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LIMITING ULTRASYMMETRIC SEQUENCE SPACES

PEDRO FERNÁNDEZ-MARTÍNEZ AND TERESA SIGNES

(Communicated by B. Opic)

Abstract. The paper gives an analytic characterization of a class of ultrasymmetric sequence
spaces that are very close to �∞ . We introduce discrete descriptions of limiting J and K inter-
polation methods, and we apply the results and the techniques developed to the study of limiting
approximation spaces.

1. Introduction

The study of limiting spaces in interpolation scales and their applications to adja-
cent topics has been an active area of research in recent years. See [1], [6], [7], [8], [9],
[10], [11], [15], [17], [18], [19] among other contributions.

The interpolation spaces for the (�1, �∞) couple form the family of rearrangement
invariant (r.i.) sequence spaces, among these the class of ultrasymmetric spaces stands
out. An r.i. space e , with fundamental function ϕ , is always intermediate for the
(Λϕ ,Mϕ ) couple formed by the Lorentz and the Marcinkiewicz spaces with the same
fundamental function ϕ . Ultrasymmetric spaces are r.i. spaces which are not only
intermediate, but also interpolation spaces for the (Λϕ ,Mϕ) couple. The family of
ultrasymmetric sequence spaces comprises Lebesgue spaces, Lorentz spaces, Lorentz-
Zygmund spaces and other families of sequence spaces.

The analytical description of the norm available for most ultrasymmetric spaces
make them a very convenient framework to deal, in a general way, with those (very fre-
quent) problems that simultaneously appear in the above-mentioned families of spaces.
Unfortunately, this characterization does not always exist for those spaces that are very
close to �∞ or to �1 . See [28], [29], [30], [2] and [25] for more information on ultra-
symmetric spaces.

We identify the ultrasymmetric spaces generated from (Λϕ ,Mϕ) as limiting inter-
polation spaces of the (�1, �∞) couple for an important part of the limiting cases in
which Λϕ and Mϕ are very closed to �∞ . This gives an analytical description of the
norm of these limiting ultrasymmetric spaces that makes them easy to handle. To be
precise, we say Λϕ and Mϕ are very close to �∞ if the dilation indices of the funda-
mental function ϕ satisfy πϕ = ρϕ = 0.
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In the non-limiting case, 0 < πϕ � ρϕ < 1, the dilation indices provide very useful
information about the rate of growth of the fundamental function. However, when
πϕ = ρϕ = 0, this information ceases to be available. This is a major setback when
giving an analytical characterization of spaces whose fundamental function grows very
slowly. Here, we develop a technique that allows us to consider a large family of r.i.
spaces whose fundamental functions have null dilation indices. We show that an r.i.
sequence space g in this family is ultrasymmetric if and only if

‖a‖g ∼
∥∥(

ϕ(λn)a∗λn

)∥∥
e. (1.1)

Here e = F (�1, �∞) and F is the interpolation functor that generates g from the
(Λϕ ,Mϕ ) couple. The sequence (λn) in (0,∞) is related to ϕ from equation (2.6)
and Remark 2.6 below. We present a comprehensive study of this class of spaces with
a detailed description of each of the elements in the characterization.

In order to illustrate the use of the above results and techniques we study approx-
imation spaces generated by modelling the sequence of the approximation numbers in
limiting ultrasymmetric sequence spaces. This approach is motivated by research by
Pustylnik in 2005, see [29], and by the papers of DeVore, Riemenschenider and Sharp-
ley [16], or Cobos and Resina [14] where the authors of the last paper use approxima-
tion spaces generated by modelling the approximation numbers in Lorentz-Zygmund
spaces. The use of these techniques is an ongoing topic, as we can see in a recent paper
of 2015 by Cobos and Dominguez [6]. For this limiting class of approximation spaces
we obtain a representation theorem and prove that the class is stable under iteration.
Finally, we give an interpolation formula for ordered couples of approximation spaces.
The paper concludes with applications of our results to operator ideals.

Ultrasymmetric spaces with slowly varying fundamental function require special
consideration due to several reasons of technical nature. The process of characterizing
limiting ultrasymmetric spaces goes through the identification of the Lorentz space Λϕ
as an interpolation space for the (�1, �∞) couple. The previous techniques do not cover
the limiting case πϕ = ρϕ = 0. Besides this, the present approach assures the bound-
edness of Calderón operator (3.4) which is an essential element for our arguments.

Among the tools we had to develop it is worth mentioning the incorporation of
discrete descriptions of limiting K and J interpolation methods. This approach proves
to be optimal for obtaining an equivalence theorem between K and J methods. Un-
like the continuous case where a logarithmic term is needed to adjust the interpolation
parameters, see [12] and [25], we obtain equivalence of both methods with the same
interpolation parameters. We also show that every space in [12] or [25] can be trans-
formed to a discrete description that explains these differences. Finally, we also obtain
a reiteration theorem that eventually will lead to the characterization of limiting ultra-
symmetric spaces.

The organization of the paper is as follows. Section 2 contains the definitions and
some basic facts of r.i. sequence spaces. Section 3 provides discrete descriptions of lim-
iting K and J interpolation methods and the equivalence theorem. These results will be
used in Section 4 which is devoted to limiting ultrasymmetric sequence spaces and in-
cludes the analytical characterization of these spaces. Finally, Section 5 uses the results
to introduce a class of limiting approximation spaces and shows some applications.
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We would like to thank Professor F. Cobos for some helpful advices. We would
also like to show gratitude to Alba Segurado for her careful reading of the manuscript.
Finally we want to thank the referee for the comments and suggestions that have defi-
nitely improved the final version of this paper.

2. Preliminaries

We begin with some notation. For a and b positive quantities, depending perhaps
on some parameters or variables, we write a � b to indicate that there exists a positive
constant C > 0 such that a � Cb . Similarly a � b means that there exists a constant
C > 0 such that a � Cb . The expression a ∼ b means a � b and a � b .

Rearrangement invariant spaces is a well-documented class of Banach spaces, see
for example [3] and [26]. However, it is worth recalling some basic facts we will use in
both the continuous and the discrete case.

Let E be an r.i. function space on (0,∞) with the Lebesgue measure. The funda-
mental function of E , ϕE , is defined as

ϕE(t) = ‖χ(0,t)‖E , t > 0.

The behaviour of ϕE , and thereby some properties of the space E , is described by the
lower and upper dilation indices of ϕE :

πϕE = lim
t→0

logmϕE (t)
log(t)

and ρϕE = lim
t→∞

logmϕE (t)
log(t)

.

Here mϕ(t) = sups>0
ϕ(ts)
ϕ(s) . Again we refer to [3] and [26] for more detailed information

about the fundamental function and the dilation indices of a function ϕ .
The corresponding concepts for sequences spaces are absent in most monographs.

Since this paper deals with sequence spaces defined on N with the counting measure,
we recover some basic definitions in this context. An r.i. sequence space, sometimes
called symmetric space, (e,‖·‖e) is a Banach space whose elements are sequences over
N that satisfy:

1. If a ∈ e and b � a then b ∈ e and ‖b‖e � ‖a‖e .

2. If a and b are equimeasurable,

ma(k) = �{n : |an| > k} = �{n : |bn| > k} = mb(k) for all k ∈ N,

then ‖b‖e = ‖a‖e .

3. The space e satisfies the Fatou property: if (an)↗ a in e , then (‖an‖e)↗‖a‖e .

Given a sequence (an)n∈N , the decreasing rearrangement of (an)n∈N is the se-
quence (a∗n)n∈N , where

a∗n = inf{k : ma(k) � n}.
Sequences (an) and (a∗n) are equimeasurable, so ‖(an)‖e = ‖(a∗n)‖e .
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Let (e j) j∈N be the canonical sequence

e j(n) =

{
0 if n �= j

1 for n = j.

The fundamental function of the space (e,‖ · ‖e) is

ϕe(0) = 0, and

ϕe(n) = ‖e1 + e2 + · · ·+ en‖e, n ∈ N.

Note that the sequence
(
ϕe(n)

)
n∈N

is quasi-concave, that is, increases while the se-

quence
(ϕe(n)

n

)
n∈N

decreases.

Occasionally, we will use weighted sequence spaces. If e is a sequence space and
δ : N−→ (0,∞) a weight sequence, we denote by e(δ ) the space of all those sequences
(an) for which

‖(an)‖e(δ ) = ‖(δ (n)an)‖e < ∞.

Next we introduce the Lorentz and the Marcinkiewicz spaces.

DEFINITION 2.1. Let ϕ be a quasi-concave function on N∪{0} . The Lorentz
space Λϕ consists of all those scalar sequences (an)n∈N for which the norm

‖a‖Λϕ =
∞

∑
n=1

a∗nwn = ‖(a∗nwn)‖�1 < ∞.

Here, wn = ϕ(n)−ϕ(n−1) for n � 1.

The space Λϕ is an r.i. sequence space with fundamental function ϕ . The equali-
ties

‖e1 + e2 + e3 + · · ·+ en‖Λϕ =
n

∑
k=1

wk = ϕ(n), n ∈ N,

show that ϕ is the fundamental function of Λϕ . Furthermore, Λϕ is the smallest
symmetric space with fundamental function ϕ . Indeed, if e is a symmetric space with
fundamental function ϕ and the Fatou property, for any a ∈ e

‖a‖e = ‖a∗‖e = lim
n
‖(a∗k)n

k=1‖e.

Now, for a fixed n∈ N set a∗k = 0 if k > n and Fk = {e1,e2, . . . ,ek} for 1 � k � n . The
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norm of the finite sequence (a∗k)
n
k=1 satisfies the inequalities

‖(a∗k)n
k=1‖e = ‖

n

∑
k=1

(a∗k −a∗k+1)χFk‖e

�
n

∑
k=1

(a∗k −a∗k+1)ϕ(k)

=
n

∑
k=1

a∗k(ϕ(k)−ϕ(k−1))

=
n

∑
k=1

a∗kwk.

This shows that ‖a‖e � ‖a‖Λϕ and establishes the embedding Λϕ ↪→ e .

DEFINITION 2.2. Let ϕ be a quasi-concave function on N∪{0} . The Marcinkiewicz
space Mϕ consists of all those scalar sequences (an)n∈N for which

‖a‖Mϕ = sup
n∈N

ϕ(n)a∗∗n < ∞

where a∗∗n = 1
n ∑n

k=1 a∗n .

It is not difficult to prove that Mϕ is the largest r.i. sequence space with funda-
mental function ϕ . See [3] and [26] for more information.

The rate of growth of the fundamental function ϕ is an important piece of infor-
mation to progress in the study of r.i. spaces. See, for example, [26, p. 57]. We will
use the dilation indices of such functions to describe their behaviour. The following
definition recalls these concepts.

DEFINITION 2.3. Let ϕ : N∪{0} −→ (0,∞) , and consider the functions

mϕ(n) = inf
m∈N

ϕ(nm)
ϕ(m)

, mϕ (n) = sup
m∈N

ϕ(nm)
ϕ(m)

.

The lower and upper index of the function ϕ are

πϕ = lim
n→∞

log2 mϕ(n)
log2(n)

, ρϕ = lim
n→∞

log2 mϕ(n)
log2(n)

.

In this paper we are concerned with those r.i. sequence spaces whose fundamental
function, ϕ , grows very slowly. In terms of the dilation indices πϕ = ρϕ = 0. In these
situations, the dilation indices do not describe the rate of growth of the function. This
prevents us from applying known techniques to the study of these spaces. We develop
a method to overcome this obstacle. Unfortunately, it does not apply to all functions ϕ
with πϕ = ρϕ = 0. We restrict ourselves to a set of functions P = ∪N∈NPN , which
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is the infinite union of smaller classes of slowly varying functions that we define next.
The description of the classes PN requires the reiterated logarithms{

�(t) = L1(t) = 1+ | log2 t|, t > 0

Ln+1(t) = �(Ln(t)), t > 0 and n ∈ N.
(2.1)

Let N ∈ N be fixed, we define the function

L(t) = L1(t)L2(t) · · ·LN(t), t > 0. (2.2)

DEFINITION 2.4. We say that a positive function ϕ : N∪{0} −→ [0,∞) belongs
to the family PN , N ∈ N , if it satisfies the following properties:

a) ϕ is quasi-concave.

b) ϕ(0) = 0.

c)

wn = ϕ(n)−ϕ(n−1)∼ ϕ(n)
nL(n)

, for n ∈ N. (2.3)

REMARK 2.5. 1 Let N ∈ PN be fixed. It is not difficult to check that a function
ϕ ∈ PN satisfies that

ϕ(n2) ∼ ϕ(n) for n ∈ N∪{0}. (2.4)

Moreover, there exist a function Φ : (0,∞) −→ (0,∞) , with dilation indices 0 < πΦ �
ρΦ < ∞ , such that

ϕ(n) = Φ
(
LN(n)

)
for n ∈ N.

It must be said that in the last section of this paper we will use the extension of ϕ
defined as

ϕ(t) = Φ
(
LN(t)

)
for t > 1. (2.5)

It is also convenient to have a partition of the interval (1,∞) which suits the func-
tions of the class PN . To define such a partition, we use the sequence of functions

L−1
1 (s) = 2s−1, s > 1

L−1
n (s) = L−1

n−1(2
s−1), s > 1 and n � 2 in N.

These functions are inverse to functions Ln , n ∈ N , on the interval (1,∞) . Given a
fixed N ∈ N , the sequence (λn)n�0 , where

λn = L−1
N (2n), n � 0, (2.6)

defines a partition on [1,∞) with the property that for any ϕ ∈ PN

ϕ(λn) ∼ ϕ(t) ∼ ϕ(λn+1) for t ∈ [λn,λn+1], (2.7)

with the equivalence constants being independent of n ∈ N . This follows from (2.4).

1We thank the referee for suggesting the above definition and this remark.
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REMARK 2.6. The sequence (λn) plays an important role in this paper. It is worth
mentioning that, for any given N ∈ N , (λn)n�0 is uniquely defined and consists only of
natural numbers. Throughout the paper the function ϕ determines N by means of the
relation ϕ ∈ PN .

We refer to [25] for more information on functions in the family P = ∪∞
N=1PN .

Other properties of the class PN and the sequence (λn)n � 0 are collected in the
following lemma.

LEMMA 2.7. Let ϕ ∈ PN , then for any n ∈ N the following inequalities hold:

n−1

∑
k=0

ϕ(λk) � ϕ(λn),
∞

∑
k=n+1

ϕ(λk)
λk

� ϕ(λn)
λnL(λn)

, (2.8)

∞

∑
k=n

1
ϕ(λk)

� 1
ϕ(λn)

,
n−1

∑
k=0

λk

ϕ(λk)
� λn

ϕ(λn)L(λn)
. (2.9)

Proof. The partition (λk)k�0 satisfies that
∫ λk+1

λk

dt
tL(t) = log2, for all k � 0. So,

by Lemma 2.7 (i) from [25],

ϕ(λn) �
∫ λn

0
ϕ(s)

ds
sL(s)

�
n−1

∑
k=0

∫ λk+1

λk

ϕ(s)
ds

sL(s)
∼

n−1

∑
k=0

ϕ(λk).

This proves the first inequality of (2.8). For the second inequality, notice that the func-
tion ϕ(t)/tL(t) , t > 0, has negative dilation indices. Hence, by using Corollary 4 of
[26, p. 57],

ϕ(λn)
λnL(λn)

∼
∫ ∞

λn

ϕ(s)
s

ds
sL(s)

=
∞

∑
k=n

∫ λk+1

λk

ϕ(s)
s

ds
sL(s)

�
∞

∑
k=n

ϕ(λk+1)
λk+1

=
∞

∑
k=n+1

ϕ(λk)
λk

.

Inequalities of equation (2.9) can likewise be proved. �

REMARK 2.8. It should be stressed that N may be any natural number, however
it has to be chosen and fixed. This allows to define the function L , see (2.2), which
depends on N but does not contain it explicitly.

3. Limiting K and J discrete spaces

In the next section we will characterize limiting ultrasymmetric sequence spaces
by explicitly describing their norms. This will be done through precise identification
of the interpolation methods that generate them from the (�1, �∞) couple. Before this
we need to introduce discrete limiting K and J interpolation spaces. We begin by
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describing the sequence spaces we use as interpolation parameters. Let e be an r.i.
sequence space, generated from the (�1, �∞) couple by the interpolation functor F ,
that is to say,

e = F (�1, �∞).

See [3] Theorem 3.2.12. We use ê to denote the space F (�̂1, �∞) that results from
applying the same interpolation functor F that generates e to the (�̂1, �∞) couple,
where �̂1 is the space of all sequences (an)n∈N such that

‖(an)n∈N‖�̂1
=

∞

∑
k=1

|an|
nL(n)

< ∞.

It is worth mentioning that the space ê depends on N as the function L does. See
Remark 2.8 above. Next lemma relates the norms of the spaces e and ê .

LEMMA 3.1. Let ϕ ∈ PN and let e be an r.i. sequence space. Then, for any
positive decreasing sequence (an)n∈N∥∥(

ϕ(n)an
)
n�1

∥∥
ê ∼

∥∥(
ϕ(λn)aλn

)
n�0

∥∥
e (3.1)

with equivalence constant independent of (an)n∈N and e .

Proof. Let a = (an)n∈N be a positive decreasing sequence. Consider the linear
operator that maps a sequence b = (bn)n∈N into the sequence ((Tb)n)n∈N where

(Tb)n = bλk
if λk � n < λk+1, for k � 0.

Then, by (2.7)

ϕ(n)an � ϕ(λk+1)aλk
� ϕ(λk)aλk

� (Tϕ(n)an)n,

for all n ∈ N and λk � n < λk+1. Hence, the lattice property of the space ê yields

‖(ϕ(n)an)n�1‖ê � ‖(Tϕ(n)an)n∈N‖ê.

On the other hand, for the weight

δ (n) =

{
1 if n = λk, k � 0

0 otherwise

and any sequence b = (bn)n∈N, we obtain the equality

‖b‖e(δ ) = ‖(bλn)n�0‖e.

Thus, to prove ‖(ϕ(n)an)n∈N‖ê �
∥∥(

ϕ(λn)aλn

)
n�0

∥∥
e it suffices to show that the oper-

ator
T : e(δ ) −→ ê



LIMITING ULTRASYMMETRIC SEQUENCE SPACES 605

is bounded. We first check that T is bounded when e = �1 . Let b = (bn)n∈N ∈ �1(δ ) ,

‖Tb‖
�̂1

= ∑
k�0

∑
λk�n<λk+1

|bλk
| 1
nL(n)

∼ ∑
k�0

|bλk
| = ‖b‖�1(δ ).

The operator T : �∞(δ ) −→ �(∞) is clearly bounded and, thus, by the interpolation
properties of the spaces e(δ ) and ê , the operator

T : e(δ ) −→ ê

is bounded.
For the reverse inequality, consider the sequence transformation

R
(
(bn)n∈N

)
=

(
∑

λn−1�k<λn

bk

kL(k)

)
n∈N

.

Since (an)n∈N is a decreasing sequence and ϕ is an increasing function satisfying that
ϕ(λn) ∼ ϕ(λn+1) , we obtain the inequalities

ϕ(λn)aλn � ϕ(λn)aλn ∑
λn−1�k<λn

1
kL(k)

� ∑
λn−1�k<λn

ϕ(k)ak

kL(k)
, for n � 1.

Hence, ∥∥(
ϕ(λn)aλn

)
n�0

∥∥
e �

∥∥(
R(ϕ(n)an)

)
n∈N

∥∥
e.

Thus, to finish the proof it suffices to show that the operator

R : ê −→ e

is bounded. A straightforward computation shows that R : �̂1 −→ �1 is an isometry,
while the boundedness of R : �∞ −→ �∞ follows from the inequality

λk−1

∑
n=λk−1

1
nL(n)

�
∫ λk

λk−2

dt
tL(t)

= 2log2.

This completes the proof. �
Before defining the interpolation methods let us recall some basic definitions. Let

A = (A0,A1) be a Banach couple, that is to say, A0 and A1 are Banach spaces that
are continuously embedded in the same Hausdorff topological vector space. For t > 0,
Peetre’s K -functional of the element a ∈ A0 +A1 is

K(t,a) = K(t,a;A0,A1)

= inf
{
‖a0‖0 + t‖a1‖1; a = a0 +a1, ai ∈ Ai, i = 0,1

}
,

while the J -functional for an element a ∈ A0∩A1 is

J(t,a) = J(t,a;A0,A1) = max
{‖a‖A0, t‖a‖A1

}
, t > 0.

We are now in a position to give the discrete definition of the interpolation spaces
we use. We work with ordered couples (A0 ↪→ A1 ), although the definitions and the
subsequent results can be extended with no difficulty to the general case.
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DEFINITION 3.2. Let A = (A0,A1) be an ordered Banach couple, A0 ↪→A1 . Given

e , an r.i. sequence space and ϕ a function in PN , the space A
K
1,ϕ ,̂e consists of all those

elements of A1 for which

‖a‖K
1,ϕ ,̂e =

∥∥∥(ϕ(n)
n

K(n,a)
)

n∈N

∥∥∥
ê
< ∞.

The space A
K
1,ϕ ,̂e is an intermediate space for the (A0,A1) couple which also has

the interpolation property. See [21] for a proof of the continuous case. Next we intro-
duce J interpolation spaces.

DEFINITION 3.3. Let A = (A0,A1) be an ordered Banach couple, A0 ↪→A1 . Given

e , an r.i. sequence space, and a function ϕ ∈ PN , we define the space A
J
1,ϕ ,̂e as the set

of all those elements a ∈ A1 which can be represented as

a = ∑
n�0

un with un ∈ A0 ∩A1 (3.2)

and ∥∥∥(ϕ(λn)
λn

J(λn,un)
)

n�0

∥∥∥
e
< ∞. (3.3)

We equip this space with the norm

‖a‖J
1,ϕ ,̂e = inf

{∥∥∥(ϕ(λn)
λn

J(λn,un)
)

n�0

∥∥∥
e

}
,

where the infimum is taken over all representations of a satisfying (3.2) and (3.3).

The main result of this section shows that limiting K and J discrete interpolation
spaces, as defined, coincide with equivalence of norms if we use the same interpolation
parameters. The equivalence of J and K methods requires the boundedness of the
Calderón operator

S
(
(an)

)
=

(
∑
s�1

min{1, λn
λs
}|as|

)
n�1

when it acts between the sequence spaces that model the norm of our interpolation
space.

PROPOSITION 3.4. The operator

S : e
(ϕ(λn)

λn

)
−→ e

(ϕ(λn)
λn

)
(3.4)

is bounded for any r.i. sequence space e and any ϕ ∈ PN .
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Proof. We begin by showing that S is bounded when e = �1 . Let (an)n�0 ∈
�1

(
ϕ(λn)

λn

)
, we use Lemma 2.7 to establish the inequalities

‖S(an)‖
�1

(
ϕ(λn)

λn

) = ∑
n�0

ϕ(λn)
λn

∣∣∣ ∑
s�0

min{1, λn
λs
}as

∣∣∣
� ∑

n�0

ϕ(λn)
λn

( n−1

∑
s=0

|as|+ ∑
s�n

λn

λs
|as|

)
=

∞

∑
s=0

(
∑
n>s

ϕ(λn)
λn

)
|as|+

∞

∑
s=0

(
∑
n�s

ϕ(λn)
) |as|

λs

�
∞

∑
s=0

ϕ(λs)
λsL(λs)

|as|+
∞

∑
s=0

ϕ(λs)
λs

|as|

� ‖(as)s�0‖
�1

(
ϕ(λs)

λs

).

This proves that S : �1

(
ϕ(λn)

λn

)
−→ �1

(
ϕ(λn)

λn

)
is bounded. Now we study the case

e = �∞ . Let (an)n�0 ∈ �∞

(
ϕ(λn)

λn

)
,

‖S(an)n�0‖
�∞

(
ϕ(λn)

λn

)
� sup

n∈N

ϕ(λn)
λn

∑
s�0

min{1, λn
λs
}|as|

� ‖(an)n�0‖
�∞

(
ϕ(λn)

λn

) sup
n∈N

{ϕ(λn)
λn

( n−1

∑
s=0

λs

ϕ(λs)
+ ∑

s�n

λn

ϕ(λs)

)}
� ‖(an)n�0‖

�∞

(
ϕ(λn)

λn

).

The last inequality follows from Lemma 2.7. Since e is an exact interpolation space for
the (�1, �∞) couple, we conclude that

S : e
(ϕ(λn)

λn

)
−→ e

(ϕ(λn)
λn

)
is a bounded linear operator. �

Having proved the boundedness of the Calderón operator (3.4), we are in a position
to establish the equivalence for limiting J and K discrete methods.

THEOREM 3.5. Let A = (A0,A1) be an ordered Banach couple, A0 ↪→ A1 . For
any ϕ ∈ PN and any r.i. sequence space e ,

(A0,A1)J
1,ϕ ,̂e = (A0,A1)K

1,ϕ ,̂e.
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Proof. Let 0 �= a ∈ (A0,A1)J
1,ϕ ,̂e and choose a = ∑n�0 an be a J -representation of

a such that ∥∥∥(ϕ(λn)
λn

J(λn,an)
)

n�0

∥∥∥
e
� 2‖a‖J

1,ϕ ,̂e.

Then, for any m � 0 we have

K(λm,a) � ∑
n�0

min
(
1,

λm

λn

)
J(λn,an).

Since the right-hand side of the previous inequality is precisely the m-th coordinate of
the sequence S

(
J(λn,an)

)
, Lemma 3.1 and Proposition 3.4 yield

‖a‖(A0,A1)K1,ϕ ,̂e
∼ ‖(K(λn,a)

)‖
e( ϕ(λn)

λn
)

�
∥∥S

(
J(λn,an)

)∥∥
e( ϕ(λn)

λn
)

� ‖S‖∥∥(
J(λn,an)

)∥∥
e( ϕ(λn)

λn
)

� ‖S‖‖a‖J
1,ϕ ,̂e.

This proves that (A0,A1)J
1,ϕ ,̂e ↪→ (A0,A1)K

1,ϕ ,̂e .

To establish the reverse inclusion, let a∈ (A0,A1)K
1,ϕ ,̂e . Using the properties of the

K -functional, choose decompositions

a = an,0 +an,1, ai,n ∈ Ai for i = 0,1

such that ‖an,0‖A0 + λn‖an,1‖A1 � 2K(λn,a) , for n ∈ N∪{0} . Set u0 = a0,0 and let

un = a0,n−a0,n−1 = a1,n−1−a1,n, for n � 1.

The sequence (un)n�0 is in A0 ∩A1 and satisfies that a = ∑n�0 un in A0 +A1 , which
follows from∥∥∥a−

M

∑
n=0

un

∥∥∥
A0+A1

= ‖a1,M‖A0+A1 � 2
K(λM,a)

λM
→ 0 as M → ∞.

See [25, Prop. 3.3]. This provides with a representation of the element a of the form
(3.2) which we can use to estimate the norm ‖a‖J

1,ϕ ,̂e . In fact, we estimate the terms of

the sequence
(
J(λn,un)

)
n�0 . For n = 0, J(λ0,u0) � K(λ0,a) , and for n � 1

J(λn,un)
λn

� max
{ 1

λn
‖a0,n−a0,n−1‖A0 ,‖a1,n−1−a1,n‖A1

}
� 1

λn
‖a0,n‖A0 +‖a1,n‖A1 +

1
λn−1

‖a0,n−1‖A0 +‖a1,n−1‖A1

� K(λn−1,a)
λn−1

.
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Now, using that ϕ(λn) ∼ ϕ(λn−1) for all n � 1, we derive∥∥∥(ϕ(λn)
λn

J(λn,un)
)∥∥∥

e
�

∥∥∥(ϕ(λn)
λn

K(λn,a)
)∥∥∥

e
,

which establishes the embedding (A0,A1)K
1,ϕ ,̂e ↪→ (A0,A1)J

1,ϕ ,̂e .
This finishes the proof. �

REMARK 3.6. The interpolationmethods introduced in [12], [21] or [25] by means
of continuous description, are related with the limiting methods we have just defined.
In fact, for any Banach couple A = (A0,A1) , any ϕ ∈ PN and any r.i. function space

E , the space A
K
1,ϕ,Ê of [21] or [23] coincides with the present space A

K
1,ϕ,ê where ê

stands for the discretization of the space Ê , where

‖(aμ)‖ê = ‖∑
μ

aμ χ(λμ ,λμ+1)‖Ê . (3.5)

The case for the J -spaces that appear in [12], [21] or [25] is slightly different.
Indeed, it is not difficult to check that, with the above notation, for any ϕ ∈ PN and
any r.i. function space E

A
J
1,ϕ,Ê = A

J
1,

ϕ
L ,ê

with equivalence of norms. This fits perfectly with the fact that the equivalence results
in [12], [21] or [25] have to add the logarithmic term L to obtain the equivalence result
between J and K spaces.

We can now state the following reiteration theorem.

THEOREM 3.7. Let F be an interpolation functor and A = (A0,A1) an ordered
Banach couple, A0 ↪→ A1 . Then, for any ϕ ∈ PN and any r.i. sequence space e

F
(
(A0,A1)K

1,ϕ,�̂1
,(A0,A1)K

1,ϕ,�∞

)
= (A0,A1)K

1,ϕ ,̂e, (3.6)

where e = F (�1, �∞) .

The proof of the theorem uses Theorem 3.5 and then follows the usual techniques
which we shall not reproduce here. See [25] for the continuous version of this theorem.

4. Limiting ultrasymmetric sequence spaces

Ultrasymmetric sequence spaces are the interpolation spaces for the couples
(Λϕ ,Mϕ ) of the Lorentz and the Marcinkiewicz spaces with the same fundamental
functions. In this section we give an analytical description of these spaces in many of
the limiting cases πϕ = ρϕ = 0, or more precisely for ϕ ∈ P . We begin with a result
of boundedness for the Hardy operator.
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PROPOSITION 4.1. Let ϕ : N −→ (0,∞) be a function with upper index ρϕ < 1 .
Then, for any r.i. sequence space e , the Hardy operator

(H a)n =
1
n

n

∑
k=1

ak

is bounded on the space ê
(
ϕ(n)

)
. In particular,∥∥(

ϕ(n)a∗∗n
)∥∥

ê ∼
∥∥(

ϕ(n)a∗n
)∥∥

ê (4.1)

and ∥∥(
ϕ(λn)a∗∗λn

)∥∥
e ∼

∥∥(
ϕ(λn)a∗λn

)∥∥
e. (4.2)

Proof. We claim that the operators

H : �̂1
(
ϕ(n)

) −→ �̂1
(
ϕ(n)

)
(4.3)

H : �∞
(
ϕ(n)

) −→ �∞
(
ϕ(n)

)
(4.4)

are bounded. In order to study the first one, let a = (an)n∈N ∈ �̂1(ϕ) , then

‖H a‖
�̂1(ϕ) =

∞

∑
n=1

ϕ(n)
n

∣∣∣ n

∑
k=1

ak

∣∣∣ 1
nL(n)

�
∞

∑
k=1

|ak|
( ∞

∑
n=k

ϕ(n)
n2L(n)

)
�

∞

∑
k=1

|ak| ϕ(k)
kL(k)

= ‖a‖
�̂1(ϕ),

since
∞

∑
n=k

ϕ(n)
n2L(n)

� ϕ(k)
k2L(k)

+
∫ ∞

k

ϕ(t)
tL(t)

dt
t
∼ ϕ(k)

k2L(k)
+

ϕ(k)
kL(k)

� ϕ(k)
kL(k)

for k ∈ N . See [26, p. 57]. This establishes the boundedness of (4.3).
To check that the operator (4.4) is bounded, let a = (an)n∈N ∈ �∞(ϕ(n)) , then

‖H a‖�∞(ϕ) = sup
n∈N

ϕ(n)
n

∣∣∣ n

∑
k=1

ak

∣∣∣
� ‖a‖�∞(ϕ) sup

n∈N

ϕ(n)
n

( n

∑
k=1

1
ϕ(k)

)
� ‖a‖�∞(ϕ(n)).

Notice that ∑n
k=1

1
ϕ(k) �

∫ n
0

1
ϕ(t)dt ∼ n

ϕ(n) , see again [26, p. 57]. The usual interpolation

argument proves that H is bounded on ê
(
ϕ(n)

)
.

Finally, observing that a∗n � a∗∗n = (H a∗)n for all n ∈ N , we obtain equivalence
(4.1). Equivalence (4.2) follows now from Lemma 3.1. �

The next proposition characterizes Lorentz and Marcinkiewicz sequence spaces as
K -interpolation spaces for the (�1, �∞) couple.
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PROPOSITION 4.2. Let ϕ ∈ PN , then

Λϕ = (�1, �∞)K
1,ϕ,�̂1

and Mϕ = (�1, �∞)K
1,ϕ,�∞ .

Proof. The proof of both equalities is a consequence of the previous results and
the fact that K(n,a;�1, �∞) = na∗∗n , for all n ∈ N . Indeed, by (2.3)

‖a‖Λϕ = ‖(wna
∗
n)‖�1 ∼

∥∥∥( ϕ(n)
nL(n)

a∗n
)∥∥∥

�1

∼
∥∥∥(ϕ(n)

n
K(n,a;�1, �∞)

)∥∥∥
�̂1

= ‖a‖K
1,ϕ,�̂1

.

Similarly,

‖a‖Mϕ = sup
n

ϕ(n)a∗∗n =
∥∥∥(ϕ(n)

n
K(n,a;�1, �∞)

)∥∥∥
�∞

= ‖a‖K
1,ϕ,�∞. �

We are now in position to establish the main result of this section.

THEOREM 4.3. Let g be an r.i. sequence space whose fundamental function ϕ
belongs to PN , then

g is ultrasymmetric if and only if g = (�1, �∞)K
1,ϕ ,̂e

for some r.i. sequence space e . Moreover, if F is the interpolation method that gener-
ates g from the (Λϕ ,Mϕ ) couple then e = F (�1, �∞) .

Proof. Let F be the interpolation method that generates the ultrasymmetric space
as g = F (Λϕ ,Mϕ ). Then, by Proposition 4.2 and Theorem 3.7 we get

g = F (Λϕ ,Mϕ ) = F
((

�1, �∞
)K
1,ϕ,�̂1

,
(
�1, �∞

)K
1,ϕ,�∞

)
=

(
�1, �∞

)K
1,ϕ ,̂e,

where ê = F (�̂1, �∞) . �
We can now obtain formula (1.1) that characterizes ultrasymmetric sequence spaces

whose fundamental function lies in P .

COROLLARY 4.4. Let g be an r.i. sequence space with fundamental function
ϕ ∈ PN , for some N ∈ N . Then, g is ultrasymmetric if and only if

‖a‖g ∼
∥∥(

ϕ(λn)a∗λn

)∥∥
e (4.5)

where F is the interpolation functor that satisfies g = F (Λϕ ,Mϕ ) and e = F (�1, �∞) .

Proof. The previous theorem proves from (4.2) that an r.i. sequence space g is
ultrasymmetric if and only if

‖a‖g = ‖(ϕ(n)a∗∗n )n∈N‖ê ∼ ‖(ϕ(n)a∗n)n∈N‖ê.

We now recover formula (4.5) from Lemma 3.1. �
Subsequently, we will denote the ultrasymmetric space g , whose norm depends

only on ϕ and ê , as �ϕ,ê .
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5. Approximation spaces

In this section we present a class of approximation spaces obtained by modelling
the sequence of the approximation numbers in a limiting ultrasymmetric space. Let us
begin by introducing the concept of approximation family (some authors use “approxi-
mation scheme”).

DEFINITION 5.1. Let A be a quasi-Banach space. By an approximation family in
A we mean a sequence of subsets of A , {Gn}n�0 , satisfying the following conditions:

1. G0 = {0} and Gn ⊂ Gn+1 for all n ∈ N∪{0} .

2. λGn ⊆ Gn for any scalar λ and n ∈ N .

3. Gn +Gm ⊂ Gm+n for m,n ∈ N .

The error of approximation of an element f ∈ A by elements of Gn−1 is given by

En( f ) = En( f ,A) = inf{‖ f −g‖A; g ∈ Gn−1}.

Clearly, (En(T ))n is a decreasing sequence and E1(T ) = ‖T‖A .
The classical approximation space Aα

p , α > 0 and 0 < p � ∞ , is the set of all
those elements f ∈ A for which

‖ f‖Aα
p

= ‖nαEn( f ,A)‖
�̃p

< ∞. (5.1)

Here �̃p stands for the weighted Lebesgue sequence space �p( 1
n ) , 0 < p � ∞ . These

spaces were defined by Butzer and Scherer in [5]. See also [4], [27], [13] and the
references therein. Later on, Cobos and Resina introduce new spaces by modelling the
approximation numbers in Lorentz-Zygmund spaces rather than in Lp -spaces, see [14].
In that paper they use, with a different notation, the approximation spaces A�γ

�q
defined

through the quasi-norm
‖ f‖A�γ

�q
= ‖�(n)γEn( f )‖

�̃q
,

where � is the logarithmic function defined in (2.1). They were able to make the expo-
nent α = 0 in (5.1) at the expense of introducing a logarithmic power. See also [20].
In 2005 Pustylnik generalizes these results to a larger class of approximation spaces by
modelling the sequence of approximation numbers in a wider class of sequence spaces,
including Lebesgue �p spaces, Lorentz-Zygmund �p,r(log�)α spaces and many others.
More precisely, given �ϕ,e a (non-limiting) ultrasymmetric sequence space, Pustylnik
considers the approximation space Aϕ

e formed by all those elements of A for which the
quasi-norm

‖ f‖Aϕ
e

= ‖En( f )‖�ϕ,e

is finite. See [30]. In a subsequent paper, [29], he uses a case of limiting ultrasymmetric
spaces that allows the function ϕ to range in a wider class of functions. In this section
we extend these results to a significantly larger family of limiting ultrasymmetric spaces



LIMITING ULTRASYMMETRIC SEQUENCE SPACES 613

by applying the techniques developed in the previous sections. This approach will
provide a better insight of all the processes involved in using limiting ultrasymmetric
spaces to define quasi-norms of approximation spaces. Let us begin with the definition
of limiting ultrasymmetric approximation spaces. Before that, it is worth recalling that
N will be a fixed natural number.

DEFINITION 5.2. Let ϕ ∈PN , and let e be an r.i. sequence space. We define the
limiting ultrasymmetric approximation space Aϕ

ê as the set of all those elements f ∈ A
for which

‖ f‖Aϕ
ê

= ‖(En( f ))‖�ϕ ,̂e
=

∥∥(
ϕ(n)En( f )

)∥∥
ê < ∞.

5.1. The representation theorem

In this subsection we prove a representation theorem for approximation spaces Aϕ
ê .

The theorem generalizes known representation theorems. We begin with an auxiliary
result.

LEMMA 5.3. Let ϕ ∈ PN and let a linear operator T be defined as

T (an) =
(

∑
k�n

ak

)
n∈N

.

Then T is bounded in e
(
ϕ(λn)

)
for any r.i. sequence space e .

Proof. We show the operator is bounded for e = �1 and for e = �∞ . The result
follows from the fact that e is an exact interpolation space for the couple (�1, �∞) .
Choose (an) ∈ �1(ϕ(λn)) , then

‖T (an)‖�1

(
ϕ(λn)

) =
∥∥∥(

ϕ(λn) ∑
k�n

ak

)∥∥∥
�1

� ∑
n�1

ϕ(λn) ∑
k�n

|ak|

=
∞

∑
k=1

|ak| ∑
n�k

ϕ(λn) �
∞

∑
k=1

ϕ(λk)|ak|

= ‖(an)‖�1

(
ϕ(λn)

).

The last inequality follows from Lemma 2.7.
Now, let (an) ∈ �∞(ϕ(λn)) , then

‖T (an)‖�∞
(

ϕ(λn)
) = sup

n∈N

ϕ(λn)
∣∣∣ ∑
k�n

ak

∣∣∣
� ‖(an)‖�∞

(
ϕ(λn)

) sup
n∈N

{
ϕ(λn) ∑

k�n

1
ϕ(λk)

}
∼ ‖(an)‖�∞

(
ϕ(λn)

).

This concludes the proof. �
We are now in a position to establish the following representation theorem.
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THEOREM 5.4. Let ϕ ∈ PN and let e be an r.i. sequence space. The following
are equivalent:

1. f ∈ Aϕ
ê .

2. There exists a sequence ( fλn)n�0 , with fλn ∈ Gλn , such that

f =
∞

∑
n=0

fλn ∈ A and
(

ϕ(λn)‖ fλn‖A

)
∈ e.

Moreover
‖ f‖Aϕ

ê
∼ inf

{∥∥∥(
ϕ(λn)‖ fλn‖A

)∥∥∥
e

}
where the infimum runs over all possible representations of f as above.

Proof. (1) ⇒ (2) Let f ∈ Aϕ
ê . For each n ∈ N∪{0} choose gλn ∈ Gλn such that

‖ f −gλn‖ � 2E1+λn( f ) � Eλn( f ).

Put fλn+1
= gλn −gλn−1

for n � 1, fλ1
= gλ0

and fλ0
= 0. For this choice, fλn ∈ Gλn

for n ∈ N . Indeed, for n � 2, fλn ∈ Gλn since Gλn +Gλn−1
⊆ Gλn+1

, while for n = 0,1
we have that

fλ0
∈ Gλ0

and fλ1
∈ Gλ0

⊂ Gλ1
.

Thus, ∥∥∥ f −
n+1

∑
k=0

fλk

∥∥∥
A

= ‖ f −gλn‖A � Eλn( f ) → 0 as n → ∞.

This proves that f = ∑∞
n=0 fλn in A , with fλn ∈ Gλn . In addition,

‖ fλn‖A � ‖ f −gλn−1
‖A +‖ f −gλn−2

‖A � 4E1+λn−2
( f ) � Eλn−2

( f ), for n � 2,

and therefore, by rearranging the sequence, we obtain∥∥∥(
ϕ(λn)‖ fλn‖A

)
n�2

∥∥∥
e
�

∥∥∥(
ϕ(λn)Eλn( f )

)
n�0

∥∥∥
e
.

Besides, for n = 0,1 we have that

ϕ(λ1)‖ fλ1
‖A

∥∥e2
∥∥

e �
∥∥∥(

ϕ(λn)Eλn( f )
)

n�0

∥∥∥
e

ϕ(λ0)‖ fλ0
‖A

∥∥e1
∥∥

e �
∥∥∥(

ϕ(λn)Eλn( f )
)

n�0

∥∥∥
e
.

Now, a simple use of the triangular inequality yields that∥∥∥(
ϕ(λn)‖ fλn‖A

)
n�0

∥∥∥
e
�

∥∥∥(
ϕ(λn)Eλn( f )

)
n�0

∥∥∥
e
.
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(2) ⇒ (1) In order to prove the reverse inequality, recall that Gλ0
+Gλ1

+ · · ·+
Gλn−1

⊆ Gλn , therefore

Eλn+1
( f ) �

∥∥∥ f −
n−1

∑
k=0

fλk

∥∥∥
A

=
∥∥∥ ∞

∑
k=n

fλk

∥∥∥
A

�
∞

∑
k=n

‖ fλk
‖A.

Hence, ϕ(λn+1)Eλn+1( f ) � ϕ(λn)∑∞
k=n ‖ fλk

‖A , for n � 1, and∥∥∥(
ϕ(λn)Eλn( f )

)
n�2

∥∥∥
e
�

∥∥∥(
ϕ(λn)

∞

∑
k=n

‖ fλk
‖A

)
n�1

∥∥∥
e
.

For n = 1 we have that Eλ1
( f ) � ‖ f −gλ0

‖ � ∑n�1‖ fλk
‖A and so

ϕ(λ1)Eλ1
( f ) � ϕ(λ1) ∑

n�1
‖ fλk

‖A,

while for n = 0, ϕ(λ0)Eλ0
( f ) � ϕ(λ1)∑n�0 ‖ fλk

‖A . Thus, arranging the sequence
properly and using the triangular inequality, we obtain∥∥∥(

ϕ(λn)Eλn( f )
)

n�0

∥∥∥
e
�

∥∥∥(
ϕ(λn)

∞

∑
k=n

‖ fλk
‖A

)
n�0

∥∥∥
e
.

This, together with Lemma 5.3, yields f ∈ Aϕ
ê and

‖ f‖Aϕ
ê

� inf
{∥∥∥(

ϕ(λn)‖ fλn‖A

)∥∥∥
e

}
. �

5.2. The iteration theorem

Let ϕ ∈ PN and e be an r.i. sequence space. The approximation family for
A, {Gn}n�0 , is also an approximation family for the space Aϕ

ê . Therefore, given any
ψ ∈ PN and any r.i. sequence space f , we may consider the limiting ultrasymmetric
approximation space for Aϕ

ê
(Aϕ

ê )ψ
f̂
.

We prove that this space can be obtained as an approximation space for A . Before
we proceed to this result, it is desirable to remark that in order to avoid ambiguity we
denote the approximation errors of an element f by En( f ,A) or En( f ,Aϕ

ê ) depending
on whether we refer to the approximation family {Gn}n�0 with respect to A or Aϕ

ê .
We will need the following Jackson type inequality; for f ∈ Aϕ

ê

ϕ(λn)Eλn( f ,A) � ‖ f‖Aϕ
ê
, for n ∈ N∪{0}. (5.2)

We will also use the Bernstein type inequality for the elements f ∈ Gλn :

‖ f‖Aϕ
ê

� ϕ(λn)‖ f‖A, for n ∈ N∪{0}. (5.3)

Inequalities (5.2) and (5.3) follow from the representation theorem by means of similar
arguments to those in [20].
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REMARK 5.5. The approximation numbers of both approximation families can
be compared. Indeed, they satisfy the inequality

ϕ(λn)Eλn+1
( f ,A) � Eλn( f ,Aϕ

ê ).

Next we prove that the approximation process is stable under iteration.

THEOREM 5.6. Let ϕ and ψ be slowly varying functions in PN , and e , f be r.i.
sequence spaces. Then,

(Aϕ
ê )ψ

f̂
= Aϕψ

f̂

with equivalence of norms.

Proof. Let f ∈ (Aϕ
e )ψ

f . From Remark 5.5 and the embedding Aϕ
ê ↪→ A , we obtain

the inequalities

‖ f‖ϕψ
Af̂

∼ |ϕ(λ0)ψ(λ0)Eλ0
( f ,A)| ‖e1‖f +

∥∥∥(
ϕ(λn+1)ψ(λn+1)Eλn+1

( f ,A)
)

n�0

∥∥∥
f

� |ψ(λ0)Eλ0
( f ,Aϕ

ê )| ‖e1‖f +
∥∥∥(

ϕ(λn+1)ψ(λn+1)Eλn+1
( f ,Aϕ

ê )
)

n�0

∥∥∥
f

� ‖ f‖(Aϕ
ê )ψ

f̂

In order to prove the reverse embedding, let f ∈ Aϕψ
f̂

. Following Theorem 5.4, we
choose an arbitrary representation f = ∑∞

n=0 fλn ∈ A with fλn ∈ Gλn and∥∥∥(
ϕ(λn)ψ(λn)‖ fλn‖A

)
n�0

∥∥∥
f
� ‖ f‖Aϕψ

f̂
< ∞.

Besides, by Bernstein Inequality (5.3)

‖ fλn‖Aϕ
ê

� ϕ(λn)‖ fλn‖A � 1
ψ(λn)

‖ fλn‖Aϕ
f̂
.

Hence, ∥∥∥ f −
n

∑
k=0

fλk

∥∥∥
Aϕ

ê

�
∞

∑
k=n+1

‖ fλk
‖Aϕ

ê
� ‖ f‖Aϕψ

f̂
·

∞

∑
k=n+1

1
ψ(λn)

and from Lemma 2.7, we obtain that∥∥∥ f −
n

∑
k=0

fλk

∥∥∥
Aϕ

ê

� 1
ψ(λn+1)

‖ f‖Aϕψ
f̂

→ 0 as n → ∞.

Therefore, f = ∑∞
n=0 fλn with convergence in Aϕ

ê and∥∥∥(
ψ(λn)‖ fλn‖Aϕ

ê

)
n�0

∥∥∥
f
�

∥∥∥(
ϕ(λn)ψ(λn)‖ fλn‖A

)
n�0

∥∥∥
f
< ∞.

This proves that f ∈ (Aϕ
ê )ψ

f̂
with ‖ f‖(Aϕ

ê )ψ
f̂

� ‖ f‖Aϕψ
f̂

and concludes the proof. �
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5.3. Interpolation of approximation spaces

Let ϕ ∈ PN and let e be an r.i. sequence space. Since Aϕ
ê ↪→ A , the pair (Aϕ

ê ,A)
is an ordered interpolation couple. Next, we identify the space generated by applying
interpolation methods defined by a functional parameter and an r.i. function space to
the (Aϕ

ê ,A) couple. Let us briefly recall the definition of these interpolation methods.

DEFINITION 5.7. Let A = (A0,A1) be a Banach couple. Consider an r.i. function
space F on (0,∞) with the Lebesgue measure and a function parameter ψ : (0,∞)−→
(0,∞) with dilation indices satisfying

−1 < πψ � ρψ < 0. (5.4)

By (A0,A1)K
ψ,F we denote the space of all elements f in A0 +A1 for which

‖ f‖(A0,A1)Kψ,F
= ‖ψ(t)K(t, f )‖F̃ < ∞.

Here F̃ = F (L1( dt
t ),L∞) and F is the interpolation functor that generates F

from the (L1,L∞) couple, see [3].

We will show that the interpolation space
(
Aϕ

ê ,A
)K

ψ,F is an approximation space

for A . We begin with an estimate for the K -functional of the (Aϕ
ê ,A) couple.

PROPOSITION 5.8. For all f ∈ Aϕ
ê and n ∈ N

ϕ(λn)Eλn( f ) � K
(

ϕ(λn), f ;Aϕ
ê ,A

)
�

n

∑
k=0

ϕ(λk)Eλk
( f ). (5.5)

Proof. Let h ∈ Aϕ
ê , from Jackson inequality (5.2) we get that

Eλn( f ) � ‖ f −h‖A +Eλn(h,A)

� ‖ f −h‖A +
1

ϕ(λn)
‖h‖Aϕ

ê
.

Now, taking infimum over all h ∈ Aϕ
ê we obtain

ϕ(λn)Eλn( f ) � K
(

ϕ(λn), f ;Aϕ
ê ,A

)
.

To prove the second inequality of (5.5), choose functions gn ∈ Gλn−1 such that
‖ f −gn‖A � 2Eλn( f ) for n � 0, and put

fn = gn−1−gn−2 for n � 2.

Clearly, gn = ∑n+1
k=2 fk , and for k � 2

‖ fk‖A � ‖ f −gk−1‖A +‖ f −gk−2‖A � 4Eλk−2
( f ).
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Hence, using Bernstein inequality (5.3),

K
(

ϕ(λn), f ;Aϕ
ê ,A

)
� ‖gn‖Aϕ

ê
+ ϕ(λn)‖ f −gn‖A

�
n+1

∑
k=2

‖ fk‖Aϕ
ê
+ ϕ(λn)Eλn( f )

�
n+1

∑
k=2

ϕ(λk)‖ fk‖A + ϕ(λn)Eλn( f )

�
n+1

∑
k=2

ϕ(λk)Eλk−2
( f )+ ϕ(λn)Eλn( f )

�
n

∑
k=0

ϕ(λk)Eλk
( f ).

This concludes the proof. �

Some considerations are required before establishing the interpolation formula for
the (Aϕ

ê ,A) couple. First we recall that (Aϕ
ê ,A) is an ordered couple, Aϕ

ê ↪→ A . There-
fore, to interpolate by the real K -method it suffices to integrate on the interval (1,∞) .
More precisely, for any ψ as in (5.4) and any r.i. space F

‖ f‖(Aϕ
ê ,A)Kψ,F

∼ ‖ψ(t)K(t, f )‖F̃(1,∞).

A second fact worth mentioning is that we may assume without loss of generality that
ϕ(1) = 1. This and the hypothesis ϕ ∈ PN yield the function

ϕ : (1,∞) −→ (1,∞),

with ϕ(t) = Φ(LN(t)) as in (2.5), defines a measure preserving transformation (up
to equivalences) in the sense of [3, Def. 7.1, p. 80] between the measure spaces(
(1,∞), dt

tL(t)

)
and

(
(1,∞), dt

t

)
. Therefore, any measurable function f on

(
(1,∞), dt

t

)
is equimeasurable with the function f ◦ϕ on

(
(1,∞), dt

tL(t)

)
. This, in particular, im-

plies that for any rearrangement invariant space F and any measurable function f the
equivalence of norms

‖ f ◦ϕ‖F̂(1,∞) ∼ ‖ f‖F̃(1,∞) (5.6)

holds. It is also convenient to comment that since ϕ(λn) ∼ ϕ(λn+1) and the function
ψ satisfies (5.4) (ψ decreases, while tψ(t) , t > 0, increases), then

ψ(ϕ(λn)) ∼ ψ(ϕ(λn+1)) (5.7)

for all n ∈ N .
The proof of the interpolation formula requires the discrete Hardy type inequality

we collect in Lemma 5.10. First, we need to establish some estimates.
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LEMMA 5.9. Let ϕ ∈ PN , ψ as in (5.4) and (λn)n�0 defined by equation (2.6).
Then for n ∈ N

∑
k�n

ψ(ϕ(λk)) ∼ ψ(ϕ(λn)), (5.8)

n

∑
k=0

1
ψ(ϕ(λk))

∼ 1
ψ(ϕ(λn))

. (5.9)

Proof. To prove (5.8), recall that ψ
(
ϕ(t)

)
= ψ ◦Φ(LN(t)) , t > 0, and ψ ◦Φ has

negative dilation indices (ρΨ < 0). Then, by (5.7),

ψ(ϕ(λn)) ∼
∫ ∞

λn

(ψ ◦ϕ)(t)
dt

tL(t)

=
∞

∑
k=n

∫ λk+1

λk

(ψ ◦ϕ)(t)
t

tL(t)

∼
∞

∑
k=n

ψ(ϕ(λk)).

Equivalence (5.9) can be proved with similar arguments. �

LEMMA 5.10. Let ϕ ∈ PN and ψ as in (5.4), then for any r.i. sequence space f
we have ∥∥∥(

ψ(ϕ(λn))
n

∑
k=0

ϕ(λk)ak

)∥∥∥
f
�

∥∥∥(
ψ(ϕ(λn))ϕ(λn)an

)∥∥∥
f
.

Proof. We prove the inequality for f = �1 and for f = �∞ . Consider the sequence
transformation

T
(
(an)n�0

)
=

( n

∑
k=0

ϕ(λk)ak

)
n�0

.

We claim the operator T : �1
(
ψ(ϕ(λn))ϕ(λn)

) −→ �1
(
ψ(ϕ(λn))

)
is bounded. Let

(an)n�0 ∈ �1
(
ψ(ϕ(λn))ϕ(λn)

)
. Then, by Lemma 5.9,

∥∥∥( n

∑
k=0

ϕ(λk)ak

)∥∥∥
�1

(
ψ(ϕ(λn))

) =
∞

∑
n=0

ψ(ϕ(λn))
n

∑
k=0

ϕ(λk)ak

=
∞

∑
k=0

ϕ(λk)ak ∑
n�k

ψ(ϕ(λn))

∼
∞

∑
k=0

ψ(ϕ(λk))ϕ(λk)ak.
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For (an)n�0 ∈ �∞(ψ(ϕ(λn))) Lemma 5.9 yields that

‖T (an)‖�∞(ψ(ϕ(λn))) = sup
n�0

ψ(ϕ(λn))
n

∑
k=0

ϕ(λk)ak

� sup
n�0

‖(an)‖�∞
(

ψ(ϕ(λn))ϕ(λn)
) n

∑
k=0

ψ(ϕ(λn))
ψ(ϕ(λk))

∼ ‖(an)‖�∞
(

ψ(ϕ(λn))ϕ(λn)
).

This shows the operator T : �∞
(
ψ(ϕ(λn))ϕ(λn)

) −→ �∞
(
ψ(ϕ(λn))

)
is also bounded.

Now, since f is an exact interpolation space for the (�1, �∞) couple, we conclude
that the operator T : f

(
ψ(ϕ(λn))ϕ(λn)

)−→ f
(
ψ(ϕ(λn))

)
is bounded, which completes

the proof. �
Next we establish an interpolation formula for the (Aϕ

ê ,A) couple.

THEOREM 5.11. Let A be a Banach space, e an r.i. space and ϕ ∈ PN . Con-
sider the ordered couple (Aϕ

ê ,A) . Then, for any r.i. space F and any function ψ as in
(5.4) (

Aϕ
ê ,A

)K
ψ,F = AΦ

f̂
,

where f stands for the discretization of F , see (3.5), and Φ(t) = ψ(ϕ(t))ϕ(t) , for
t > 0 .

Proof. Let f ∈ AΦ
f̂

, then by (5.5) and (5.6) we get that

‖ f‖AΦ
f̂

=
∥∥∥(

ψ(ϕ(λn))ϕ(λn)Eλn( f ,A)
)

n�0

∥∥∥
f

�
∥∥∥(

ψ(ϕ(λn))K
(
ϕ(λn), f

))
n�0

∥∥∥
f

∼ ∥∥ψ(ϕ(t))K(ϕ(t), f )
∥∥

F̂(1,∞)

∼ ∥∥ψ(t)K(t, f )
∥∥

F̃(1,∞).

For the reverse inequality we use equations (5.5), (5.6), (5.7), Lemma 3.1 and (3.5) to
obtain that for any f ∈ (

Aϕ
ê ,A

)K
ψ,F

‖ f‖(
Aϕ

ê ,A
)K

ψ,F

=
∥∥ψ(t)K(t, f )

∥∥
F̃(1,∞)

∼
∥∥∥ψ(ϕ(t))K(ϕ(t), f )

∥∥∥
F̂(1,∞)

=
∥∥∥ ∑

n�0

ψ(ϕ(t))K(ϕ(t), f )χ(λn,λn+1)

∥∥∥
F̂(1,∞)

∼
∥∥∥ ∑

n�0
ψ(ϕ(λn))K(ϕ(λn), f )χ(λn,λn+1)

∥∥∥
F̂(1,∞)
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=
∥∥∥(

ψ(ϕ(λn))K(ϕ(λn), f )
)

n�0

∥∥∥
f

�
∥∥∥(

ψ(ϕ(λn))
n

∑
k=0

ϕ(λk)Eλk
( f ,A)

)
n�0

∥∥∥
f

�
∥∥∥(

ψ(ϕ(λn))ϕ(λn)Eλn( f ,A)
)

n�0

∥∥∥
f

= ‖ f‖AΦ
f̂

.

This concludes the proof. �

5.4. Applications

Let X ,Y be Banach spaces, and let L (X ,Y ) be the Banach space of all bounded
linear operators from X to Y . Put

Gn = {R ∈ L (X ,Y ) with rank(R) � n}.
The family {Gn}n�0 is an approximation scheme for L (X ,Y ) . In this case, the ap-
proximation errors for an operator T coincide with the approximation numbers of T ,

En(T ) = an(T ) = inf
{‖T −R‖L (X ,Y ); with rank(R) � n

}
.

Given a function ϕ ∈ PN , for some N ∈ N , and an r.i. sequence space f , the ap-
proximation space

(
L (X ,Y )

)ϕ
f̂

coincides with the operator ideal L (X ,Y )ϕ ,̂f defined
as

Lϕ ,̂f =
{
T ∈ L (X ,Y ); with ‖ϕ(n)an(T )‖̂f < ∞

}
.

We begin with an example that shows that our representation theorem, Thm. 5.4,
includes that of Cobos and Resina in [14] as a particular case.

EXAMPLE 5.12. Choose ϕ(n) = �(n)γ+1/q , n ∈ N , and e = �q . The limiting
ultrasymmetric approximation space

(
L (X ,Y )

)ϕ
ê coincides with the operator ideal

L
�γ+1/q,�̂q

(X ,Y ) , L∞,q,γ in the notation of [14]. In order to apply Theorem 5.4, re-

call that in the present setting N = 1, and therefore λn = 1
222n

, then

T ∈ (
L (X ,Y )

)�(n)γ+1/q

�̂q
⇔ T = ∑∞

n=0 Tλn , with Tλn ∈ Gλn and∥∥∥(
�(λn)γ+1/q)‖Tλn‖L (X ,Y )

)∥∥∥
�q

< ∞.

That is to say

T ∈ L∞,q,γ ⇔ T = ∑∞
n=0 Tλn , with rank(Tλn) < λn and( ∞

∑
n=0

(
2n(γ+1/q)‖Tλn‖L (X ,Y )

)q
)1/q

< ∞,

which is precisely the representation theorem that Cobos and Resina established in [14].
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The next two theorems establish interpolation formulas for operator ideals.

THEOREM 5.13. Let ϕ ∈ PN and let e be an r.i. sequence space. Then, for any
Ψ : (0,∞) −→ (0,∞) satisfying (5.4) and any r.i. function space F ,

LΦ,̂f
(X ,Y ) =

(
Lϕ ,̂e(X ,Y ),L (X ,Y )

)K

Ψ,F

where Φ(t) = Ψ(ϕ(t))ϕ(t) , t > 0 , and f is the discretization of F .

Proof. It suffices to apply Theorem 5.11 to obtain(
Lϕ ,̂e(X ,Y ),L (X ,Y )

)K

Ψ,F
=

(
(L (X ,Y ))ϕ

ê ,L (X ,Y )
)K

Ψ,F

=
(
L (X ,Y )

)Φ

f̂

= LΦ,̂f
(X ,Y ).

This completes the proof. �
We are now in a position to obtain more general interpolation formulas for couples

of operator ideals. To do this we need a more precise setting.
Let Ψ,Ψ0,Ψ1 : (0,∞) −→ (0,∞) be functions satisfying that

−1 < πΨ = ρΨ < 0 (5.10)

−1 < πΨi = ρΨi < 0, i = 0,1, and πΨ0 < πΨ1 . (5.11)

Under these conditions for Ψ , the interpolation method (·)K
Ψ,F introduced in Defini-

tion 5.7 coincides with the interpolation method studied by the present authors in [22]
(·)K

θ ,tθ Ψ(t),F , with θ = πΨ . See also [24, 23]. Thus, we can use the reiteration theorem

[22, Thm. 5.1] to obtain the following reiteration result.

THEOREM 5.14. Let (A0,A1) be a Banach couple. Then, for any F , F0 and F1

r.i. function spaces, and Ψ , Ψ0 and Ψ1 as in (5.10) and (5.11),(
(A0,A1)K

Ψ0,F0
,(A0,A1)K

Ψ1,F1

)K

Ψ,F
= (A0,A1)Ψ1−θ

0 Ψθ
1 Ψ( Ψ0

Ψ1
),F

.

Here
(

Ψ1−θ
0 Ψθ

1 Ψ(Ψ0
Ψ1

)
)
(t) = Ψ1−θ

0 (t)Ψθ
1 (t)Ψ

( Ψ0(t)
Ψ1(t)

)
, t > 0 .

Given any ϕ ∈ PN , consider the functions

Φ0(t) = Ψ0(ϕ(t))ϕ(t), t > 0

Φ1(t) = Ψ1(ϕ(t))ϕ(t), t > 0.

Now we are in condition to state the following result.
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THEOREM 5.15. Let F , F0 and F1 be r.i. function spaces and let Ψ , Ψ0 and Ψ1

be as in (5.10) and (5.11). Then, with the above notation,(
LΦ0 ,̂f0

(X ,Y ),LΦ1 ,̂f1
(X ,Y )

)K

Ψ,F
= LΦ,̂f

(X ,Y ).

Here Φ(t) = Φ1−θ
0 (t)Φθ

1 (t)Ψ
(Ψ0(t)

Ψ1(t)

)
, t > 0 , and f , f0 and f1 are the discretizations of

F , F0 and F1 , respectively.

Proof. Use Theorems 5.13 and 5.14 to obtain that(
LΦ0 ,̂f0

(X ,Y ),LΦ1 ,̂f1
(X ,Y )

)K

Ψ,F

=
((

Lϕ,ê(X ,Y ),L (X ,Y )
)K

Ψ0,F0
,
(
Lϕ,ê(X ,Y ),L (X ,Y )

)K
Ψ1,F1

)K

Ψ,F

=
(
Lϕ,ê(X ,Y ),L (X ,Y )

)K
Ψ1−θ

0 Ψθ
1 Ψ( Ψ0

Ψ1
),F

= LΦ,̂f
(X ,Y ).

This concludes the proof. �
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[14] F. COBOS AND I. RESINA, Representation theorems for some operator ideals, J. London Math. Soc.
39 (1989), no. 2, 324–334.

[15] F. COBOS AND A. SEGURADO, Limiting real interpolation methods for arbitrary Banach couples,
Studia Math. 213 (2012), 243–273.

[16] R. A. DEVORE, S. D. RIEMENSCHNEIDER AND R. C. SHARPLEY, Weak Interpolation in Banach
Spaces, J. Funct. Anal. (1979), no. 33, 58–94.

[17] D. E. EDMUNDS AND B. OPIC, Limiting variants of Krasnosel’skiı̆’s compact interpolation theorem,
J. Funct. Anal. 266 (2014), no. 5, 3265–3285.

[18] W. D. EVANS AND B. OPIC, Real Interpolation with Logarithmic Functors and Reiteration, Canad.
J. Math. 52 (2000), no. 5, 920–960.

[19] W. D. EVANS, B. OPIC AND L. PICK, Real Interpolation with Logarithmic Functors, J. of Inequal.
& Appl. 7 (2002), no. 2, 187–269.
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