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CONCAVITY OF THE ERROR FUNCTION

WITH RESPECT TO HÖLDER MEANS
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(Communicated by I. Perić)

Abstract. In this paper, we present a necessary and sufficient condition for the concavity of the
error function with respect to Hölder means.

1. Introduction

For x ∈ R , the error function erf(x) is defined by

erf(x) =
2√
π

∫ x

0
e−t2dt.

The error function has numerous applications in statistics, probability theory, and
partial differential equations. Recently, the error function have been the subject of
intensive research. In particular, many remarkable inequalities for the error function
can be found in the literature [1, 2, 3, 8, 9, 13, 15, 18].

For p ∈ R , the p th Hölder mean Hp(x,y) of two positive numbers x and y is
defined by

Hp(x,y) =

⎧⎨
⎩

(
xp + yp

2

)1/p

, p �= 0,
√

xy, p = 0.

It is well known that Hp(x,y) is continuous and strictly increasing with respect
to p ∈ R for fixed x,y > 0 with x �= y . The main properties of the Hölder mean were
given in [12].

A real-valued function f : I → R is said to be Hp,q -convex (concave) on I if it
satisfies

f (Hp(x,y)) � (�)Hq( f (x), f (y))

for all x,y ∈ I , and strictly Hp,q -convex (concave) if the inequality is strict except for
x = y .
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Recently, the Hp,q -convexity (concavity) has attracted the attention of many re-
searcher (see [6, 7, 11, 14, 19, 20, 21, 22]). Baricz [6] discussed the convexity of the
Gaussian hypergeometric series and general power series with respect to Hölder means,
and proved that the complete elliptic integrals of the first kind is strictly Hp,p -convex
on (0,1) for p ∈ (0,2] . In [14, 20], the authors presented the necessary and sufficient
conditions such that the complete elliptic integrals of the second kind is Hp,q -convex
and the complete elliptic integrals of the first kind is Hp,q -concave. Zhou, Qiu and
Wang [22] discussed the Hp,p concavity of the generalized elliptic integral Ka(r) for
a ∈ (0,1/2] . Some convexity and concavity properties for generalized trigonometric
functions with respected to Hölder mean were established by Bhayo and Vuorinen in
[10]. More results involving the convexity and concavity with respected to other bi-
variat means can be found in the literature [5, 16, 17].

In this paper, we shall establish a necessary and sufficient condition for the concav-
ity of the error function with respect to Hölder means. Our main result is the following
Theorem 1.1.

THEOREM 1.1. The Error function erf(t) is strictly Hp,q -concave on (0,+∞) if
and only if

(p,q) ∈ {(p,q)|p � L(q)},
where

L(q) = sup
t∈(0,+∞)

{
[2(q−1)te−t2]/[

√
πerf(t)]+1−2t2

}

is a continuous function with L(q) = q for q � −2 and L(q) > q for q < −2 . There
are no real values of p and q for which erf(t) is Hp,q -convex on (0,+∞) .

REMARK 1.1. By use of the mathematical software, we draw the picture (Fig. 1)
of the curve p = L(q) in the pq -plane as illustrated above.
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Figure 1: Curve p = L(q)
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2. Lemmas

LEMMA 2.1. [4, Theorem 1.25] For −∞ < a < b < ∞ , let f ,g : [a,b] → R

be continuous on [a,b] , and be differentiable on (a,b) , let g′(x) �= 0 on (a,b) . If
f ′(x)/g′(x) is increasing (decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

LEMMA 2.2. Then function ρ(t) =
√

π(2t2−1)erf(t)+2te−t2 is strictly increas-
ing from (0,+∞) onto (0,+∞) .

Proof. The result follows easily from ρ(0+) = 0, ρ(+∞) = +∞ and ρ ′(t) =
4
√

πterf(t) > 0. �

LEMMA 2.3. The function

f (t) =
2πtet2erf(t)2

√
π(2t2−1)erf(t)+2te−t2

is strictly increasing from (0,+∞) onto (3,+∞) .

Proof. Let f1(t) = 2πtet2erf(t)2 and f2(t) =
√

π(2t2 − 1)erf(t) + 2te−t2 . Then
simple calculations lead to

f (t) =
f1(t)
f2(t)

, (2.1)

f1(0) = f2(0) = 0, (2.2)

f ′1(t) = 8
√

πterf(t)+2πet2(2t2 +1)erf(t)2,

f ′2(t) = 4
√

πterf(t),
f ′1(t)
f ′2(t)

= 2+
g1(t)
g2(t)

, (2.3)

where g1(t) =
√

πet2(2t2 +1)erf(t) and g2(t) = 2t . Moreover,

g1(0) = g2(0) = 0, (2.4)

g′1(t)
g′2(t)

= 1+2t2 +
√

πt(2t2 +3)et2erf(t). (2.5)

Equation (2.5) implies that g′1(t)/g′2(t) is strictly increasing on (0,+∞) . Making
use of l’Hôpital’s rule we have

lim
t→0+

f (t) = lim
t→0+

f ′1(t)
f ′2(t)

= 2+ lim
t→0+

g′1(t)
g′2(t)

= 3. (2.6)

Therefore, Lemma 2.3 follows easily from (2.1)–(2.4), (2.6), f (+∞) = +∞ , the
monotonicity of g′1(t)/g′2(t) and Lemma 2.1. �
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LEMMA 2.4. Let q ∈ R ,

φ(t) = (q−1)
2te−t2

√
πerf(t)

+1−2t2

and L(q) = sup
t∈(0,+∞)

φ(t) . Then the following statements hold true:

(1) If q � −2 , then φ(t) is strictly decreasing from (0,+∞) onto (−∞,q);
(2) If q < −2 , then there exists δ0 ∈ (0,+∞) such that φ(t) is strictly increasing

on (0,δ0) and strictly decreasing on (δ0,+∞) . In particular, L(q) > q and the range
of φ(t) is (−∞,L(q)] .

Proof. By simple computations, one has

lim
t→0+

φ(t) = q, (2.7)

lim
t→+∞

φ(t) = −∞, (2.8)

φ ′(t) = 2(q−1)
√

π(1−2t2)e−t2erf(t)−2te−2t2

πerf(t)2 −4t (2.9)

=
2ρ(t)

πet2erf(t)2
[1−q− f (t)],

where ρ(t) and f (t) are defined as in Lemmas 2.2 and 2.3, respectively.
Therefore, Lemma 2.4 follows from (2.7)–(2.9) and Lemmas 2.2 and 2.3. �

LEMMA 2.5. Let p,q ∈ R and

ϕ(t) =
erf(t)q−1e−t2

t p−1 .

Then the following statements hold true:
(1) If q � −2 , then ϕ(t) is strictly decreasing on (0,+∞) if and only if p � q. In

particular, if p < q, then there exists δ1 ∈ (0,+∞) such that ϕ(t) is strictly increasing
on (0,δ1) and strictly decreasing on (δ1,+∞) ,

(2) If q <−2 , then ϕ(t) is strictly decreasing on (0,+∞) if and only if p � L(q) ,
where L(q) is define as in Lemma 2.4. In particular, if p < L(q) , then there exists
δ2 ∈ (δ0,+∞) such that ϕ(t) is strictly increasing on (δ0,δ2) and strictly decreasing
on (δ2,+∞) .

Proof. By logarithmic differentiation, one has

ϕ ′(t)
ϕ(t)

= (q−1)
2e−t2

√
πerf(t)

+
1
t
−2t− p

t
=

1
t
[φ(t)− p] , (2.10)
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where φ(t) is defined as in Lemma 2.4.
We divide the proof into four cases.
Case I q � −2 and p � q . Then it follows from (2.10) and Lemma 2.4(1) that

ϕ ′(t) < 0 on (0,+∞) . Hence ϕ(t) is strictly decreasing on (0,+∞) .
Case II q � −2 and p < q . Then (2.10) and Lemma 2.4(1) lead to the conclusion

that there exists δ1 ∈ (0,+∞) such that ϕ ′(t) > 0 for t ∈ (0,δ1) and ϕ ′(t) < 0 for
t ∈ (δ1,+∞) . Thus ϕ(t) is strictly increasing on (0,δ1) and strictly decreasing on
(δ1,+∞) .

Case III q < −2 and p � L(q) . Then it follows from (2.10) and Lemma 2.4(2)
that ϕ ′(t) < 0 on (0,+∞) . Hence ϕ(t) is strictly decreasing on (0,+∞) .

Case IV q < −2 and p < L(q) . Then (2.10) and Lemma 2.4(2) lead to the con-
clusion that there exists δ2 ∈ (δ0,+∞) such that ϕ(t) is strictly increasing on (δ0,δ2)
and strictly decreasing on (δ2,+∞) . �

3. Proof of Theorem 1.1

Proof. The proof of Theorem 1.1 can be divided into two cases.
Case 1 q �= 0. Without loss of generality, we assume that x � y . Define

F(x,y) = erf(Hp(x,y))q − erf(x)q + erf(y)q

2
, (x,y) ∈ (0,∞)× (0,∞). (3.1)

Let u = Hp(x,y) , then ∂u/∂x = (x/u)p−1/2. If x < y , then x < u < y . Taking the
differentiation of (3.1) with respect to x , we have

∂F
∂x

=
q√
π

erf(u)q−1e−u2
( x

u

)p−1− q√
π

erf(x)q−1e−x2
(3.2)

=
q√
π

xp−1

[
erf(u)q−1e−u2

up−1 − erf(x)q−1e−x2

xp−1

]
.

Next, we divide the proof of Case 1 into four subcases.
Subcase 1.1 q � −2 and p � q . It follows from (3.2) and Lemma 2.5(1) that

∂F/∂x > 0 if q < 0, and ∂F/∂x < 0 if q > 0. Hence F(x,y) < F(y,y) = 0 if q < 0
and F(x,y) > F(y,y) = 0 if q > 0. This in conjunction with (3.1) implies that

erf(Hp(x,y)) � Hq(erf(x),erf(y))

holds for x,y > 0 with equality if and only if x = y .
Therefore, erf(t) is strictly Hp,q -concave on (0,+∞) for (p,q) ∈ {(p,q)|p �

−2, p � q,q �= 0} .
Subcase 1.2 q � −2 and p < q . Equation (3.2) and Lemma 2.5(1) implies that

∂F/∂x < 0 if q < 0, and ∂F/∂x > 0 if q > 0 for 0 < x < y < δ1 ; while ∂F/∂x > 0
if q < 0, and ∂F/∂x < 0 if q > 0 for δ1 < x < y < +∞ . This in conjunction with (3.1)
yields that

erf(Hp(x,y)) < Hq(erf(x),erf(y))
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holds for 0 < x < y < δ1 and

erf(Hp(x,y)) > Hq(erf(x),erf(y))

holds for δ1 < x < y < +∞ .
Therefore, erf(t) is neither Hp,q -convex nor Hp,q -concave on (0,+∞) for (p,q)∈

{(p,q)|q � −2, p < q,q �= 0} .
Subcase 1.3 q < −2 and p � L(q) . With the similar argument in Subcase 1.1,

equations (3.1) and (3.2) together with Lemma 2.5(2) lead to the conclusion that erf(t)
is strictly Hp,q -concave on (0,+∞) for (p,q) ∈ {(p,q)|q < −2, p � L(q)} .

Subcase 1.4 q < −2 and p < L(q) . Making use of the similar argument in Sub-
case 1.2, it follows from (3.1) and (3.2) together with Lemma 2.5(2) that

erf(Hp(x,y)) < Hq(erf(x),erf(y))

holds for δ0 < x < y < δ2 , and

erf(Hp(x,y)) > Hq(erf(x),erf(y))

holds for δ2 < x < y < +∞ .
Therefore, erf(t) is neither Hp,q -convex nor Hp,q -concave on (0,+∞) for (p,q)∈

{(p,q)|q < −2, p � L(q)} .
Case 2 q = 0. Without loss of generality, we assume that x � y . Define

G(x,y) =
erf(Hp(x,y))2

erf(x)erf(y)
. (3.3)

Let u = Hp(x,y) , then ∂u/∂x = (x/u)p−1/2. Logarithmic differentiation of (3.3) gives

1
G(x,y)

∂G
∂x

=
2√
π

xp−1

[
e−u2

up−1 erf(u)
− e−x2

xp−1 erf(x)

]
. (3.4)

Next, we divide the proof of Case 2 into two subcases.
Subcase 2.1 p � 0. It follows from (3.4) and Lemma 2.5(1) that ∂G/∂x < 0 and

thereby G(x,y) > G(y,y) = 1. From (3.3) we have

erf(Hp(x,y)) � Hq(erf(x),erf(y))

holds for x,y > 0 with equality if and only if x = y .
Therefore, erf(t) is strictly Hp,q -concave on (0,+∞) for (p,q) ∈ {(p,q)|p � q =

0} .
Subcase 2.2 p < 0. Then by equations (3.3) and (3.4) together with Lemma

2.5(1) we can conclude that erf(t) is neither Hp,q -concave nor Hp,q -convex on (0,+∞)
analogously. �
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