
n

(‖ |(x, t)|pφn‖2,mα +‖ |(λ ,m)|qFLφn‖2,γα

)− 1
2 (3α+6)−ε

< +∞. (8)

Proof. Let {φn}n be an orthonormal sequence in L2(K) . For all k ∈ Z , we con-
sider

Pk = {n; max(τp(φn),νq(FLφn)) ∈ [2k−1,2k)}.
Then∫

K

|(x, t)|2p|φn(x, t)|2dmα � 2kp and
∫

R×N

|(λ ,m)|2q|FLφn(λ ,m)|2dγα � 2kq

whenever n ∈ ∪k
j=−∞Pj . Therefore one can see that φn is 1

4 -concentrated on the ball

centered at (0,0) and of radius 2
k
2+ 2

p and FLφn is 1
4 -concentrated on the ball centered

at (0,0) and of radius 2
k
2 + 2

q . From Corollary 1, we have the number of elements in

∪k
j=−∞Pj is less then C(α, p,q)2

1
2 (3α+6)k where C(α, p,q) is a constant that does not

depend on k . This shows that when C(α, p,q)2
1
2 (3α+6)k < 1, the number of elements in

∪k
j=−∞Pj is null. Consequently, there exists k0 such that Pk is empty for all k � k0 . We

remark that when q = p
2 and p > 1 this result can be also deduced from Heisenberg-

Pauli-Weyl inequality proved in [17].
For N > 2C(α, p,q) , let choose k such that

2C(α, p,q)2
1
2 (3α+6)(k−1) < N � 2C(α, p,q)2

1
2 (3α+6)k.

The first inequality shows that at least half of {1, ...,N} does not belong to ∪k−1
j=−∞Pj .

We remark that when n /∈ ∪k−1
j=−∞Pj , τ p

p (φn) � 2(k−1)p which implies

N

∑
n=1

(
τ p

p (φn)+ νq
q (FLφn)

)
� N

2
.2(k−1)p � a(α, p,q)N1+ 2p

3α+6 .

For N < 2C(α, p,q) , we have

N

∑
n=1

(
τ p

p (φn)+ νq
q (FLφn)

)
� N 2(k0−1)p.
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Since C(α, p,q)2
1
2 (3α+6)k0 = r0 ∈ (0,1) then 2(k0−1)p � cte.(2C(α, p,q))

2p
3α+6 and re-

lation (7) follows.
Let now prove (8). We have, for n ∈ Pk ,

τp(φn)+ νq(FLφn) � max(τp(φn),νq(FLφn)) � 2k−1.

Since N = ∪k∈ZPk and Pk is empty for all k � k0 , we get

∑
n

(τp(φn)+ νq(FLφn))−
1
2 (3α+6)−ε �

+∞

∑
k=k0

(
∑

n∈Pk

2(1−k)( 1
2 (3α+6)+ε)

)

�
+∞

∑
k=k0

C(α, p,q)2
1
2 (3α+6)k2(1−k)( 1

2 (3α+6)+ε) < +∞. �

3.3. Unbounded product of dispersions

THEOREM 5. Let T ⊂ K , W ⊂ R×N be a pair of measurable subsets of finite
measure mα(T ), γα(W ) < +∞ . Then T and W are strong annihilating pair i.e there
exists a constant C(T,W ) such that for all f ∈ L2(K) ,

‖ f‖2
2,mα � C(T,W )

(‖ f χTc‖2
2,mα +‖FL f χWc‖2

2,γα

)
.

Proof. Let prove that if supp( f ) ⊂ T , supp(FL f ) ⊂W and mα(T ), γα(W ) are
finite then f = 0. According to [6, Corollary 3.7], this statement implies that T and W
are strong annihilating pair which gives Theorem 5.

An elementary fact on Hilbert-Schmidt operators states that

dim(Im(PT )∩ Im(PW )) = ‖PT ∩PW‖2
HS � ‖PT PW‖2

HS.

From relation (3), we have

dim(Im(PT )∩ Im(PW )) < +∞ (9)

Assume towards a contradiction that there exists f0 �= 0 where supp( f0) = T0 and
W0 = supp(FL f0) have both finite measure 0 < mα(T0),γα(W0) < +∞.

Let T1 (resp W1 ) be a measurable subset of K (resp R×N) of finite measure
0 < mα(T1) < +∞ (resp 0 < γα(W1) < +∞) such that T0 ⊂ T1 (resp W0 ⊂W1 ).

We have, for r > 0,

mα(T1 ∪δrT0) = ‖χδrT0
− χT1‖2

2,mα + 〈χδrT0
, χT1〉mα .

The function : r �−→ mα(T1 ∪ δrT0) is continuous on (0,+∞) . The same holds for
: r �−→ γα(W1 ∪ δ ′

rW0) . One deduces that there exists an infinite sequence of distinct
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numbers (ri)∞
i=0 ⊂ (0,+∞) with r0 = 1, such that, if we denote by T =

+∞⋃
i=0

δriT0 and

W =
+∞⋃
i=0

δ ′
1
ri

W0 ,

mα(T ) < 2mα(T0) and γα (W ) < 2γα(W0).

We next define fi = Dri f0 so that supp( fi) = δriT0 ⊂ T . From relation (2), we have
supp(FL fi) = δ ′

1
ri

W0 ⊂W .

Now assume that we have a vanishing linear combinations of dilates of f0

∑
f inite

αi fi(x,t) = 0.

We denote βi = αir
−(α+2)
i and g( x

ri
) = f0( x

ri
,0) then

∑
f inite

βig(
x
ri

) = 0.

Applying the euclidien Fourier we get

∑
f inite

βi ri Fg(ri x) = 0.

Since g ∈ L1(R) then Fg ∈ C0 . Invoking [5, lemma 2.1], one can see that Fg has
linearly independent dilates. Therefore βi = 0 so that αi = 0, which proves that fi are
linearly independent. Consequently, dim(Im(PT )∩ Im(PW )) = +∞ which contradicts
relation (9). �

LEMMA 1. Let b and c be positive numbers, there exists a nonzero function f in
L2(K) such that f (x,t) = 0 when |(x,t)| � b, and FL f (λ ,m) = 0 when |(λ ,m)| � c.

Proof. We consider the space Ec of f ∈ L2(K) such that FL f (λ ,m) = 0 when
|(λ ,m)| � c . From Theorem 5, there exists C such that

‖ f‖2,mα � C‖ f χ{|(x,t)|>b}‖2,mα .

The last inequality implies that the traces of functions from the space Ec on {|(x,t)| >
b} form a closed subspace Fc in L2({|(x,t)| > b}) which is obviously not the whole
space. Thus there exists f ∈ F⊥

c ⊂ L2({|(x,t)| > b}) such that

〈 f ,g〉 =
∫
|(x,t)|>b

f (x,t)g(x,t)dmα(x,t) = 0 (10)

for any g ∈ Ec . We extend f by zero on the ball Bb(0,0) in order to get the re-
quired function. In fact, since F ∗

L = F−1
L then relation (10) implies that FL f = 0 on

Bc(0,0) . �
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THEOREM 6. Let {en}∞
n=1 be an orthonormal basis in L2(K) and p be positive,

then
sup

n
‖ |(x,t)|pen‖2,mα ‖ |(λ ,m)| p

2 FLen‖2,γα = +∞.

Proof. Assume that there exists an orthonormal basis such that

‖ |(x,t)|pen‖2,mα ‖ |(λ ,m)| p
2 FLen‖2,γα � C2p.

We introduce
Ak = {en ; τp(en) ∈ (2−kC, 2−k+1C]}

where k is integer. For en ∈ Ak we have ‖ |(λ ,m)| p
2 FLen‖2,γα � Cp2kp . Then en

is 1
4−concentrated on the ball B

C
1
2 2−

k
2 + 1

2 + 2
p
(0,0) and FLen is 1

4−concentrated on the

ball B
C2k+ 4

p
(0,0) . From Corollary 1, we have the number of elements in Ak is bounded

by a constant that does not depend on k . Lemma 1 allows us to consider f ∈ L2(K) ,
‖ f‖2,mα = 1, that vanishes on BR(0,0) and its Fourier-Laguerre transform vanishes on
BR(0,0) . If k � 0 and en ∈ Ak , we get

| 〈 f ,en〉 |2 � R−2pτ p
p (en) � (2C)pR−2p2−kp.

If k < 0 and en ∈ Ak similarly we have

| 〈 f ,en〉 |2 = | 〈FL f ,FLen〉 |2 � (C)pR−p2kp.

Since ∑
n
| 〈 f ,en〉 |2 = 1 and ∪Ak = {en}∞

n=1 then choosing R large enough we get a

contradiction. �
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[15] M. M. NESSIBI & K. TRIMÈCHE, Inversion of the Radon Transform on the Laguerre hypergroup by

using generalized wavelets, J. Math. Anal. Appl. 208 (1997), 337–363.
[16] A. M. POWELL, Time-frequency mean and variance sequences of orthonormal bases, J. Fourier Anal.

Appl. 11 (4), (2005), 375–387.
[17] A. RAHMOUNI,Uncertainty Inequalities on Laguerre Hypergroup, Mediterr. J. Math. 10 (2013), 333–

351.
[18] H. S. SHAPIRO, Uncertainty principles for bases in L2(R), unpublished manuscript.
[19] K. STEMPAK, Mean summability methods for Laguerre series, Trans. AMS. 322 (2) (1990), 129–147.

(Received May 27, 2015) Selma Negzaoui
Preparatory Institute of Engineering Studies of Monastir

University of Monastir
Rue Ibn El-Jazzar 5019 Monastir, Tunisia

e-mail: selma.negzaoui@issatgb.rnu.tn

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


