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Abstract. In this paper, we study the high-dimensional Hausdorff operators on the weighted
Herz-type Hardy spaces and obtain some substantial extensions from the previous results in [3].
Particularly, for the Hausdorff operators, we establish their sharp boundedness on the power
weighted Herz-type Hardy spaces. Our results reveal that the Housdorff operators have better
performance in the Herz-type Hardy spaces HK̇α,p

q (Rn;w) (hK̇α,p
q (Rn;w) ) than their perfor-

mance in the Hardy spaces Hp(Rn;w) (hp(Rn;w) ) when 0 < p < 1 .

1. Introduction

Fix an integrable function φ on the half-line (0,∞) . The classical Hausdorff op-
erator hφ with the kernel function φ is defined in the integral form by

hφ ( f )(x) =
∫ ∞

0

φ(t)
t

f
(x

t

)
dt,

for all Schwartz functions f . By a change of variables, one easily sees that for x > 0,

hφ ( f )(x) =
∫ ∞

0

φ(x/t)
t

f (t)dt.

Thus, many classical operators can be derived from hφ if we choose suitable kernel
functions φ (see [4, 5, 8, 29]). These operators include the Hardy operator, the adjoint
Hardy operator [7, 10, 11] and the Cesàro operator [19, 38]. The Hardy-Littlewood-
Pólya operator and the Riemann-Liouville fractional integral can also be derived from
the Hausdorff operator.

For n � 2, a natural n -dimensional extension of hφ is the operator

HΦ( f )(x) =
∫

Rn

Φ(y)
|y|n f

(
x
|y|
)

dy,
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where Φ is a fixed integrable function. Same as hφ , in the last 15 years, the operator
HΦ and its varieties received extensive studies. By the Minkowski inequality, it is easy
to see that HΦ is bounded on the Lebesgue space Lp(Rn) for all 1 � p � ∞, provided
that Φ satisfies the size condition∫

Rn
|Φ(y)| |y|−n+n/p dy < ∞.

The same argument can show that HΦ is also bounded on the real Hardy space H1(Rn)
if we assume that Φ is a Lebesgue integrable function on Rn. The modern systematic
study of Hausdorff operators was started by Liflyand and Móricz in [26]. For more
involved situations about the Hausdorff operator on the Hardy spaces and other spaces,
the reader can see [6, 12, 13, 21, 22, 23, 24, 27, 28, 39, 41, 43], among many others.
However, except in the case n = 1, we can not find any paper in literature about the
research of the Hausdorff operator HΦ on the space Hp(Rn) when n� 2 and 0< p < 1.
Even in the case n = 1, Liflyand and Miyachi [25] proved that there is a bounded
function φ , whose support is contained in [a,b] ⊂ (0, ∞) such that hφ is not bounded
on Hp(R) for any 0 < p < 1. Thus, finding a good substitute of Hp in which the
Hausdorff operator is bounded becomes an interesting research topic.

In this paper, we will study a more general operator

HΦ,A( f )(x) =
∫

Rn

Φ(y)
|y|n f (A(y)x)dy,

on the weighted Herz-type Hardy space HK̇α ,p
q (Rn;w) and on the weighted local Herz-

type Hardy space hK̇α ,p
q (Rn;w) for 0 < p < ∞. Here, in the definition of HΦ,A, A(y)

is an n×n matrix satisfying detA(y) �= 0 almost everywhere in the support of Φ.
The operator HΦ,A was initially studied by Lerner and Liflyand in [21] to study its

boundedness on the Hardy space H1(Rn) . It is easy to see that the Hausdorff operator
HΦ is a special case of HΦ,A if one chooses a special matrix A(y) . In [21], Lerner and
Liflyand obtained the following theorem.

THEOREM A.

‖HΦ,A( f )‖H1(Rn) �
(∫

Rn

|Φ(y)|
|y|n

∥∥A−1(y)
∥∥n

dy

)
‖ f‖H1(Rn) ,

where
∥∥A−1(y)

∥∥ is an operator norm of A−1(y) to be specified later on.

Besides the Lebesgue and Hardy spaces, the Herz-type spaces are other important
function spaces raised in the research work from harmonic analysis and its related top-
ics. In 1964, Beurling [2] first introduced some fundamental form of Herz spaces in
order to study some convolution algebras. Four years later, Herz [18] gave versions of
the spaces defined in a slightly different but more convenience setting. Since then, the
theory of Herz spaces has been significantly developed, and these spaces have turned
out to be quite useful in analysis. For example, they were used by Baernstein and
Sawyer [1] to characterize the multipliers on the standard Hardy spaces, and used by
Lu and Yang [35] in the study on certain partial differential equations.
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On the other hand, the theory of Hardy spaces associated with Herz spaces has
been developed in [15, 31]. These new Hardy spaces can be regarded as the local ver-
sion at the origin of the classical Hardy spaces Hp(Rn) and are good substitutes for
Hp(Rn) when we study the boundedness of non-translation invariant operators (see
[32]). For the weighted case, Lu and Yang in 1995 introduced the weighted Herz-type
Hardy spaces HK̇α ,p

q (Rn;w) and established their atomic decompositions, Fan and
Yang in 1997 introduced weighted local Herz-type Hardy spaces hK̇α ,p

q (Rn;w) and
established their atomic decompositions and Lee in 2006 found the molecular char-
acterizations of weighted Herz-type Hardy spaces. We will recall the definitions of
HK̇α ,p

q (Rn;w) and hK̇α ,p
q (Rn;w) and list their atomic characterizations in the second

section. For proofs of the atomic decompositions and further details about these spaces,
the reader can see the book [37] and the papers [9, 20, 30, 33, 34, 36].

Now, we find that the Herz-type Hardy space is not only a good substitute for
Hp(Rn) when one studies the boundedness of non-translation invariant operators, but
it also plays a quite different role from the Hardy space Hp(Rn), when 0 < p < 1, in
the study of the boundedness of the Hausdorff operator. In a recent paper, the authors
obtained the following result:

THEOREM B. ([3]) Let 0 < p � 1 < q < ∞ , and n(1−1/q) � α < ∞. We have

‖HΦ,A ( f )‖
HK̇α,1

q (Rn)

�
∫

Rn

|Φ(y)|
|y|n

∥∥A−1(y)
∥∥α ∣∣detA−1(y)

∣∣1/q
dy ‖ f‖

HK̇α,1
q (Rn) ,

and for 0 < p < 1,

‖HΦ,A ( f )‖HK̇α,p
q (Rn)

�
(∫

Rn

|Φ(y)|
|y|n

∥∥A−1(y)
∥∥α ∣∣detA−1(y)

∣∣1/q
(1+

∣∣log
∥∥A−1(y)

∥∥∣∣)σ dy

)
‖ f‖HK̇α,p

q (Rn)

with σ > 1−p
p .

The theorem reveals that, unlike its performance in the Hardy space Hp, the Haus-
dorff operator HΦ,A is indeed bounded on the spaces HK̇α ,p

q for all 0 < p < 1, under
only some size condition assumption on the kernel function Φ.

The main purpose of this paper is to further extend Theorem B to the weighted
Herz type Hardy space HK̇α ,p

q (Rn;w), as well as the weighted local Herz type Hardy

space hK̇α ,p
q (Rn;w). Also, in the case p = 1 and w(x) = |x|β , −n < β � 0, we obtain

the sharp size condition on Φ for the boundedness of HΦ,A on the space HK̇α ,1
q (Rn; |·|β ),

under some reasonable assumption on the matrix A .
For an invertible matrix B = (bi j)n×n , set

‖B‖ =

(
n

∑
i, j=1

|bi j|2
)1/2

.
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It is easy to see that ‖B‖ is the norm of B and

‖B‖−n � |det
(
B−1) | � ‖B−1‖n. (1)

Here and throughout this paper, we use the notation A � B to denote that there is
a constant C > 0 independent of all essential values and variables such that A � CB.
We use the notation A � B , if there exist positive constants C and c , independent of all
essential values and variables, such that cB � A � CB . Also, we use Ap to denote the
set of all Ap weights whose definitions can be found in the next section.

Now we are in a position to state our results. Our first result is about the bounded-
ness of HΦ,A on the Herz type Hardy space.

THEOREM 1. Let 1 < qi < ∞ , n(1−1/qi) � αi < ∞ , i = 1, 2 and 1/q1+α1/n =
1/q2 + α2/n. Suppose that w ∈ A1 with the critical index rw for the reverse Hölder
condition and q1 > q2rw/(rw −1) .

(i) If 1 � p < ∞ , then we have

‖HΦ,A f‖HK̇
α2 ,p
q2 (Rn;w) �C1‖ f‖HK̇

α1 ,p
q1 (Rn;w),

where

C1 =
∫
‖A−1(y)‖�1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1dy

+
∫
‖A−1(y)‖<1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α2q2/q1dy.

(ii) If 0 < p < 1 , then we have, for any σ > (1− p)/p,

‖HΦ,A f‖HK̇
α2 ,p
q2 (Rn;w) �C2‖ f‖HK̇

α1 ,p
q1 (Rn;w),

where

C2 =
∫
‖A−1(y)‖�1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1

(
1+ log‖A−1(y)‖)σ

dy

+
∫
‖A−1(y)‖<1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α2q2/q1

(
1− log‖A−1(y)‖)σ

dy.

Our second result is about the boundedness of HΦ,A on the local Herz type Hardy
space.

THEOREM 2. Let 1 < qi < ∞ , n(1−1/qi) � αi < ∞ , i = 1, 2 and 1/q1+α1/n =
1/q2 + α2/n. Suppose that w ∈ A1 with the critical index rw for the reverse Hölder
condition and q1 > q2rw/(rw −1) .

(i) If 1 � p < ∞ , then we have

‖HΦ,A f‖hK̇
α2 ,p
q2 (Rn;w) �C3‖ f‖hK̇

α1,p
q1 (Rn;w),
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where

C3 =
∫
‖A−1(y)‖�1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1dy

+
∫
‖A−1(y)‖<1

|Φ(y)|
|y|n |detA−1(y)|1/q1dy.

(ii) If 0 < p < 1 , then we have, for any σ > (1− p)/p,

‖HΦ,A f‖
hK̇

α2 ,p
q2 (Rn;w) �C4‖ f‖

hK̇
α1,p
q1 (Rn;w),

where

C4 =
∫
‖A−1(y)‖�1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1

(
1+ log‖A−1(y)‖)σ

dy

+
∫
‖A−1(y)‖<1

|Φ(y)|
|y|n |detA−1(y)|1/q1 max

{
1,‖A−1(y)‖α2q2/q1

∣∣log‖A−1(y)‖∣∣σ}dy.

When the weight is reduced to the power function, we have the following results.

THEOREM 3. Let 1 < q < ∞ , n(1−1/q) � α < ∞ and −n < β � 0 .
(i) If 1 � p < ∞ , then we have

‖HΦ,A f‖HK̇α,p
q (Rn;|·|β ) �C5‖ f‖HK̇α,p

q (Rn;|·|β ),

where

C5 =
∫

Rn

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q ‖A−1(y)‖α(1+β/n)dy.

(ii) If 0 < p < 1 , then we have, for any σ > (1− p)/p,

‖HΦ,A f‖HK̇α,p
q (Rn;|·|β ) �C6‖ f‖HK̇α,p

q (Rn;|·|β ),

where

C6 =
∫

Rn

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q‖A−1(y)‖α(1+β/n) (1+
∣∣log‖A−1(y)‖∣∣)σ

dy.

THEOREM 4. Let 1 < q < ∞ , n(1−1/q) � α < ∞ and −n < β � 0 .
(i) If 1 � p < ∞ , then we have

‖HΦ,A f‖hK̇α,p
q (Rn;|·|β ) �C7‖ f‖hK̇α,p

q (Rn;|·|β ),

where

C7 =
∫
‖A−1(y)‖<1

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q
dy

+
∫
‖A−1(y)‖�1

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q‖A−1(y)‖α(1+β/n)dy.
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(ii) If 0 < p < 1 , then we have, for any σ > (1− p)/p,

‖HΦ,A f‖hK̇α,p
q (Rn;|·|β ) �C8‖ f‖hK̇α,p

q (Rn;|·|β ),

where

C8 =∫
‖A−1(y)‖�1

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q‖A−1(y)‖α(1+β/n)(1+
∣∣log‖A−1(y)‖∣∣)σ

dy

+
∫
‖A−1(y)‖<1

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q
max

{
1,‖A−1(y)‖α(1+β/n) ∣∣log‖A−1(y)‖∣∣σ}dy.

Especially in the case p = 1, if ‖A−1(y)‖ and ‖A(y)‖−1 are comparable, we can
obtain the following sharp result.

THEOREM 5. Let 1 < q < ∞ , n(1− 1/q) � α < ∞ , −n < β � 0 and Φ be a
nonnegative function. Suppose that all entries of the same row of A(y) are nonnegative
uniformly on y ∈ supp(Φ) or non positive uniformly on y ∈ supp(Φ) and there is a
constant C independent of y such that ‖A−1(y)‖ � C‖A(y)‖−1 for all y ∈ supp(Φ) .
Then HΦ,A is bounded on HK̇α ,1

q (Rn; | · |β ) if and only if

∫
Rn

Φ(y)
|y|n ‖A−1(y)‖α(1+β/n)+(n+β )/qdy < ∞.

For the local space hK̇α ,1
q (Rn; | · |β ), we are able to obtain the following necessity

for the boundedness of HΦ,A on hK̇α ,1
q (Rn; | · |β ).

THEOREM 6. Let 1 < q < ∞ , n(1− 1/q) � α < ∞ , −n < β � 0 and Φ be a
nonnegative function. Suppose that there is a constant C independent of y such that
‖A−1(y)‖ � C‖A(y)‖−1 for all y ∈ supp(Φ) .

(i) If HΦ,A is bounded on hK̇α ,1
q (Rn; | · |β ) with α(1 + β/n)+ (n + β )/q �= n,

then we have∫
‖A−1(y)‖�1

Φ(y)
|y|n ‖A−1(y)‖α(1+β/n)+(n+β )/qdy+

∫
‖A−1(y)‖<1

Φ(y)
|y|n ‖A−1(y)‖ndy < ∞.

(ii) If HΦ,A is bounded on hK̇α ,1
q (Rn; | · |β ) with α(1+ β/n)+ (n+ β )/q = n,

then we have∫
‖A−1(y)‖�1

Φ(y)
|y|n ‖A−1(y)‖ndy+

∫
‖A−1(y)‖<1

Φ(y)
|y|n ‖A−1(y)‖n (1− log‖A−1(y)‖)dy < ∞.

Finally in this section, we want to make a few remarks about our main theorems.
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REMARK 1. Suppose A(y) = diag[1/λ1(y), . . . ,1/λn(y)] with λi(y) �= 0, for i =
1, . . . ,n. Denote

M(y) = max{|λ1(y)|, . . . , |λn(y)|}, m(y) = min{|λ1(y)|, . . . , |λn(y)|}.

If there is a constant C � 1 independent of y such that M(y) � Cm(y) , then it is easy
to check that A(y) satisfies the assumptions of Theorem 6. Furthermore, if we assume
that, for all i = 1, . . . ,n , λi(y) > 0 uniformly on y ∈ Rn or λi(y) < 0 uniformly on
y ∈ Rn , then A(y) also satisfies the conditions of Theorem 5.

REMARK 2. Let α,β and q be as in Theorem 6. It is clear that ‖A−1(y)‖n �
‖A−1(y)‖(n+β )/q if ‖A−1(y)‖ < 1. Therefore, comparing with Theorem 4 (i) and The-
orem 6, we raise an open question: Is the assumption in Theorem 4 sharp at the critical
index p = 1?

In the second section, we will introduce some necessary notation and definitions,
as well as some known results to be used later in the paper. We will prove the main
theorems in Section 3.

2. Notation and Definitions

We start this section by recalling some standard definitions and notation. The
theory of Ap weight was first introduced by Muckenhoupt in study of weighted Lp

boundedness of Hardy-Littlewood maximal functions in [40]. A weight is a nonnega-
tive, locally integrable function on Rn .

DEFINITION 1. Let 1 < p < ∞ . We say that a weight w ∈ Ap if there exists a
constant C such that for all balls B ,(

1
|B|
∫

B
w(x)dx

)(
1
|B|
∫

B
w(x)−1/(p−1)dx

)p−1

� C.

We say that a weight w ∈ A1 if there is a constant C such that for all balls B ,

1
|B|
∫

B
w(x)dx � Cessinf

x∈B
w(x) .

We define A∞ = ∪1�p<∞Ap .

It is known that Ap ⊂ Ar for all r > p , and that if w ∈ Ap with 1 < p < ∞ then
w ∈ Aq for some 1 < q < p . Therefore, we may use qw := in f{q > 1 : w ∈ Aq} to
denote the critical index of w . Obviously, if w ∈ Aq , q > 1, then we have 1 � qw < q .
A close relation to A∞ is the reverse Hölder condition. If there exist r > 1 and a fixed
constant C such that (

1
|B|
∫

B
wr(x)dx

)1/r

� C
|B|
∫

B
w(x)dx
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for all balls B ⊂ Rn , we then say that w satisfies the reverse Hölder condition of order
r and write w ∈ RHr . It is well known that w ∈ A∞ if and only if there exists some
r > 1 such that w ∈ RHr . Moreover, if w ∈ RHr , r > 1, then w ∈ RHr+ε for some
ε > 0. We thus write rw ≡ sup{r > 1 : w ∈ RHr} to denote the critical index of w for
the reverse Hölder condition.

An important example of Ap weight is the power function |x|α . It is known that
|x|α is an A1 weight if and only if −n < α � 0. Also, |x|α ∈ ∩(n+α)/n<p<∞Ap if
0 < α < ∞, where (n+ α)/n is called the critical index of |x|α .

We denote by B(x,R) the Euclidean ball centered at x with radius R . For any
w∈A∞ and any Lebesgue measurable set E , write w(E) =

∫
E w(x)dx and the Lebesgue

measure of E by |E| . We have the following standard characterization of Ap weights
(see [17] or [42]).

PROPOSITION 1. Let w∈ Ap∩RHr , p � 1 and r > 1 . Then there exist constants
C1,C2 > 0 such that

C1

( |E|
|B|
)p

� w(E)
w(B)

� C2

( |E|
|B|
)(r−1)/r

for any measurable subset E of a ball B. Especially, for any λ > 1 ,

w(B(x0,λR)) � Cλ npw(B(x0,R)) .

PROPOSITION 2. Let f be a nonnegative locally integrable function. If w ∈ Ap ,
p � 1 , then

1
|B(x0,R) |

∫
B(x0,R)

f (x)dx � C

(
1

w(B(x0,R))

∫
B(x0,R)

f p (x)w(x)dx

)1/p

.

Given a weight function w on Rn , as usual we denote by Lp
w (Rn) the weighted

Lebesgue space of all functions satisfying

‖ f‖Lp
w

=
(∫

Rn
| f (x)|pw(x)dx

)1/p

< ∞.

We denote L∞
w = L∞ and ‖ f‖L∞

w
= ‖ f‖L∞ for p = ∞ .

Let Bk = {x∈Rn : |x|� 2k},Dk = Bk \Bk−1 and χDk be the characteristic function
of Dk for k ∈ Z .

DEFINITION 2. Suppose α ∈ R , 0 < p, q < ∞ . Let w be a weight on Rn . The
homogeneous weighted Herz space K̇α ,p

q (Rn;w) is defined by

K̇α ,p
q (Rn;w) =

{
f ∈ Lq

loc (Rn \ {0};w) : ‖ f‖K̇α,p
q (Rn;w) < ∞

}
,

where

‖ f‖K̇α,p
q (Rn;w) =

{
+∞

∑
k=−∞

w(Bk)α p/n‖ f χDk‖p
Lq(Rn,w)

}1/p

.
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Let ϕ be a function in S (Rn) (the class of Schwartz functions) satisfying∫
Rn

ϕ (x)dx �= 0.

Set
f ++ (x) = sup

0<s
|ϕs ∗ f (x)| , f + (x) = sup

0<s<1
|ϕs ∗ f (x) |,

where ϕs (x) = 1
sn ϕ
(

x
s

)
.

DEFINITION 3. Let α ∈ R , 0 < p < ∞ , 1 < q < ∞ and w ∈ A1 . The homoge-
neous weighted Herz-type Hardy space HK̇α ,p

q (Rn;w) and the homogeneous weighted
local Herz-type Hardy space hK̇α ,p

q (Rn;w) are defined, respectively, by

HK̇α ,p
q (Rn;w) =

{
f ∈ S′(Rn) : f ++ ∈ K̇α ,p

q (Rn;w)
}

,

hK̇α ,p
q (Rn;w) =

{
f ∈ S′(Rn) : f + ∈ K̇α ,p

q (Rn;w)
}

,

where

‖ f‖HK̇α,p
q (Rn;w) = ‖ f ++‖K̇α,p

q (Rn;w),‖ f‖hK̇α,p
q (Rn;w) = ‖ f +‖K̇α,p

q (Rn;w).

It is known that the definitions of weighted (local) Herz-type Hardy spaces are flex-
ible on the choice of the function ϕ . If w = 1, we denote these spaces by HK̇α ,p

q (Rn)
and hK̇α ,p

q (Rn) , respectively. Obviously, K̇0,p
p (Rn) = Lp(Rn) , HK̇0,p

p (Rn) = Hp(Rn)
and hK̇0,p

p (Rn) = hp(Rn) for all 0 < p < ∞ , where Hp(Rn) and hp(Rn) are the real
Hardy space and the real local Hardy space (see [16]), respectively.

When α � n(1−1/q), the Herz-type Hardy space is an ideal space in place of
the Herz space. If 0 < p < ∞ , 1 < q < ∞ , and w ∈ A1 , Lu and Yang [34] showed that

HK̇α ,p
q (Rn;w)∩Lq

loc (Rn \ {0};w) = K̇α ,p
q (Rn;w)

for 0 < α < n(1−1/q) , while

HK̇α ,p
q (Rn;w)∩Lq

loc (Rn \ {0};w)⊂ K̇α ,p
q (Rn;w)

for n(1−1/q) � α < ∞, and the inclusion is proper.

DEFINITION 4. Suppose 0 < p < ∞ , γ < 1 < q < ∞ , n(1−1/q) � α < ∞ , and
τ � [α +n(1/q−1)] , where [s] denotes the maximal integer less than s .

(i) A function a(x) on Rn is said to be a central (α,q;w)-atom if it satisfies

supp(a) ⊂ B(0,r) = {x ∈ Rn : |x| < r}, (2)

‖a‖Lq(Rn,w) � w(B(0,r))−α/n, (3)∫
Rn

a(x)xβ dx = 0 (4)

for all multi-indices β with |β | � τ .
(ii) A function a(x) on Rn is said to be a central (α,q;w)- block if it satisfies

(2) and (3).
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Similar to the real Hardy spaces, the space HK̇α ,p
q (Rn;w) and hK̇α ,p

q (Rn;w) have
atomic decompositions.

PROPOSITION 3. Let 0 < p < ∞ , 1 < q < ∞ , n(1−1/q) � α < ∞ and w ∈ A1 .
(i) f ∈ HK̇α ,p

q (Rn;w) if and only if

f =
+∞

∑
k=−∞

λkak

in Schwartz’s distributional sense, where ∑+∞
k=−∞ |λk|p < ∞ , and each ak is a central

(α,q;w)-atom with support in Bk . Moreover,

‖ f‖HK̇α,p
q (Rn;w) ≈ in f

{(
+∞

∑
k=−∞

|λk|p
)}1/p

,

where the infimum is taken over all decompositions of f as above.
(ii) f ∈ hK̇α ,p

q (Rn;w) if and only if

f =
+∞

∑
k=−∞

λkak

in Schwartz’s distributional sense, where ∑+∞
k=−∞ |λk|p < ∞ and each ak (k � 0) is a

central (α,q;w)-atom and each ak (k > 0) is a central (α,q;w)-block with support
in Bk . Moreover,

‖ f‖hK̇α,p
q (Rn;w) ≈ in f

{(
+∞

∑
k=−∞

|λk|p
)}1/p

,

where the infimum is taken over all decompositions of f as above.

3. Proof of the Theorems

3.1. Proof of Theorem 1

Firstly, we prove (i). According to part (i) of Proposition 3, any f ∈HK̇α1,p
q1 (Rn;w)

has an atomic decomposition

f =
∞

∑
k=−∞

λkak,

where
(
∑∞

k=−∞ |λk|p
)1/p � ‖ f‖

HK̇
α1 ,p
q1 (Rn;w) and each ak is a central (α1,q1;w)-atom

with support in Bk . Now

HΦ,A ( f ) =
∞

∑
k=−∞

λkHΦ,A (ak) .
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To prove the theorem, it suffices to show that

HΦ,A (ak) =
∞

∑
j=−∞

λ̃k jHΦ,A
(
ak j
)
,

where each HΦ,A
(
ak j
)

is a central (α2,q2;w)-atom and

∞

∑
j=−∞

|λ̃k j|p � 1

uniformly on k ∈ Z .
We rewrite

HΦ,A (ak) (x) =
∞

∑
j=−∞

∫
2 j�‖A−1(y)‖<2 j+1

Φ(y)
|y|n ak(A(y)x)dy

:=
∞

∑
j=−∞

bk j(x). (5)

It is easy to check that each bk j satisfies the same cancellation condition as ak . With-
out loss of generality, we may assume that supp (ak) ⊂ B(0,ρ) . Hence we have
supp (ak(A(y)·)) ⊂ B(0,‖A−1(y)‖ρ) and

supp(bk j) ⊂ B(0,2 j+1ρ).

Also, the size of bk j is

‖bk j‖Lq2 (Rn;w) �
∫

2 j�‖A−1(y)‖<2 j+1

|Φ(y)|
|y|n ‖ak (A(y)·)‖Lq2 (Rn;w)dy. (6)

Since q1 > q2rw/(rw − 1) , there is 1 < r < rw such that q1 = q2r′ = q2r/(r− 1) . By
virtue of the reverse Hölder condition and Proposition 2, we obtain

‖ak (A(y)·)‖Lq2 (Rn;w)

�
(∫

A−1(y)B(0,ρ)
|ak(A(y)x)|q1 dx

)1/q1
(∫

A−1(y)B(0,ρ)
wr(x)dx

)1/(rq2)

�|detA−1(y)|1/q1

(∫
B(0,ρ)

|ak(z)|q1 dz

)1/q1
(∫

B(0,‖A−1(y)‖ρ)
wr(x)dx

)1/(rq2)

�|detA−1(y)|1/q1 |B(0,ρ)|1/q1

(
1

w(B(0,ρ))

∫
B(0,ρ)

|ak(z)|q1 w(z)dz

)1/q1

× |B(0,‖A−1(y)‖ρ)|1/(rq2)

|B(0,‖A−1(y)‖ρ)|1/q2
w(B(0,‖A−1(y)‖ρ)1/q2.
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Hence

‖ak (A(y)·)‖Lq2 (Rn;w)

�|detA−1(y)|1/q1
‖A−1(y)‖n/(rq2)

‖A−1(y)‖n/q2

w
(
B(0,‖A−1(y)‖ρ)

)1/q2

w(B(0,ρ))1/q1
‖ak‖Lq1 (Rn;w)

�
( |detA−1(y)|

‖A−1(y)‖n

)1/q1 w
(
B(0,‖A−1(y)‖ρ)

)1/q2

w(B(0,ρ))1/q1
w(B(0,ρ))−α1/n (7)

�
( |detA−1(y)|

‖A−1(y)‖n

)1/q1(w(B(0,2 j+1ρ))
w(B(0,ρ))

)1/q2+α2/n

w(B(0,2 j+1ρ))−α2/n, (8)

where the last inequality is due to 1/q2 + α2/n = 1/q1 + α1/n .
When j � 0, (8) shows that

‖ak (A(y)·)‖Lq2 (Rn;w) �2 jn(1/q2+α2/n)
( |detA−1(y)|

‖A−1(y)‖n

)1/q1

w(B(0,2 j+1ρ))−α2/n

�|detA−1(y)|1/q1‖A−1(y)‖α1w(B(0,2 j+1ρ))−α2/n. (9)

When j = −1, we have

‖ak (A(y)·)‖Lq2 (Rn;w) �
( |detA−1(y)|

‖A−1(y)‖n

)1/q1

w(B(0,ρ))−α2/n. (10)

When j < −1, by Proposition 1, (8) yields that

‖ak (A(y)·)‖Lq2 (Rn;w) �
( |detA−1(y)|

‖A−1(y)‖n

)1/q1

2 jn(1/q2+α2/n)/r′w(B(0,2 j+1ρ))−α2/n

�|detA−1(y)|1/q1‖A−1(y)‖α2q2/q1w(B(0,2 j+1ρ))−α2/n. (11)

From (6)–(11), we have

‖bk j‖Lq2 (Rn;w) � λ̃k j w(B(0,2 j+1ρ))−α2/n,

where

λ̃k j =
∫

2 j�‖A−1(y)‖<2 j+1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1dy, if j � 0

and

λ̃k j =
∫

2 j�‖A−1(y)‖<2 j+1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α2q2/q1dy, if j < 0.
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Let

bk j = λ̃k jak j.

It is easy to check that each ak j is a central (α2,q2;w)-atom. Next we will show that

∑∞
j=−∞ |λ̃k j|p is uniformly bounded on k ∈ Z .

When 1 � p < ∞ ,

∞

∑
j=−∞

|λ̃k j|p �
(

∞

∑
j=−∞

|λ̃k j|
)p

�
(∫

‖A−1(y)‖�1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1dy

+
∫
‖A−1(y)‖<1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α2q2/q1dy

)p

. (12)

(i) of Theorem 1 now is proved.
It remains to prove part (ii). When 0 < p < 1,

∞

∑
j=−∞

|λ̃k j|p =
∞

∑
j=1

|λ̃k j|p +
−1

∑
j=−∞

|λ̃k j|p + |λ̃k0|p

:= I + II + |λ̃k0|p. (13)

Then

I �
(

∞

∑
j=1

jσ |λ̃k j|
)p( ∞

∑
j=1

j−(1−p)/(σ p)

)1/(1−p)

�
(∫

‖A−1(y)‖�2

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1

(
log‖A−1(y)‖)σ

dy

)p

. (14)

II �
( −1

∑
j=−∞

| j|σ |λ̃k j|
)p( −1

∑
j=−∞

| j|−(1−p)/(σ p)

)1/(1−p)

�
(∫

‖A−1(y)‖<1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α2q2/q1

∣∣log‖A−1(y)‖∣∣σdy

)p

. (15)

(13)–(15) yield that, if 0 < p < 1,
∞

∑
j=−∞

|λ̃k j|p (16)

�
(∫

‖A−1(y)‖�1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1

(
1+
∣∣log‖A−1(y)‖∣∣)σ

dy

+
∫
‖A−1(y)‖<1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α2q2/q1

(
1+
∣∣log‖A−1(y)‖∣∣)σ

dy

)p

.

The proof of theorem is completed. �
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3.2. Proof of Theorem 2

Firstly, we prove (i). According to part (ii) of Proposition 3, any f ∈ hK̇α1,p
q1 (Rn;w)

has an atomic decomposition

f = ∑λkak,

where (∑ |λk|p)1/p � ‖ f‖
hK̇

α1,p
q1 (Rn;w) and each ak (k � 0) is a central (α1,q1;w)-atom

and ak (k > 0) is a central (α1,q1;w)-block with support in Bk . By Theorem 1 (i), it
suffices to show that, for any k � 1,

HΦ,A (ak) =
∞

∑
j=−∞

λ̃k jHΦ,A
(
ak j
)
,

where each HΦ,A
(
ak j
)

is a central (α2,q2;w)-block and

∞

∑
j=−∞

|λ̃k j|p � 1

uniformly on k ∈ Z+ .
We rewrite

(HΦ,Aak) (x)

=
∫
‖A−1(y)‖<2−k

Φ(y)
|y|n ak(A(y)x)dy+

∞

∑
j=−k

∫
2 j�‖A−1(y)‖<2 j+1

Φ(y)
|y|n ak(A(y)x)dy

:= b̃k +
∞

∑
j=−k

bk j(x). (17)

When j �−k , by the proof of Theorem 1 (i), it is easy to check that bk j can be rewritten
as

bk j = λ̃k jak j,

where each ak j is an (α2,q2;w)-block supported in B(0,2 j+k+1) with ‖ak j‖hK̇
α2,p
q2 (Rn;w)

� 1, and

λ̃k j =

{∫
2 j�‖A−1(y)‖<2 j+1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1dy, j � 0,∫

2 j�‖A−1(y)‖<2 j+1
|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α2q2/q1dy, −k � j < 0.

(18)

Next we turn to estimate b̃k . It is easy to see that the support of b̃k is in B(0,1)
and the size of it is

‖b̃k‖Lq2 (Rn;w) �
∫
‖A−1(y)‖<2−k

|Φ(y)|
|y|n ‖ak(A(y)·)‖Lq2 (Rn;w)dy. (19)
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Let r be as in the proof of Theorem 1 such that q1 = q2r′ . By (7), we have

‖ak(A(y)·)‖Lq2 (Rn;w)

�
( |detA−1(y)|

‖A−1(y)‖n

)1/q1 w
(
B(0,‖A−1(y)‖2k)

)1/q2 w(B(0,1))α2/n

w(B(0,2k))1/q1+α1/n
w(B(0,1))−α2/n

�
( |detA−1(y)|

‖A−1(y)‖n

)1/q1( |B(0,‖A−1(y)‖2k)|
|B(0,2k)|

)1/(q2r
′)

w(B(0,1))−α2/n

� |detA−1(y)|1/q1w(B(0,1))−α2/n, (20)

where the second inequality is due to k � 1, ‖A−1(y)‖ < 2−k and Proposition 1.
(19) and (20) imply that

‖b̃k‖Lq2 (Rn;w) �
(∫

‖A−1(y)‖<2−k

|Φ(y)|
|y|n |detA−1(y)|1/q1dy

)
w(B(0,1))−α2/n

:= λ̃k(−k−1)w(B(0,1))−α2/n. (21)

Let b̃k(x) = λ̃k(−k−1)ak(−k−1)(x) . (21) yields that ak(−k−1) is a central (α2,q2;w)-block
and

‖ak(−k−1)‖hK̇
α2,p
q2 (Rn;w) � 1.

Let

λ̃k j ≡ 0, j = −k−2,−k−3, . . .. (22)

From (18), (20) and (22), we have that, for 1 � p < ∞ ,

∞

∑
j=−∞

|λ̃k j|p �
(

∞

∑
j=−k−1

|λ̃k j|
)p

�
(∫

‖A−1(y)‖<2−k

|Φ(y)|
|y|n |detA−1(y)|1/q1dy

+
∫
‖A−1(y)‖�2

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1dy

+
∫

2−k�‖A−1(y)‖<2

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α2q2/q1dy

)p

(23)

�
(∫

‖A−1(y)‖<1

|Φ(y)|
|y|n |detA−1(y)|1/q1dy

+
∫
‖A−1(y)‖�1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1dy

)p

,
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and, for 0 < p < 1 and σ > p/(1− p) ,
∞

∑
j=−∞

|λ̃k j|p �
∞

∑
j=−k−1

|λ̃k j|p

�
(∫

‖A−1(y)‖<2−k

|Φ(y)|
|y|n |detA−1(y)|1/q1dy

+
∫
2−k�‖A−1(y)‖<2

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α2q2/q1

(
1+
∣∣log‖A−1(y)‖∣∣)σ

dy

+
∫
‖A−1(y)‖�2

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1

(
log‖A−1(y)‖)σ

dy

)p

�
(∫

‖A−1(y)‖<1

|Φ(y)|
|y|n |detA−1(y)|1/q1 max

{
1,‖A−1(y)‖α2q2/q1

∣∣log‖A−1(y)‖∣∣σ}dy

+
∫
‖A−1(y)‖�1

|Φ(y)|
|y|n |detA−1(y)|1/q1‖A−1(y)‖α1

(
1+ log‖A−1(y)‖)σ

dy

)p

.

This completes the proof of Theorem 2. �

3.3. Proof of Theorem 3

Similar to the proof of Theorem 1, it suffices to show that, for every central (α,q;
| · |β )-atom ak supported in B(0,ρ) ,

HΦ,A (ak) =
∞

∑
j=−∞

λ̃k jHΦ,A
(
ak j
)
,

where each HΦ,A
(
ak j
)

is again a central (α,q; | · |β )-atom and

∞

∑
j=−∞

|λ̃k j|p � 1

uniformly on k ∈ Z .
Let bk j be as in (5). It is easy to see that it satisfies the same cancellation condition

as ak , supp(bk j) ⊂ B(0,2 j+1ρ) and the size of bk j satisfies

‖bk j‖Lq(Rn;|·|β ) �
∫

2 j�‖A−1(y)‖<2 j+1

|Φ(y)|
|y|n ‖ak (A(y)·)‖Lq(Rn;|·|β )dy. (24)

Since

‖ak (A(y)·)‖Lq(Rn;|·|β )

�
(
‖A(y)‖−β |detA−1(y)|

)1/q ‖ak (·)‖Lq(Rn;|·|β )

�
(
‖A(y)‖−β |detA−1(y)|

)1/q
ρ−α(n+β )/n (25)

�
(
‖A(y)‖−β |detA−1(y)|

)1/q ‖A−1(y)‖α(1+β/n)
(∫

B(0,2 j+1ρ)
|x|β dx

)−α/n

, (26)
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the last inequality is due to 2 j � ‖A−1(y)‖ < 2 j+1 .
By (24) and (26), we have

‖bk j‖Lq(Rn;|·|β )

�
(∫

B(0,2 j+1ρ)
|x|β dx

)−α/n

×
(∫

2 j�‖A−1(y)‖<2 j+1

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q‖A−1(y)‖α(1+β/n)dy

)
:= λ̃k j

(∫
B(0,2 j+1ρ)

|x|β dx

)−α/n

. (27)

Let

bk j = λ̃k jak j.

It is easy to check that each ak j is a central (α,q; | · |β )-atom. By a similar discussion
as in (12) and (16) respectively, we have

∞

∑
j=−∞

|λ̃k j|p �
(∫

Rn

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q‖A−1(y)‖α(1+β/n)dy

)p

, (28)

if 1 � p < ∞ and

∞

∑
j=−∞

|λ̃k j|p (29)

�
(∫

Rn

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q‖A−1(y)‖α(1+β/n)(1+∣∣log‖A−1(y)‖∣∣)σ
dy

)p

,

if 0 < p < 1 and (1− p)/p < σ .
The proof of Theorem 3 is completed. �

3.4. Proof of Theorem 4

Since the proof is similar to the proofs of Theorem 2 and 3, we just sketch the
outline of the proof. Let bk j and b̃k be as in (17). According to (26), we have, for
k � 1 and j � −k ,

‖bk j(·)‖Lq(Rn;|·|β )

�
(∫

B(0,2 j+1ρ)
|x|β dx

)−α/n

×
(∫

2 j�‖A−1(y)‖<2 j+1

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q‖A−1(y)‖α(1+β/n)dy

)
.
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By (25), we have

‖b̃k(·)‖Lq(Rn;|·|β ) � 2−kα(n+β )/n
∫
‖A−1(y)‖<2−k

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q
dy

�
(∫

‖A−1(y)‖<1

|Φ(y)|
|y|n

(
‖A(y)‖−β |detA−1(y)|

)1/q
)(∫

B(0,1)
|x|β dx

)−α/n

.

This completes the proof of the theorem. �

3.5. Proof of Theorem 5

If ‖A−1(y)‖ � ‖A(y)‖−1 , then (1) gives that

‖A−1(y)‖n � ‖A(y)‖−n � |detA−1(y)|. (30)

The “ i f ” part (i) of Theorem 3 is easily obtained from Theorem 1. Next we will show
the “only i f ” part. For simplicity, we show the case n = 2, since the proof of case
n � 3 is only notation difference and it does not require new idea.

Set A(y) = (ci j(y))2×2 . Since for any given i ∈ {1,2} , ci,1(y)ci,2(y) � 0 for all
y∈R2 , without loss of generality, we assume c1,1(y), c1,2(y) � 0 and c2,1(y), c2,2(y) �
0. Then, for all vectors x = (x1,x2) with xi > 0, i = 1, 2, we have

A(y)x ∈ {(z1,z2) ∈ R2 | z1 � 0,z2 � 0}.
Let a be a function with support on B(0,1) and satisfying

a(x1,x2) =

⎧⎨⎩
1, x1x2 > 0,
0, x1x2 = 0,
−1, x1x2 < 0.

It is easy to check that a is a central (α,q; | · |β )-atom and a satisfies

‖a(·)‖
HK̇α,1

q (R2;|·|β ) � 1.

Suppose ∫
R2

Φ(y)
|y|2 ‖A−1(y)‖α(1+β/2)+(2+β )/qdy = ∞.

If HΦ,A is bounded on HK̇α ,1
q (R2; | · |β ) , we have

‖HΦ,A(a)‖
HK̇α,1

q (R2;|·|β ) � ‖a‖
HK̇α,1

q (R2;|·|β ) � 1.

On the other hand,

‖HΦ,A(a)‖
HK̇α,1

q (R2;|·|β ) � ‖HΦ,A(a)‖
K̇α,1

q (R2;|·|β )

�
+∞

∑
k=−∞

(
2kα(2+β )/2‖(HΦ,Aa)χCk‖Lq(R2;|·|β )

)
. (31)
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Since

‖gχCk‖L1(R2;|·|β ) �
(∫

Ck

|g(x)|q|x|β dx

)1/q(∫
Ck

|x|β dx

)1/q′

� 2k(2+β )/q′‖gχCk‖Lq(R2;|·|β ), (32)

(31) and (32) imply that

‖HΦ,A(a)‖
HK̇α,1

q (R2;|·|β )

�
+∞

∑
k=−∞

(
2k(2+β )(α/2−1/q′)‖(HΦ,Aa)χCk‖L1(R2;|·|β )

)
(33)

�
∫

x1�0,x2�0

(∫
R2

Φ(y)
|y|2 |a(A(y)x)|dy

)
|x|β+(2+β )(α/2−1/q′)dx

�
∫

R2

Φ(y)
|y|2

(∫
z1�0,z2�0

|a(z)||A−1(y)z|β+(2+β )(α/2−1/q′)d(A−1(y)z)
)

dy

�
∫

R2

Φ(y)
|y|2 |detA−1(y)|‖A−1(y)‖β+(2+β )(α/2−1/q′)

(∫ 1

0
γβ+(2+β )(α/2−1/q′)+1dγ

)
dy

�
∫

R2

Φ(y)
|y|2 |detA−1(y)|‖A−1(y)‖β+(2+β )(α/2−1/q′)dy

=
∫

R2

Φ(y)
|y|2 ‖A−1(y)‖α(1+β/2)+(2+β )/qdy = ∞.

This leads to a contradiction. �

3.6. Proof of Theorem 6

First, we prove (i). Suppose∫
‖A−1(y)‖�1

Φ(y)
|y|n ‖A−1(y)‖α(1+β/n)+(n+β )/qdy = ∞.

Let ϕ(x) = e−|x|2 and b(x) = χB(0,1/2)(x) . An easy computation shows

‖b(x)‖
hK̇α,1

q (Rn;|x|β ) � 1.

By a similar discussion of the proof of “only i f ” part of Theorem 5, we have

1 �‖HΦ,Ab(x)‖h1
|x|α

�
∫

Rn

Φ(y)
|y|n |detA−1(y)|‖A−1(y)‖β+(n+β )(α/n−1/q′)

(∫
|z�1/2|

|z|β+(n+β )(α/n−1/q′)dz

)
dy

�
∫

Rn

Φ(y)
|y|n ‖A−1(y)‖(n+β )/q+α(1+β/n)

(∫ 1/2

0
γ(n+β )/q+α(n+β )/n−1dγ

)
dy = ∞,
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which leads to a contradiction.
Next, suppose ∫

‖A−1(y)‖<1

|Φ(y)|
|y|n ‖A−1(y)‖n = ∞.

By (33), we have

‖HΦ,Ab(x)‖
hK̇α,1

q (Rn;|x|β )

=
+∞

∑
k=−∞

(
| · |β (Bk)α/n‖(HΦ,Ab)+χCk‖Lq(Rn;|·|β )

)
�

0

∑
k=−∞

(
2k(n+β )(α/n−1/q′)

∫
2k−1�|x|<2k

sup
0<s<1

|(ϕs ∗ (HΦ,Ab))(x)| |x|β dx

)
�
∫
|x|<1

∣∣(ϕ|x| ∗ (HΦ,Ab)
)
(x)
∣∣ |x|β+(n+β )(α/n−1/q′)dx.

Here∣∣(ϕ|x| ∗ (HΦ,Ab)
)
(x)
∣∣� ∫

Rn

Φ(y)
|y|n |detA−1(y)|

(∫
|u|<1/4

1
|x|n ϕ

( |x−A−1(y)u|
|x|

)
du

)
dy.

Therefore, we obtain

‖HΦ,Ab(x)‖
hK̇α,1

q (Rn;|x|β )

�
∫
‖A−1(y)‖<1

Φ(y)
|y|n |detA−1(y)|

×
∫
|u|<1/8

(∫
|x|<1/2

1
|x|n ϕ

( |x−A−1(y)u|
|x|

)
|x|β+(n+β )(α/n−1/q′)dx

)
dudy

�
∫
‖A−1(y)‖<1

Φ(y)
|y|n ‖A−1(y)‖(n+β )/q+α(1+β/n)

×
∫
|u|<1/8

(∫
|z|<1/(2‖A−1(y)‖)

|detA−1(y)|
‖A−1(y)‖n|z|n

×ϕ
( |A−1(y)(z−u)|

|A−1(y)z|
)
|z|β+(n+β )(α/n−1/q′)dz

)
dudy

�
∫
‖A−1(y)‖<1

Φ(y)
|y|n ‖A−1(y)‖(n+β )/q+α(1+β/n)

×
∫
|u|<1/8

(∫
1/8<|z|<1/(2‖A−1(y)‖)

ϕ
( |A−1(y)(z−u)|

|A−1(y)z|
)
|z|β+(n+β )(α/n−1/q′)−ndz

)
dudy.

For any |u| < 1/8 and 1/8 < |z| < 1/(2‖A−1(y)‖) , we have

|A−1(y)(z−u)|
|A−1(y)z| � ‖A−1(y)‖|z−u|

‖A(y)‖−1|z| � C
|z|+ |u|

|z| � 2C.
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This implies that

‖HΦ,Ab(x)‖
hK̇α,1

q (Rn;|x|β )

�
∫
‖A−1(y)‖<1

Φ(y)
|y|n ‖A−1(y)‖(n+β )/q+α(1+β/n)

×
∫
|u|<1/8

(∫
1/8<|z|<1/(2‖A−1(y)‖)

|z|β+(n+β )(α/n−1/q′)−ndz

)
dudy (34)

�
∫
‖A−1(y)‖<1

Φ(y)
|y|n ‖A−1(y)‖(n+β )/q+α(1+β/n)

×
(∫ 1/(2‖A−1(y)‖)

1/(4‖A−1(y)‖)
ρβ+(n+β )(α/n−1/q′)−1dρ

)
dy

�
∫
‖A−1(y)‖<1

Φ(y)
|y|n ‖A−1(y)‖(n+β )/q+α(1+β/n) 1

‖A−1(y)‖β+(n+β )(α/n−1/q′) dy

�
∫
‖A−1(y)‖<1

Φ(y)
|y|n ‖A−1(y)‖ndy = ∞.

We now complete the proof of part (i) of Theorem 6.
It remains to prove (ii). From (34), if α(1+ β/n)+ (n+ β )/q= n , we have

‖HΦ,Ab(x)‖
hK̇α,1

q (Rn;|x|β ) �
∫
‖A−1(y)‖<1

Φ(y)
|y|n ‖A−1(y)‖n

(∫ 1/(2‖A−1(y)‖)

1/8
ρ−1dρ

)
dy

�
∫
‖A−1(y)‖<1

Φ(y)
|y|n ‖A−1(y)‖n(1−log‖A−1(y)‖)dy=∞.

The proof of the theorem is completed. �
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