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Abstract. For n ∈ Z+ we consider the difference
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where the sequences {ai} and {ai −ai−1} are increasing. Some lower bounds are derived when
f is 1 -quasiconvex and when f is a closely related superquadratic function. In particular,
by using some fairly new results concerning the so called ”Jensen gap”, these bounds can be
compared. Some applications and related results about
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are also included.
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[26] J. SÁNDOR, On an inequality of Alzer, II, O. Math. Mag. 11(2003), no. 2, 554–555.
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