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Abstract. For n ∈ Z+ we consider the difference
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where the sequences {ai} and {ai −ai−1} are increasing. Some lower bounds are derived when
f is 1 -quasiconvex and when f is a closely related superquadratic function. In particular,
by using some fairly new results concerning the so called ”Jensen gap”, these bounds can be
compared. Some applications and related results about
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are also included.

1. Introduction

In this paper we illustrate and combine results for averages obtained in [1] related
to superquadratic functions with results on γ -quasiconvexity introduced and discussed
in [2], [3], [4] and [5]. By this we get refinements of bounds of differences of averages
when the function involved is 1-quasiconvex as well as superquadratic.

1-quasiconvex and superquadratic functions are closely related and therefore it is
of interest to compare their bounds. By using recent results we have succeeded also to
get such comparisons in this paper.

We start with quoting two definitions and five lemmas that are the basic properties
and definitions of superquadratic functions and 1-quasiconvex functions and which we
use in the sequel:

DEFINITION 1. [1] A function ϕ : [0,b) → R is superquadratic provided that for
all 0 � x < b there exists a constant Cϕ(x) ∈ R such that

ϕ(y)−ϕ(x) � Cϕ(x)(y− x)+ ϕ (|y− x|)
for every y, 0 � y < b.
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DEFINITION 2. [5] A function f : [0,b) → R that satisfies f = xϕ , where ϕ is a
convex function is called 1-quasiconvex function.

LEMMA 1. [1] Let xi, 0 � xi � b, 0 < b � ∞, 0 � αi � 1, i = 1, ...,m, ∑m
i=1 αi =

1, x = ∑m
i=1 αixi , and let f : [0,b)→ R, 0 < b � ∞ be a superquadratic function. Then

m

∑
i=1

αi f (xi)− f (x) �
m

∑
i=1

αi f (|xi − x|) (1.1)

holds.
Moreover, when f is nonnegative, (1.1) is a refinement of Jensen’s inequality

∑m
i=1 αi f (xi) � f (x) .

In particular, for m = 2 we get from inequality (1.1) that when the superquadratic
function f satisfies f = xϕ and 0 � α � 1

α f (x1)+ (1−α) f (x2)− f (αx1 +(1−α)x2) (1.2)

� α f ((1−α) |x1− x2|)+ (1−α) f (α |x1 − x2|)
= α (1−α)(|x1 − x2|) (ϕ (α |x1− x2|)+ ϕ ((1−α) |x1− x2|))

holds.

LEMMA 2. [5] Let xi , 0 � xi � b, 0 < b � ∞, 0 � αi � 1, 1 = 1, ...,m, ∑m
i=1 αi =

1, x = ∑m
i=1 αixi , and let ϕ : [0,b)→ R, 0 < b � ∞ be a differentiable convex function,

and f be 1 -quasiconvex, where f = xϕ . Then

m

∑
i=1

αi f (xi)− f (x) �
m

∑
i=1

ϕ
′
(x)αi (xi − x)2 , (1.3)

holds. Moreover, when ϕ is increasing (1.3) is a refinement of Jenen’s inequality.
In particular, for m = 2 when 0 � α � 1 we get that

α f (x1)+ (1−α) f (x2)− f (αx1 +(1−α)x2) (1.4)

� ϕ
′
(αx1 +(1−α)x2)α (1−α)(x1 − x2)

2 .

LEMMA 3. [4] Let ϕ : [0,b) → R be a differentiable convex function satisfying

ϕ (0) = lim
x→0+

xϕ
′
(x) = 0.

Then xϕ ′
(x) � ϕ (x) , when x ∈ [0,b) .

LEMMA 4. [5] Let ϕ : [0,b) → R+, 0 < b � ∞, be a differentiable convex in-
creasing function satisfying

ϕ (0) = lim
x→0+

xϕ
′
(x) = 0.

Then the 1 -quasiconvex function f , where f = xϕ is also superquadratic and convex.
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For a function f where f = xϕ which is simultaneously 1-quasiconvex and su-
perquadratic we obtain in the following lemma a comparison between lower bounds of
the so called ”Jensen’s gap” in (1.1) and (1.3), (see [5, Proposition 4]).

LEMMA 5. Let ϕ : [0,b)→R+, 0 < b � ∞, be a differentiable increasing convex
function, ϕ (0) = lim

x→0+
xϕ ′

(x) = 0 and let the function f satisfy f = xϕ . Then the

lower bound of ”Jensen’s gap” obtained by the superquadracity of f = xϕ is weaker
than the lower bound of ”Jensen’s gap” obtained by the 1 -quasiconvexity of f , when
0 � xi � 2x, 0 < b � ∞, 0 � αi � 1, 1 = 1, ...,m, ∑m

i=1 αi = 1, x = ∑m
i=1 αixi, that is,

the inequalities
m

∑
i=1

αi f (xi)− f (x)

�
m

∑
i=1

ϕ
′
(x)αi |xi − x|2 �

m

∑
i=1

αi f (|xi − x|) =
m

∑
i=1

αi |xi − x|ϕ (|xi− x|) � 0

hold. In particular, when m = 2 and 0 � α � 1 then

α f (x1)+ (1−α) f (x2) (1.5)

� ϕ
′
(αx1 +(1−α)x2)α (1−α)(x1 − x2)

2

� α (1−α)(|x1 − x2|) (ϕ (α |x1− x2|)+ ϕ ((1−α) |x1− x2|)) � 0,

and in this case a sufficient condition for 0 � xi � 2x, i = 1,2 to hold is that x2 � 2x1 <
b when 0 < x1 < x2.

One basic idea for the investigarions in this paper is to show the fact that for
functions that are simultaneously superquadratic and 1-quasiconvex, inequality (1.5)
can be used for comparing bounds of the difference

Bn−1 ( f )−Bn ( f ) :=
1
an

n−1

∑
i=0

f

(
ai

an−1

)
− 1

an+1

n

∑
i=0

f

(
ai

an

)
, (1.6)

and also the bounds of the difference

An+1 ( f )−An ( f ) :=
1
an

n

∑
i=1

f

(
ai

an+1

)
− 1

an−1

n−1

∑
i=1

f

(
ai

an

)
. (1.7)

These differences were previously investigated in a more general setting (see [1]) and
the following results that we use in the sequel were obtained there:

LEMMA 6. [1, Theorem 5.1] Let {ai} be a sequence such that ai > 0 is increas-
ing and ai − ai−1, i = 1, ..., is decreasing and let a0 = 0 . Let f : [0,b) → R+ be an
increasing function. Let also the interval [0,b) include all the ai

an
for i � n. Then, when

n � 2 the difference An+1 ( f )−An ( f ) satisfies

An+1 ( f )−An ( f ) (1.8)

� 1
an−1

n−1

∑
i=1

(
ai

an
f

(
ai+1

an+1

)
+

an−ai

an
f

(
ai

an+1

)
− f

(
ai

an

))
.



538 S. ABRAMOVICH AND L.-E. PERSSON

LEMMA 7. [1, Theorem 5.4] Let {ai} be a sequence where ai > 0, ai−ai−1, i =
1, ..., are increasing and a0 = 0 . Let f : [0,b) → R+ be an increasaing function. Let
also the interval [0,b) include all the ai

an−1
for i � n. Then, when n � 2 the difference

Bn−1 ( f )−Bn ( f ) satisfies

Bn−1 ( f )−Bn ( f ) (1.9)

� 1
an+1

n−1

∑
i=1

(
ai

an
f

(
ai−1

an−1

)
+

an−ai

an
f

(
ai

an−1

)
− f

(
ai

an

))
.

The next example is one of the main motivations for us to introduce this research:

EXAMPLE 1. In the introduction of [1] and [7] it was noted that if f is convex,
then

1
n

n−1

∑
i=0

f

(
i

n−1

)
� 1

n+1

n

∑
i=0

f

(
i
n

)
. (1.10)

In particular, if f (x) = xp, x � 0, p � 1, then this inequality can be rewritten as

(
(n+1)∑n−1

i=1 ip

n∑n
i=1 ip

) 1
p

� n−1
n

, n � 2. (1.11)

Such types of inequalities are discussed in several publications (see for instance [6] -
[30]).

REMARK 1. As applications of our results in this paper we obtain a strictly bet-
ter inequality then (1.11) for each p � 2, thus improving and complementing several
results mentioned above (see Examples 5 and 6).

As further applications we point out a strict improvement of (1.10) and similar
inequalities for each p � 2 (see Examples 2, 3 and 4).

Functions which are superquadratic and 1-quasiconvex are related in certain senses.
For example the function f (x) = xp , x � 0, p � 2 is both 1-quasiconvex and su-
perquadratic, whereas f (x) = xp , x � 0, 1 � p � 2 is neither 1-quasiconvex nor
superquadratic see e.g., Lemma 4, but note that f can be of course 1-quasiconvex
without the condition f (0) = 0.

Hence it is natural to try to derive lower bounds for both differences (1.6) and
(1.7) and to use our previous mentioned results (especially Lemma 5) to compare these
bounds. This is exactly what we have succeeded to do in this paper.

The main results are stated and proved in Section 2 and the motivating examples
which, in particular, give refinements of a number of inequalities (related to convexity)
are given in Section 3.
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2. Main results

Our first main result reads:

THEOREM 1. Let ϕ : [0,b)→ R+, 0 < b � ∞ be differentiable convex increasing
function, and let f = xϕ . Let the sequence {ai} be such that a0 = 0, ai, ai+1 − ai,
i = 1, ... are increasing. Then, for n � 2 we get for the 1 -quasiconvex function f
that

Bn−1 ( f )−Bn ( f ) (2.1)

�
n−1

∑
i=1

(ai−ai−1)
2 ai (an−ai)

an+1a2
na

2
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)

�
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na

2
n−1

ϕ
′
(
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)
� 0.

If in addition ϕ ′
is convex , then

Bn−1 ( f )−Bn ( f ) (2.2)

�
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2
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ϕ
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i (an−ai)(ai−ai−1)
2

an ∑n−1
i=1 ai (an−ai)(ai−ai−1)

2

)
� 0.

Proof. By denoting

xi,1 =
ai−1

an−1
, xi,2 =

ai

an−1
, αi,1 =

ai

an
, αi,2 =

an−ai

an
, (2.3)

αi,1 xi,1 + αi,2xi,2 = xi =
ai

an

(
an +ai−1−ai

an−1

)
, i = 1, ...,n−1,

and by using that f = xϕ we can derive that

Bn−1 ( f )−Bn ( f ) (2.4)

� 1
an+1

n−1

∑
i=1

(
ai

an
f

(
ai−1

an−1

)
+

an−ai

an
f

(
ai

an−1

)
− f

(
ai

an

))

� 1
an+1

n−1

∑
i=1

(
f

(
ai

an

(
an +ai−1−ai

an−1

))
− f

(
ai

an

))

+
1

an+1

n−1

∑
i=1

ϕ
′
(

ai

an

(
an +ai−1−ai

an−1

))
ai (an−ai) (ai−ai−1)

2

a2
na

2
n−1

� 1
an+1

n−1

∑
i=1

ϕ
′
(

ai

an

)
ai (an−ai)(ai−ai−1)

2
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na

2
n−1

� 0.

Indeed, the first inequality in (2.4), holds according to (1.9) in Lemma 7, the sec-
ond inequality in (2.4) follows from (1.4) in Lemma 2 and the last inequality in (2.4)
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holds because f and ϕ ′
are increasing and (an+ai−1−ai)

an−1
� 1, i = 1, ...,n−1, and there-

fore (2.1) is satisfied
If ϕ ′

is also convex we get from (2.4) by using Jensen’s inequality that (2.2) holds.
The proof is complete. �

Next, we state a similar result but with an additional condition guaranteeing that
f (x) = xϕ (x) is superquadratic (see Lemma 4).

THEOREM 2. Let ϕ : [0,b)→ R+, 0 < b � ∞ be a differentiable convex increas-
ing function and ϕ (0) = 0 = limxϕ (x)

x→0+
, and let f = xϕ . Let the sequence {ai} be such

that a0 = 0, ai > 0 , ai+1−ai, i = 1, ..., are increasing. Then, for n � 2 we get that

Bn−1 ( f )−Bn ( f ) (2.5)

� 1
an+1

n−1

∑
i=1

(
ai

an
f

(
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∣∣∣∣
)

+
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f

(
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an−1
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an−1

∣∣∣∣
))

=
n−1

∑
i=1

(ai−ai−1)ai (an−ai)
an+1a2

nan−1

(
ϕ
(

ai (ai−ai−1)
an−1an

)
+ ϕ

(
(an−ai) (ai−ai−1)

an−1an

))

�
n−1

∑
i=1

2ai (an−ai)(ai−ai−1)
an+1a2

nan−1
ϕ
(

ai−ai−1

2an−1

)

�
n−1

∑
i=1

2ai (an−ai)(ai−ai−1)
an+1a2

nan−1
ϕ

(
∑n−1

i=1 ai (an−ai)(ai−ai−1)
2

∑n−1
i=1 2an−1ai (an−ai) (ai−ai−1)

)
� 0.

Proof. As in Theorem 1, by Lemma 7 we conclude that the difference Bn−1 ( f )−
Bn ( f ) satisfies the inequality (1.9).

Under our conditions and according to Lemma 4 the function f where f = xϕ is
superquadratic. Therefore

Bn−1 ( f )−Bn ( f ) (2.6)

� 1
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i=1

(
ai

an
f

(
ai−1

an−1

)
+

an−ai

an
f

(
ai
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− f
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∑
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− f
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∣∣∣∣
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+
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an
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∣∣∣∣
))

� 1
an+1

n−1

∑
i=1

(
ai

an
f

(
an−ai
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∣∣∣∣ ai−1

an−1
− ai

an−1

∣∣∣∣
)

+
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f

(
ai
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∣∣∣∣ ai−1

an−1
− ai

an−1

∣∣∣∣
))

� 0.

The first inequality in (2.6) is just inequality (1.9), the second inequality results from
(1.2), the third inequality holds because f is increasing and an+ai−1−ai

an−1
� 1, i = 1, ...,n−

1.
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Thus, since f = xϕ we get that

Bn−1 ( f )−Bn ( f ) (2.7)

� 1
an+1

n−1

∑
i=1

(
ai

an
f

(
an−ai

an

∣∣∣∣ ai−1

an−1
− ai

an−1

∣∣∣∣
)

+
an−ai

an
f

(
ai

an

∣∣∣∣ ai−1

an−1
− ai

an−1

∣∣∣∣
))

=
n−1

∑
i=1

(ai−ai−1)ai (an−ai)
an+1a2

nan−1

(
ϕ
(

(ai−ai−1) (an−ai)
an−1an

)
+ ϕ

(
(ai−ai−1)ai

an−1an

))
� 0.

Moreover, by using the convexity of ϕ and Jensen’s inequality we get that

ϕ
(

(ai −ai−1)(an−ai)
an−1an

)
+ ϕ

(
(ai −ai−1)ai

an−1an

)
� 2ϕ

(
ai −ai−1

2an−1

)
� 0. (2.8)

Hence, using again the convexity of ϕ and Jensen’s inequality we obtain from (2.6),
(2.7) and (2.8) that (2.5) holds. The proof is complete. �

In Theorem 3 we show that a lower bound of Bn−1 ( f )−Bn ( f ) obtained by the
1-quasiconvexity of f is better than by its superquadracity.

THEOREM 3. Let ϕ : [0,b)→R+ 0 < b � ∞ be a differentiable convex increasing
function satisfying ϕ (0) = 0 = lim

x→0+
xϕ ′

(x) and let f = xϕ . Let the positive sequences

{ai} , and {ai −ai−1} , i = 1,2, ..., be increasing and let a0 = 0 . Then

Bn−1 ( f )−Bn ( f )

�
n−1

∑
i=1

(ai−ai−1) (an−ai)ai

a2
n−1a

2
nan+1

ϕ
′
(

ai (an +ai−1−ai)
anan−1

)

�
n−1

∑
i=1

(ai−ai−1) (an−ai)ai

an−1a2
nan+1

(
ϕ
(

ai (ai−ai−1)
anan−1

)
+ ϕ

(
(an−ai) (ai−ai−1)

anan−1

))

�
n−1

∑
i=1

2ai (an−ai)(ai−ai−1)
an+1a2

nan−1
ϕ

(
∑n−1

i=1 ai (an−ai)(ai−ai−1)
2

∑n−1
i=1 2an−1ai (an−ai) (ai−ai−1)

)
� 0.

hold, which means that the bound obtained by the 1 -quasiconvexity of f (that includes
ϕ ′

) is better than the bound obtained by its superquadracity.

Proof. Under our conditions on ai for n � 2 inequality (1.9) holds. Now using
the notation (2.3) we see that in our case xi,1 < 2xi, xi,2 < 2xi, in other words ai−1

an−1
<

ai
an−1

< 2 ai(an+ai−1−ai)
anan−1

when an � 2(an−1−an−2) but as it is given that an − an−1 �
an−1−an−2, therefore an � 2an−1−an−2 � 2(an−1−an−2) . Hence, the conditions to
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use Lemma 5 are satisfied and therefore for n � 2,

ai

an
f

(
ai−1

an−1

)
+
(

an−ai

an

)
f

(
ai

an−1

)
− f

(
ai

an

)

� ϕ
′
(

ai (an +ai−1−ai)
anan−1

)(
ai

an

)(
an−ai

an

)(
ai−ai−1

an−1

)2

� ai

an
f

(
(an−ai)(ai −ai−1)

anan−1

)
+

an−ai

an
f

(
ai (ai−ai−1)

anan−1

)

=
ai (an−ai)(ai−ai−1)

a2
nan−1

(
ϕ
(

ai (ai−ai−1)
anan−1

)
+ ϕ

(
(am −ai)(ai −ai−1)

anan−1

))
� 0.

Now summing up for i = 1, ...,n−1 and dividing by an+1, we get that all the inequali-
ties stated in Theorem 3 hold. The proof is complete. �

Up to now we have dealt with and compared the lower bounds derived for the
differences defined by (1.6). By using similar arguments analogous results for the dif-
ferences defined by (1.7) can be derived too. Here we just use Lemma 6 instead of
Lemma 7. Hence instead of giving these results in three new theorems we sum up them
in the following more comprehensive form:

THEOREM 4. Let ϕ : [0,b)→ R+, 0 < b � ∞ be a differentiable convex increas-
ing function and let f = xϕ . Let the sequence {ai} , i = 1, ..., be increasing and such
that {ai+1−ai} is decreasing and let a0 = 0 . Then, for n � 2

An+1 ( f )−An ( f ) (2.9)

�
n−1

∑
i=1

(ai+1−ai)2 ai (an−ai)
an−1a2

na
2
n+1

ϕ
′
(

ai (an +ai+1−ai)
anan+1

)

�
n−1

∑
i=1

(ai+1−ai)2 ai (an−ai)
an−1a2

na
2
n+1

ϕ
′
(

ai

an

)
� 0.

If ϕ satisfies also that ϕ (0) = 0 = lim
x→0+

xϕ ′
(x) , then

An+1 ( f )−An ( f ) (2.10)

�
n−1

∑
i=1

(ai+1−ai)ai (an−ai)
an−1a2

nan+1

(
ϕ
(

(an−ai) (ai+1−ai)
anan+1

)
+ ϕ

(
ai (ai+1−ai)

an (an+1)

))

�
n−1

∑
i=1

2(ai+1−ai)ai (an−ai)
an−1a2

nan+1
ϕ
(

ai+1−ai

2an+1

)

�
n−1

∑
i=1

2(ai+1−ai)ai (an−ai)
an−1a2

nan+1
ϕ

(
∑n−1

i=1 (ai+1−ai)
2 ai (an−ai)

∑n−1
i=1 2an+1 (ai+1−ai)ai (an−ai)

)
� 0.
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Moreover, the inequalities above can be compared. In fact,

An+1 ( f )−An ( f ) �
n−1

∑
i=1

(ai+1−ai)
2 ai (an−ai)

an−1a2
na

2
n+1

ϕ
′
(

ai (an +ai+1−ai)
anan+1

)
(2.11)

�
n−1

∑
i=1

(ai+1−ai)ai (an−ai)
an−1a2

nan+1

(
ϕ
(

(an−ai)(ai+1−ai)
anan+1

)
+ ϕ

(
ai (ai+1−ai)

an (an+1)

))
� 0

hold.
Further, if ϕ ′

is also convex, then

An+1 ( f )−An ( f ) (2.12)

�
n−1

∑
i=1

(ai+1−ai)2 ai (an−ai)
an−1a2

na
2
n+1

ϕ
′
(

∑n−1
i=1 a2

i (an−ai)(ai+1−ai)2

an ∑n−1
i=1 ai (an−ai)(ai+1−ai)

2

)
� 0.

Proof. Using (1.8) in Lemma 6, the 1-quasiconvexity of f , and Lemma 2 and
denoting

αi,1 =
ai

an
, αi,2 =

an−ai

an
, xi,1 =

ai+1

an+1
, xi,2 =

ai

an+1
, (2.13)

xi = αi,1xi,1 + αi,2xi,2 =
ai (an +ai+1−ai)

anan+1
, i = 1, ...,n−1,

we get from (1.3) and (2.13) that the inequalities

An+1 ( f )−An ( f ) � 1
an−1

n−1

∑
i=1

(
f

(
ai (an +ai+1−ai)

anan+1

)
− f

(
ai

an

))
(2.14)

+
n−1

∑
i=1

(ai+1−ai)2 ai (an−ai)
an−1a2

na
2
n+1

ϕ
′
(

ai (an +ai+1−ai)
anan+1

)

�
n−1

∑
i=1

(ai+1−ai)2 ai (an−ai)
an−1a2

na
2
n+1

ϕ
′
(

ai

an

)
� 0

hold. The second inequality in (2.14) holds since f and ϕ ′
are increasing and an+ai+1−ai

an+1
� 1, i = 1, ...,n−1. Hence, (2.9) holds.

According to Lemma 4 when ϕ (0) = 0 = lim
x→0+

xϕ ′
(x) it yields that f is su-

perquadratic. Therefore we get from (1.2) in Lemma 1 and from (2.13) that

An+1 ( f )−An ( f ) (2.15)

� 1
an−1

n−1

∑
i=1

(
ai

an
f

(
ai+1

an+1

)
+

an−ai

an
f

(
ai

an+1

)
− f

(
ai

an

))

� 1
an−1

n−1

∑
i=1

(
f

(
ai (an +ai+1−ai)

anan+1

)
− f

(
ai

an

))

+
n−1

∑
i=1

ai

an−1an

(
f

(
(an−ai) (ai+1−ai)

anan+1

)
+

an−ai

an−1an
f

(
ai (ai+1−ai)

an (an+1)

))
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�
n−1

∑
i=1

ai

an−1an

(
f

(
(an−ai)(ai+1−ai)

anan+1

)
+

an−ai

an−1an
f

(
ai (ai+1−ai)

an (an+1)

))

�
n−1

∑
i=1

(
ϕ
(

(an−ai)(ai+1−ai)
anan+1

)
+ ϕ

(
ai (ai+1−ai)

an (an+1)

))
(ai+1−ai)ai (an−ai)

an−1a2
nan+1

� 0.

Using (1.5) in Lemma 5, we get from ai+1−ai � ai−ai−1 � ai that ai+1
an+1

� 2 ai
an+1

holds and therefore the bound in the first inequality in (2.9) obtained by using the
1-quasiconvexity of f is better that the bound obtained in (2.15) by using the su-
perquadracity of f . This means that inequalities (2.11) hold.

Further, if ϕ ′
is also convex, then from (2.9) by Jensen’s inequality we get that

(2.12) holds.
Finally since ϕ is convex we get from (2.15) and Jensen’s inequality that (2.10)

holds. The proof is complete. �

3. Examples

In our first example we give the announced refinement of (1.10):

EXAMPLE 2. For ai = i, i = 0,1, ... we get from Theorem 1 by the 1-quasiconvexity
of f where f = xϕ , under the conditions there on ϕ and f that

1
n

n−1

∑
i=0

f

(
i

n−1

)
− 1

n+1

n

∑
i=0

f

(
i
n

)

� 1

(n+1)n2 (n−1)2
n−1

∑
i=1

i(n− i)ϕ
′
(

i
n

)
� 0.

If ϕ ′
is also convex on [0,∞) we get that

1
n

n−1

∑
i=0

f

(
i

n−1

)
− 1

n+1

n

∑
i=0

f

(
i
n

)
� 1

6n(n−1)
ϕ

′
(

1
2

)
� 0

because ∑n−1
i=1 i(n− i) = n(n−1)(n+1)

6 and ∑n−1
i=1 i2 (n− i) = n2(n−1)(n+1)

12 .
From Theorem 2 we get by the superquadracity of f where f = xϕ and by

Jensen’s inequality for the convex function ϕ that

1
n

n−1

∑
i=0

f

(
i

n−1

)
− 1

n+1

n

∑
i=0

f

(
i
n

)

� 2
(n+1)n2 (n−1)

n−1

∑
i=1

i(n− i)ϕ
(

i
(n−1)n

)
� 1

3n
ϕ
(

1
2(n−1)

)
� 0.

The first inequality is obtained in this special case because

n−1

∑
i=1

an−ai =
n−1

∑
i=1

(n− i) =
n−1

∑
i=1

i =
n−1

∑
i=1

ai.
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From Theorem 3 we get that the bounds obtained by the 1-quasiconvexity of f is better
that by its superquadracity.

1
n

n−1

∑
i=1

f

(
i

n−1

)
− 1

n+1

n

∑
i=0

f

(
i
n

)

� 1

(n+1)n2 (n−1)2
n−1

∑
i=1

i(n− i)ϕ
′
(

i
n

)

� 2
(n+1)n2 (n−1)

n−1

∑
i=1

i(n− i)ϕ
(

i
(n−1)n

)
� 0.

Now we will see that when ϕ ′
is also convex and ϕ is defined on [0,∞) , the lower

bound that we can derive from the convexity of ϕ ′
is again better than the lower bound

we get from the convexity of ϕ which means that we get

1
6n(n−1)

ϕ
′
(

1
2

)
� 1

3n
ϕ
(

1
2(n−1)

)
� 0.

To see that this inequality holds, we use the inequalities xϕ ′ � ϕ (see Lemma 3) and

x1ϕ
(

1
x1

)
< x2ϕ

(
1
x2

)
, 0 < x2 < x1 , which are satisfied under our conditions on ϕ and

we find that

1
6n(n−1)

ϕ
′
(

1
2

)
=

2
6n(n−1)

1
2

ϕ
′
(

1
2

)
� 1

6n(n−1)
2ϕ
(

1
2

)

� 1
6n(n−1)

2(n−1)ϕ
(

1
2(n−1)

)
=

1
3n

ϕ
(

1
2(n−1)

)
� 0.

Hence,
1

6n(n−1)
ϕ

′
(

1
2

)
� 1

3n
ϕ
(

1
2(n−1)

)
� 0.

Therefore, from the inequalities derived in our case and in view of the 1-quasiconvexity
of f and the superquadracity of f we can deduce that the bound obtained by the 1-
quasiconvexity of f = xϕ is better than by its superquadracity

1
n

n−1

∑
i=0

f

(
i

n−1

)
− 1

n+1

n

∑
i=0

f

(
i
n

)

� 1
6n(n−1)

ϕ
′
(

1
2

)
� 1

3n
ϕ
(

1
2(n−1)

)
� 0.

We also present one example with another natural choice of the basic sequence.
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EXAMPLE 3. Let us choose now in Theorems 1, 2 and 3 ϕ (0) = 0, a0 = 0 and
ai = 2i−1, i = 1, ... . Then, by the 1-quasiconvexity of f = xϕ the inequalities

1
2n−1

n−1

∑
i=1

f

(
2i−1
2n−3

)
− 1

2n+1

n

∑
i=1

f

(
2i−1
2n−1

)

� 8

(2n+1)(2n−1)2 (2n−3)2
n−1

∑
i=1

(2i−1)(n− i)ϕ
′
(

2i−1
2n−1

)

� 4n(n−1)
3(2n+1)(2n−1)(2n−3)2

ϕ
′
(

2n2−4n−1

(2n−1)2

)
� 0

hold, where the last inequality is derived if ϕ ′
is convex. By the superquadracity of

f = xϕ we obtain also that since ϕ is convex

1
2n−1

n−1

∑
i=1

f

(
2i−1
2n−3

)
− 1

2n+1

n

∑
i=1

f

(
2i−1
2n−1

)

�
n−1

∑
i=1

4(2i−1)(n− i)

(2n+1)(2n−1)2 (2n−3)

(
ϕ
(

4(n− i)
(2n−3)(2n−1)

)
+ ϕ

(
2(2i−1)

(2n−3)(2n−1)

))

� 4n(n−1)
(2n+1)(2n−1)(2n−3)

ϕ
(

1
2n−1

)
� 0.

In this case the requirement an � 2(an−1−an−2) holds for n � 3 and we get that the
lower bound obtained by the quasiconvexity of f = xϕ is better than the lower bound
obtained by its superquadracity which means that

1
2n−1

n−1

∑
i=1

f

(
2i−1
2n−3

)
− 1

2n+1

n

∑
i=1

f

(
2i−1
2n−1

)

� 8

(2n+1)(2n−1)2 (2n−3)2
n−1

∑
i=1

(2i−1)(n− i)ϕ
′
(

2i−1
2n−1

)

�
n−1

∑
i=1

4(2i−1)(n− i)

(2n+1)(2n−1)2 (2n−3)

(
ϕ
(

4(n− i)
(2n−3)(2n−1)

)
+ ϕ

(
2(2i−1)

(2n−3)(2n−1)

))

� 4n(n−1)
(2n+1)(2n−1)(2n−3)

ϕ
(

1
2n−1

)
� 0.

In our next example we give a similar application of Theorem 4.

EXAMPLE 4. In this example we use Theorem 4 to see that also in this case all the
lower bounds obtained by the 1-quasiconvexity of f are better that those obtained by
its superquadracity, for the sequence ai = i, i = 0,1, ...n. In this case An ( f ) becomes

Cn ( f ) =
1

n−1

n−1

∑
i=1

f

(
i
n

)
,
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and because ai+1−ai = 1, i = 0,1, ... , we get instead of inequality the equality

Cn+1 ( f )−Cn ( f ) =
1

n−1

n−1

∑
i=1

(
i
n

f

(
i+1
n+1

)
+

n− i
n

f

(
i

n+1

)
− f

(
i
n

))
,

and we obtain the following
Let ϕ and f be as in Lemma 2. Then, since f is 1-quasiconvex we find, because

αi = i
n , xi = i+1

n+1 , yi = i
n+1 , and αixi +(1−αi)yi = xi = i

n , i = 0, ... , that

Cn+1 ( f )−Cn ( f ) =
1

n−1

n−1

∑
i=1

(
i
n

f

(
i+1
n+1

)
+

n− i
n

f

(
i

n+1

)
− f

(
i
n

))

� 1
n−1

n−1

∑
i=1

ϕ
′
(

i
n

)(
i(n− i)

n2 (n+1)2

)
� 0,

and since f is superquadratic (see Lemma 4) we get from Lemma 1 that

Cn+1 ( f )−Cn ( f ) =
n−1

∑
i=1

i
n

f

(
i+1
n+1

)
+

n− i
n

f

(
i

n+1

)

� 1
n−1

n−1

∑
i=1

(
i(n− i)

n2 (n+1)
ϕ
(

n− i
n(n+1)

)
+

i(n− i)
n2 (n+1)

ϕ
(

i
n(n+1)

))

=
1

n−1

n−1

∑
i=1

2i(n− i)
n2 (n+1)

ϕ
(

i
n(n+1)

)
� 0.

This means that we have that

Cn+1 ( f )−Cn ( f ) � 1
n−1

n−1

∑
i=1

i(n− i)

n2 (n+1)2
ϕ

′
(

i
n

)

� 1
n−1

n−1

∑
i=1

2i(n− i)
n2 (n+1)

ϕ
(

i
n(n+1)

)
� 0.

Further, if ϕ ′
is also convex, for instance when f (x) = xp , x � 0, p � 3, then

Cn+1 ( f )−Cn ( f ) � 1
n−1

n−1

∑
i=1

ϕ
′
(

i
n

)(
i(n− i)

n2 (n+1)2

)

�
n−1

∑
i=1

i(n− i)
(n−1)n2 (n+1)2

ϕ
′
(

∑n−1
i=1

i2(n−i)
n

∑n−1
i=1 i(n− i)

)

=
1

6n(n+1)
ϕ

′
(

1
2

)
� 0,

and since ϕ is convex we get that
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Cn+1 ( f )−Cn ( f ) � 1
n−1

n−1

∑
i=1

2i(n− i)
n2 (n+1)

ϕ
(

i
n(n+1)

)

� 2
n−1

∑
i=1

i(n− i)
(n−1)n2 (n+1)

ϕ

(
∑n−1

i=1
i2(n−i)

n

n(n+1)∑n−1
i=1 i(n− i)

)

=
1
3n

ϕ
(

1
2(n+1)

)
� 0.

Moreover, when ϕ is defined on x � 0 we obtain by Lemma 3 using that 1
2 ϕ ′ ( 1

2

)
�

ϕ
( 1

2

)
and 2(n+1)ϕ

(
1

2(n+1)

)
� 2ϕ

( 1
2

)
that

1
6n(n+1)

ϕ
′
(

1
2

)
� 1

3n
ϕ
(

1
2(n+1)

)
� 0.

Therefore, again, the bound obtained by using the 1-quasiconvexity of f is better than
the bound we get using its superquadracity, that is,

Cn+1 ( f )−Cn ( f ) � 1
6n(n+1)

ϕ
′
(

1
2

)
� 1

3n
ϕ
(

1
2(n+1)

)
� 0.

We also remark that by taking in An the sequence {ai} where ai = 2i+1, i = 1, ...
and a0 = 0 the bounds of 1

2n+1 ∑n
i=1 f

(
2i+1
2n+3

)− 1
2n−1 ∑n−1

i=1 f
(

2i+1
2n+1

)
obtained by using

the 1-quasiconvexity of f is better that the bounds obtained by using supequadracity
(c.f. Example 3).

Finally, we present our announced refinements of (1.11)

EXAMPLE 5. The functions f (x) = xp, p � 2, x � 0, are the basic cases of
1-quasiconvex functions as well as superquadratic functions. Therefore we obtain

from Example 2 that the ratio

(
(n+1)∑n−1

i=1 ip

n∑n
i=1 ip

) 1
p

is not only bounded below by n−1
n

but by strictly better lower bounds when p � 2 instead of p � 1. Indeed, from the 1-
quasiconvexity of f (x) = xp, x � 0, p � 2 we find from Example 2 that when n � 2
the first inequality in (3.1) holds(

(n+1)∑n−1
i=1 ip

n∑n
i=1 ip

) 1
p

� n−1
n

(1+ Δ1)
1
p � n−1

n
(1+ Δ2)

1
p � 0, (3.1)

where Δ1 is defined by (3.2).
The second inequality in (3.1) holds since 0 < i

n � 1, i = 1, ...,n, ∑n
i=1

(
i
n

)p �
∑n

i=1

(
i
n

)2
, when p � 2 and therefore

Δ1 =
(p−1)(n+1)

2p−26n(n−1)∑n
i=1

(
i
n

)p � Δ2 =
p−1

2p−2 (n−1)(2n+1)
� 0 (3.2)

is satisfied. The first inequality in (3.1) follows from Example 2. Therefore (3.1)holds
as a result of (3.2) and Example 2 and the proof of the example is complete.
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Similarly from Example 4 we obtain that:

EXAMPLE 6. For p � 2 when n � 2

(
(n−1)∑n

i=1 ip

n∑n−1
i=1 ip

) 1
p

� n+1
n

(1+ Δ1)
1
p � n+1

n
(1+ Δ2)

1
p � 0, (3.3)

holds where

Δ1 =
(p−1)(n−1)

2p−26n(n+1)∑n−1
i=1

(
i
n

)p � Δ2 =
p−1

2p−2 (n+1)(2n−1)
� 0.

From the superquadracity of f (x) = xp p � 2, x � 0, we obtain similar inequal-
ities to (3.1) and (3.3), but because of Theorems 3 and 4 we know that (3.1) and (3.3)
are better inequalities than those derived by superquadracity.

Examples 5 and 6 can be generalized by replacing f (x) = xp, x � 0, p � 2 by a
general 1-quasiconvex function f (x) = xϕ (x) where ϕ is a convex increasing func-
tion satisfying ϕ (0) = 0 = lim

x→0+
xϕ ′

(x) .

FINAL REMARK. Another reason that motivated us to deal with the lower bounds
of the differences of averages is that to use Lemma 5 in order to compare a bound
obtained by the 1-quasiconvexity of a function with its bound obtained by the su-
perquadracity we need that the conditions

0 � xi � 2x, 0 < b � ∞, 0 � αi � 1, 1 = 1, ...,m,
m

∑
i=1

αi = 1, x =
m

∑
i=1

αixi

hold. In this paper we see that this condition is very natural and automatically holds
when dealing with bounds of differences of averages as seen in Theorems 1, 2, 3, 4 and
in Examples 2, 3 and 4.
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