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ON THE COMPACTNESS OF THE STEVIĆ–SHARMA

OPERATOR ON THE LOGARITHMIC BLOCH SPACES

FANG ZHANG AND YONGMIN LIU ∗

(Communicated by S. Stević)

Abstract. Let H(D) denote the space of all analytic functions on the unit disc D of the complex
plane C , ψ1,ψ2 ∈ H(D) , and ϕ be an analytic self-map of D . In this paper, we characterize
the compactness of the Stević-Sharma operator on the logarithmic Bloch spaces.

1. Introduction

We begin with a brief review of relevant concepts and results in one complex
variable. Let D = {z ∈ C : |z| < 1} be the open unit disc in the complex plane C ,
H(D) the class of all analytic functions on the unit disc.

Next we are ready to introduce the needed spaces. The logarithmic Bloch space is
defined as follows [55]:

Blog =
{

f ∈ H(D) : ‖ f‖ = sup
z∈D

(
1−|z|2)(log

2
1−|z|

)
| f ′(z)| < ∞

}
.

The space Blog is a Banach space under the norm ‖ f‖Blog = | f (0)|+‖ f‖ . Let Blog,0

denote the subspace of Blog consisting of those f ∈ Blog such that

lim
|z|→1

(1−|z|2)
(

log
2

1−|z|
)
| f ′(z)| = 0.

S. Ye in [52] proved that Blog,0 is a closed subspace of Blog . It is obvious that there
are unbounded Blog functions. For example, consider the function f (z) = loglog e

1−z .
It is easily proved that for 0 < α < 1, Bα � Blog � B , where Bα is the α -Bloch
space. For some recent papers on logarithmic Bloch-type spaces and operators on them
see, for example, [1, 3, 4, 9, 14, 27, 30, 33, 34, 39, 41, 42, 46, 48, 53].
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Let ψ ∈ H(D) and ϕ be an analytic self-map of D , then define the composition,
multiplication and differentiation operators on H(D) as follows:

(Cϕ f )(z) = ( f ◦ϕ)(z) = f (ϕ(z)),z ∈ D;

(Mψ f )(z) = ψ(z) f (z),z ∈ D;

Df (z) = f ′(z),z ∈ D.

The differentiation operator is a typical example of an unbounded linear operator
on many analytic function spaces. After studying above mentioned operators, some
experts started studying their products. At the beginning a special interest attracted
products formed by composition and differentiation operators (see, for example, [5, 11,
12, 13, 25, 32, 35, 44]). To unify the study of these product-type operators, operators
in [37, 43, 63], with the study of weighted composition operators on spaces of analytic
functions, S. Stević and A. Sharma introduced a new operator as follows.

For ψ1,ψ2 ∈ H(D) and ϕ denotes an analytic self-map, let

Tψ1,ψ2,ϕ f (z) = ψ1(z) f (ϕ(z))+ ψ2(z) f ′(ϕ(z)), f ∈ H(D).

The operator Tψ1,ψ2,ϕ was studied by S. Stević and co-workers for the first time in
[49, 50] and later studied, for example, in [20, 57, 59]. This operator is related to
the various products of multiplication, composition, and differentiation operators. It
is clear that all products of composition, multiplication and differentiation operators in
the following six ways can be obtained from the operator Tψ1,ψ2,ϕ by choosing different
ψ1,ψ2 . More specifically we have

MψCϕD = T0,ψ,ϕ ; MψDCϕ = T0,ψϕ ′,ϕ ; CϕMψD = T0,ψ◦ϕ,ϕ ;

DMψCϕ = Tψ ′,ψϕ,ϕ ;CϕDMψ = Tψ ′◦ϕ,ψϕ,ϕ ; DCϕMψ = Tψ ′◦ϕϕ ′,(ψ◦ϕ)ϕ ′,ϕ .

Product-type operators on some spaces of analytic functions on the unit disk have
been the object of study in several recent years (see, for example, [6, 7, 8, 10, 15, 16,
17, 18, 19, 26, 37, 54, 56, 62, 63] and also related references therein). Quite recently,
Y. Yu and Y. Liu in [58] have considered the boundedness of the product-type operator
Tψ1,ψ2,ϕ on logarithmic Bloch spaces. The study of product-type operators has attracted
considerable interest recently. For some other original sources related to the operators
on the unit disk or the unit ball in Cn , see, for example, [28, 29, 31, 36, 38, 40, 45, 47,
51] as well as the following recent papers [21], [22], [60] and [61].

Inspired by the above results, the purpose of the paper is to study the compactness
of the operator Tψ1,ψ2,ϕ on the logarithmic Bloch spaces Blog (Blog,0 ). These results
can be seen as extensions of our earlier results on this operator (see [58]), where Y. Yu
and Y. Liu investigated the boundedness. Throughout the paper, the letter C denotes
a positive constant which may vary at each occurrence but it is independent of the
essential variables.

The paper is organized as follows. Section 2 contains lemmas needed to prove the
main results. Section 3 considers the compactness of the operator Tψ1,ψ2,ϕ : Blog(Blog,0)
→ Blog and the compactness of the operator Tψ1,ψ2,ϕ : Blog(Blog,0) → Blog,0 .
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2. Auxiliary results

For a better understanding, in this section we list up the following auxiliary results
that are needed to prove our main results. The following lemma is folklore.

LEMMA 1. Let f ∈ Blog . Then there is a positive constant C independent of f
such that

| f (z)| � C

(
2+ loglog

2
1−|z|

)
‖ f‖Blog

and

| f (z)| � 2C

(
log log

2
1−|z|

)
‖ f‖Blog , |z| � 1−1/ee2

.

The following lemma in [26, Lemma 1] plays an important role in characterizing
the boundedness and the compactness of the operators under consideration in this paper.

LEMMA 2. Let f ∈ Blog . Then there is a positive constant C independent of f
such that

| f (n)(z)| � C‖ f‖Blog

(1−|z|2)n log 2
1−|z|

,

for every z ∈ D , and all positive integer n = 1,2, · · · .
The following three lemmas (see, for example, [58, Theorem 3.1, Theorem 3.2,

Theorem 3.3]) are provided only for the convenience of the reader.

LEMMA 3. Let ψ1,ψ2 ∈ H(D) and ϕ denote an analytic self-map of D . Then
the following statements are equivalent.

(a) Tψ1,ψ2,ϕ : Blog → Blog is bounded;
(b) Tψ1,ψ2,ϕ : Blog,0 → Blog is bounded;
(c) ψ1 ∈ Blog ,

M1 := sup
z∈D

(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)| log log
2

1−|ϕ(z)| < ∞, (1)

M2 := sup
z∈D

(
1−|z|2)(log 2

1−|z|
)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)|(
1−|ϕ(z)|2

)
log 2

1−|ϕ(z)|
< ∞, (2)

and

M3 := sup
z∈D

(
1−|z|2)(log 2

1−|z|
)
|ψ2(z)ϕ ′(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

< ∞. (3)
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LEMMA 4. Let ψ1,ψ2 ∈ H(D) and ϕ denote an analytic self-map of D . Then
Tψ1,ψ2,ϕ : Blog,0 →Blog,0 is a bounded operator if and only if Tψ1,ψ2,ϕ : Blog,0 →Blog

is a bounded operator,

lim
|z|→1

(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)| = 0, (4)

lim
|z|→1

(
1−|z|2)(log

2
1−|z|

)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)| = 0, (5)

and

lim
|z|→1

(
1−|z|2)(log

2
1−|z|

)
|ψ2(z)ϕ ′(z)| = 0. (6)

LEMMA 5. Let ψ1,ψ2 ∈ H(D) and ϕ denote an analytic self-map of D . If ψ1 ∈
Blog,0,

lim
|z|→1

(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)| log log
2

1−|ϕ(z)| = 0,

lim
|z|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)|(
1−|ϕ(z)|2

)
log 2

1−|ϕ(z)|
= 0,

and

lim
|z|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ2(z)ϕ ′(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

= 0,

then Tψ1,ψ2,ϕ : Blog → Blog,0 is bounded.

The following criterion for the compactness follows by standard arguments (see,
for example, the proofs of the corresponding lemmas in [2, Proposition 3.11]). The
details will not be pursued here.

LEMMA 6. Let ψ1,ψ2 ∈ H(D) and ϕ denote an analytic self-map of D . Then
Tψ1,ψ2,ϕ : Blog(Blog,0) → Blog is compact if and only if Tψ1,ψ2,ϕ : Blog(Blog,0) →
Blog is bounded and for any bounded sequence { fn} in Blog(Blog,0) which converges
to zero uniformly on compact subsets of D as n → ∞ , we have ‖Tψ1,ψ2,ϕ fn‖Blog → 0
as n → ∞ .

The following lemma can be proved similar to Lemma 1 in [23] (see, also [24]).
The details are omitted.

LEMMA 7. A closed set K in Blog,0 is compact if and only if it is bounded and
satisfies

lim
|z|→1

sup
f∈K

(
1−|z|2)(log

2
1−|z|

)
| f ′(z)| = 0.
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3. The compactness of the operator Tψ1,ψ2,ϕ : Blog(Blog,0) → Blog(Blog,0)

First we characterize the compactness of the operator Tψ1,ψ2,ϕ : Blog(Blog,0) →
Blog .

THEOREM 1. Let ψ1,ψ2 ∈ H(D) and ϕ denote an analytic self-map of D . Then
the following statements are equivalent.

(a) Tψ1,ψ2,ϕ : Blog → Blog is compact;
(b) Tψ1,ψ2,ϕ : Blog,0 → Blog is compact;
(c) Tψ1,ψ2,ϕ : Blog → Blog is bounded,

lim
|ϕ(z)|→1

(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)| log log
2

1−|ϕ(z)| = 0, (7)

lim
|ϕ(z)|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)|(
1−|ϕ(z)|2

)
log 2

1−|ϕ(z)|
= 0, (8)

and

lim
|ϕ(z)|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ2(z)ϕ ′(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

= 0. (9)

Proof. (c) ⇒ (a) . Suppose that Tψ1,ψ2,ϕ : Blog → Blog is bounded, and (7), (8),
and (9) hold. To prove that Tψ1,ψ2,ϕ : Blog → Blog is compact, for any bounded se-
quence { fk} in Blog with fk → 0 uniformly on compact subsets of D , let ‖ fk‖Blog � 1,
it suffices, in view of Lemma 6, to show that

‖Tψ1,ψ2,ϕ fk‖Blog → 0 as k → ∞.

By (7), (8), and (9), we have for any ε > 0, there exists ρ ∈ (1/ee2
,1) such that

(
1−|z|2)(log

2
1−|z|

)
loglog

2
1−|ϕ(z)| |ψ

′
1(z)| < ε, (10)

(
1−|z|2)(log 2

1−|z|
)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)|(
1−|ϕ(z)|2

)
log 2

1−|ϕ(z)|
< ε, (11)

and (
1−|z|2)(log 2

1−|z|
)
|ψ2(z)ϕ ′(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

< ε, (12)
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for ρ < |ϕ(z)|< 1. Since the operator Tψ1,ψ2,ϕ : Blog,0 →Blog is bounded, by Lemma
3 one has ψ1 ∈Blog , (1), (2), and (3) hold. Since fk → 0 uniformly on compact subsets
of D , Cauchy’s estimate shows that f ′k and f ′′k converge to 0 uniformly on compact
subsets of D , there exists a K0 ∈ N such that k > K0 implies that

|(Tψ1,ψ2,ϕ fk)(0)|+ sup
|ϕ(z)|�ρ

(
1−|z|2)(log

2
1−|z|

)
|(Tψ1,ψ2,ϕ fk)′(z)|

� |ψ1(0) fk(ϕ(0))+ ψ2(0) f ′k(ϕ(0))|

+ sup
|ϕ(z)|�ρ

(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)|| fk(ϕ(z))|

+ sup
|ϕ(z)|�ρ

(
1−|z|2)(log

2
1−|z|

)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)|| f ′k(ϕ(z))|

+ sup
|ϕ(z)|�ρ

(
1−|z|2)(log

2
1−|z|

)
|ψ2(z)ϕ ′(z)|| f ′′k (ϕ(z))|

� |ψ1(0)|| fk(ϕ(0))|+ |ψ2(0) f ′k(ϕ(0))|+‖ψ1‖Blog sup
|ϕ(z)|�ρ

| fk(ϕ(z))|

+M2
(
1−ρ2) log

2
1−ρ

sup
|ϕ(z)|�ρ

| f ′k(ϕ(z))|+M3
(
1−ρ2)2 log

2
1−ρ

sup
|ϕ(z)|�ρ

| f ′′k (ϕ(z))|

< Cε. (13)

When k > K0 , from (10), (11), (12), (13), Lemmas 1, and 2, one has

‖Tψ1,ψ2,ϕ fk‖Blog

= |(Tψ1,ψ2,ϕ fk
)
(0)|+ sup

z∈D

(
1−|z|2)(log

2
1−|z|

)∣∣∣(Tψ1,ψ2,ϕ fk
)′ (z)∣∣∣

�
(
|(Tψ1,ψ2,ϕ fk

)
(0)|+ sup

|ϕ(z)|�ρ

(
1−|z|2)(log

2
1−|z|

)∣∣∣(Tψ1,ψ2,ϕ fk
)′ (z)∣∣∣

)

+ sup
ρ<|ϕ(z)|<1

(
1−|z|2)(log

2
1−|z|

)∣∣∣(Tψ1,ψ2,ϕ fk
)′ (z)∣∣∣

< Cε +2C sup
ρ<|ϕ(z)|<1

(
1−|z|2)(log

2
1−|z|

)
loglog

2
1−|ϕ(z)| |ψ

′
1(z)|‖ fk‖Blog

+C sup
ρ<|ϕ(z)|<1

(
1−|z|2)(log 2

1−|z|
)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)|(
1−|ϕ(z)|2

)
log 2

1−|ϕ(z)|
‖ fk‖Blog

+C sup
ρ<|ϕ(z)|<1

(
1−|z|2)(log 2

1−|z|
)
|ψ2(z)ϕ ′(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

‖ fk‖Blog

< 5Cε,
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it follows that the operator Tψ1,ψ2,ϕ : Blog → Blog is compact.
(a) ⇒ (b) . It is obvious.
(b) ⇒ (c) . It is clear that the compactness of Tψ1,ψ2,ϕ : Blog,0 → Blog implies

the boundedness of Tψ1,ψ2,ϕ : Blog,0 → Blog . By Lemma 3, Tψ1,ψ2,ϕ : Blog → Blog

is bounded. If ‖ϕ‖∞ < 1, it is clear that the limit in (7), (8), and (9) is vacuously
equal to zero. Hence, assume that ‖ϕ‖∞ = 1, let {zk} be a sequence in D such that
|ϕ(zk)| → 1 as k → ∞ . We can use the test functions

fk(z) =
1−|ϕ(zk)|2

(1− zϕ(zk)) log 2
1−|ϕ(zk)|

− 2(1−|ϕ(zk)|2)2(
1− zϕ(zk)

)2
log 2

1−|ϕ(zk)|

+
(1−|ϕ(zk)|2)3(

1− zϕ(zk)
)3

log 2
1−|ϕ(zk)|

.

By (3.14) and (3.15) in [58] we have sup
k∈N

‖ fk‖Blog � C and fk ∈ Blog,0 . For |z| < 1,

we have

| fk(z)| �
∣∣∣∣∣∣

1−|ϕ(zk)|2(
1− zϕ(zk)

)
log 2

1−|ϕ(zk)|

∣∣∣∣∣∣+
∣∣∣∣∣∣∣

2(1−|ϕ(zk)|2)2(
1− zϕ(zk)

)2
log 2

1−|ϕ(zk)|

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
(1−|ϕ(zk)|2)3(

1− zϕ(zk)
)3

log 2
1−|ϕ(zk)|

∣∣∣∣∣∣∣
� (1+ |ϕ(zk)|)(1−|ϕ(zk)|)

(1−|ϕ(zk)|) log 2
1−|ϕ(zk)|

+
2(1+ |ϕ(zk)|)2 (1−|ϕ(zk)|)2

(1−|ϕ(zk)|)2 log 2
1−|ϕ(zk)|

+
(1+ |ϕ(zk)|)3 (1−|ϕ(zk)|)3

(1−|ϕ(zk)|)3 log 2
1−|ϕ(zk)|

� 2

log 2
1−|ϕ(zk)|

+
8

log 2
1−|ϕ(zk)|

+
8

log 2
1−|ϕ(zk)|

=
18

log 2
1−|ϕ(zk)|

→ 0 as k → ∞.

We see that fk converges to 0 uniformly on D , hence fk converges to 0 uniformly on
compact subsets of D . Then fk is a bounded sequence in Blog,0 which converges to 0
uniformly on compact subsets of D . By Lemma 6 we obtain

lim
k→∞

‖Tψ1,ψ2,ϕ fk‖Blog = 0.

Using (3.11), (3.12), and (3.13) in [58], we have

fk (ϕ (zk)) = f ′k (ϕ (zk)) = 0, f ′′k (ϕ (zk)) =
2
(

ϕ(zk)
)2

(
1−|ϕ(zk)|2

)2
log 2

1−|ϕ(zk)|

.
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From the compactness of the operator Tψ1,ψ2,ϕ : Blog,0 → Blog we get

2(1−|zk|2)
(
log 2

1−|zk|
)
|ψ2(zk)ϕ ′(zk)|

∣∣∣ϕ(zk)
∣∣∣2(

1−|ϕ(zk)|2
)2

log 2
1−|ϕ(zk)|

� ‖Tψ1,ψ2,ϕ fk‖Blog → 0 as k → ∞. (14)

By (14) and |ϕ(zk)| → 1 we have

lim
k→∞

(1−|zk|2)
(
log 2

1−|zk|
)
|ψ2(zk)ϕ ′(zk)|(

1−|ϕ(zk)|2
)2

log 2
1−|ϕ(zk)|

= 0.

This proves (9).
Next, let

gk(z) =
3(1−|ϕ(zk)|2)(

1− zϕ(zk)
)

log 2
1−|ϕ(zk)|

− 5(1−|ϕ(zk)|2)2(
1− zϕ(zk)

)2
log 2

1−|ϕ(zk)|

+
2(1−|ϕ(zk)|2)3(

1− zϕ(zk)
)3

log 2
1−|ϕ(zk)|

.

It is easy to check that gk converges to 0 uniformly on compact subsets of D , gk ∈
Blog,0 and sup

k∈N
‖gk‖Blog � C . By Lemma 6 we have

lim
k→∞

‖Tψ1,ψ2,ϕgk‖Blog = 0.

In addition, one has gk (ϕ (zk)) = g′′k (ϕ (zk)) = 0 and

g′k (ϕ (zk)) = − ϕ(zk)
(1−|ϕ(zk)|2) log 2

1−|ϕ(zk)|
.

Using the compactness of the operator Tψ1,ψ2,ϕ : Blog,0 → Blog we get

(1−|zk|2)
(
log 2

1−|zk|
)
|ψ1(zk)ϕ ′(zk)+ ψ ′

2(zk)|
∣∣∣ϕ(zk)

∣∣∣
(1−|ϕ(zk)|2) log 2

1−|ϕ(zk)|
� ‖Tψ1,ψ2,ϕgk‖Blog → 0 as k → ∞. (15)

By (15) and |ϕ(zk)| → 1 we have

lim
k→∞

(1−|zk|2)
(
log 2

1−|zk|
)
|ψ1(zk)ϕ ′(zk)+ ψ ′

2(zk)|
(1−|ϕ(zk)|2) log 2

1−|ϕ(zk)|
= 0,
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it implies that (8) holds.
Now we prove (7). Choose

hk(z) = a−1
k

(
loglog

4

1− zϕ(zk)

)2

,

where ak = loglog 4
1−|ϕ(zk)|2 . Then

h′k(z) =
2loglog 4

1−zϕ(zk)

ak

ϕ(zk)(
1− zϕ(zk)

)
log 4

1−zϕ(zk)

and

h′′k (z) =
2
ak

(
ϕ(zk)

)2

(
1− zϕ(zk)

)2(
log 2

1−zϕ(zk)

)2

+
2loglog 4

1−zϕ(zk)

ak

(
ϕ(zk)

)2

log 4
1−zϕ(zk)

(
1− zϕ(zk)

)2

⎛
⎝1− 1

log 4
1−zϕ(zk)

⎞
⎠ .

Thus,

hk (ϕ (zk)) = loglog
4

1−|ϕ(zk)|2 � loglog
2

1−|ϕ(zk)| ,

|h′k (ϕ (zk)) | �
∣∣∣∣∣ 2ϕ(zk)
(1−|ϕ(zk)|2) log 4

1−|ϕ(zk)|2

∣∣∣∣∣� 2

(1−|ϕ(zk)|2) log 2
1−|ϕ(zk)|

(16)

and

|h′′k (ϕ (zk)) |

�

∣∣∣∣∣∣∣
2

(1−|ϕ(zk)|2)2
(
log 4

1−|ϕ(zk)|2
)2

loglog 4
1−|ϕ(zk)|2

∣∣∣∣∣∣∣
+

∣∣∣∣∣ 2

(1−|ϕ(zk)|2)2 log 4
1−|ϕ(zk)|2

∣∣∣∣∣
(

1− 1

log 4
1−|ϕ(zk)|2

)

� 2

(1−|ϕ(zk)|2)2
(
log 2

1−|ϕ(zk)|
)2

log log4
+

2

(1−|ϕ(zk)|2)2 log 2
1−|ϕ(zk)|

�
2

log log4 +2

(1−|ϕ(zk)|2)2 log 2
1−|ϕ(zk)|

. (17)
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By a direct calculation, we may easily prove that hk converges to 0 uniformly on
compact subsets of D , hk ∈ Blog,0 and sup

k∈N
‖hk‖Blog � C . By Lemma 6 we get that

lim
k→∞

‖Tψ1,ψ2,ϕhk‖Blog = 0. (18)

Using the triangle inequality, (16), and (17) one has

‖Tψ1,ψ2,ϕhk‖Blog

� sup
z∈D

(
1−|z|2)(log

2
1−|z|

)∣∣(Tψ1,ψ2,ϕhk)′(z)
∣∣

= sup
z∈D

(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)hk(ϕ(z))

+
(
ψ1(z)ϕ ′(z)+ ψ ′

2(z)
)
h′k(ϕ(z))+ ψ2(z)ϕ ′(z)h′′k (ϕ(z))|

� (1−|zk|2)
(

log
2

1−|zk|
)
|ψ ′

1(zk)hk(ϕ(zk))+
(
ψ1(zk)ϕ ′(zk)+ ψ ′

2(zk)
)
h′k(ϕ(zk))

+ ψ2(zk)ϕ ′(zk)h′′k (ϕ(zk))|

� (1−|zk|2)
(

log
2

1−|zk|
)
|ψ ′

1(zk)||hk(ϕ(zk))|

− (1−|zk|2)
(

log
2

1−|zk|
)∣∣ψ1(zk)ϕ ′(zk)+ ψ ′

2(zk)
∣∣ |h′k(ϕ(zk))|

− (1−|zk|2)
(

log
2

1−|zk|
)
|ψ2(zk)ϕ ′(zk)||h′′k (ϕ(zk))|

� (1−|zk|2)
(

log
2

1−|zk|
)
|ψ ′

1(zk)| loglog
2

1−|ϕ(zk)|

−2
(1−|zk|2)

(
log 2

1−|zk|
)
|ψ1(zk)ϕ ′(zk)+ ψ ′

2(zk)|
(1−|ϕ(zk)|2) log 2

1−|ϕ(zk)|

−
(

2
loglog4

+2

) (1−|zk|2)
(
log 2

1−|zk|
)
|ψ2(zk)ϕ ′(zk)|

(1−|ϕ(zk)|2)2 log 2
1−|ϕ(zk)|

.

By (8), (9), and (18) we obtain

(1−|zk|2)
(

log
2

1−|zk|
)
|ψ ′

1(zk)| loglog
2

1−|ϕ(zk)|

� ‖Tψ1,ψ2,ϕhk‖Blog +2
(1−|zk|2)

(
log 2

1−|zk|
)
|ψ1(zk)ϕ ′(zk)+ ψ ′

2(zk)|
(1−|ϕ(zk)|2) log 2

1−|ϕ(zk)|

+
(

2
loglog4

+2

) (1−|zk|2)
(
log 2

1−|zk|
)
|ψ2(zk)ϕ ′(zk)|

(1−|ϕ(zk)|2)2 log 2
1−|ϕ(zk)|

−→ 0 as k → ∞. (19)
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Using (19) we get

lim
k→∞

(1−|zk|2)
(

log
2

1−|zk|
)

loglog
2

1−|ϕ(zk)| |ψ
′
1(zk)| = 0,

and consequently (7) holds, and that proves Theorem 1. �
Let ψ ∈ H(D) and ϕ denote an analytic self-map of D , define a linear operator

Wψ,ϕ as follows:
Wψ,ϕ f = MψCϕ f , f ∈ H(D).

The operator Wψ,ϕ is called the weighted composition operator. From Theorem 1 we
can get the characterization of the compactness of the weighted composition operator
uCϕ = Wu,ϕ on Blog .

COROLLARY 1. ([3, Theorem 3.4], [53, Theorem 4.1]) Let u∈H(D) and ϕ de-
note an analytic self-map of D . Then the weighted composition operator uCϕ : Blog →
Blog is compact if and only if the weighted composition operator uCϕ : Blog → Blog

is bounded,

lim
|ϕ(z)|→1

|u′(z)|(1−|z|2)(log
2

1−|z|
)

loglog
2

1−|ϕ(z)| = 0,

and

lim
|ϕ(z)|→1

|u(z)ϕ ′(z)|(1−|z|2)(log 2
1−|z|

)
(
1−|ϕ(z)|2

)
log 2

1−|ϕ(z)|
= 0.

From Theorem 1 we also can get the characterization of the compactness of the
operator DWψ,ϕ or Wψ,ϕD on Blog , which to the best of our knowledge, have not
appeared in the literature. The boundedness and compactness of the operator DWψ,ϕ
or Wψ,ϕD on H∞ were investigated in [10]. The boundedness and compactness of
the operator DWψ,ϕ from weighted Bergman space to weighted Zygmund space was
investigated in [7]. The boundedness and compactness of the operator DWψ,ϕ from
the weighted Bergman-Orlicz space to the Bers type space, weighted Bloch space and
weighted Zygmund space was investigated in [8]. The boundedness and compactness
of the operator DCϕ or CϕD on the Hardy space H2 were investigated in [25].

COROLLARY 2. Let ψ ∈ H(D)and ϕ denote an analytic self-map of D . Then
the weighted composition followed by differentiation DWψ,ϕ : Blog → Blog is compact
if and only if the operator DWψ,ϕ : Blog → Blog is bounded,

lim
|ϕ(z)|→1

(
1−|z|2)(log

2
1−|z|

)
|ψ ′′(z)| log log

2
1−|ϕ(z)| = 0,

lim
|ϕ(z)|→1

(
1−|z|2)(log 2

1−|z|
)
|(ψ(z)+ ψ ′(z))ϕ ′(z)+ ψ ′(z)ϕ(z)|(

1−|ϕ(z)|2
)

log 2
1−|ϕ(z)|

= 0,
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and

lim
|ϕ(z)|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ(z)ϕ(z)ϕ ′(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

= 0.

COROLLARY 3. Let ψ ∈ H(D) and ϕ denote an analytic self-map of D . Then
the differentiation followed by weighted composition Wψ,ϕD : Blog →Blog is compact
if and only if the operator Wψ,ϕD : Blog → Blog is bounded,

lim
|ϕ(z)|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ ′(z)|(

1−|ϕ(z)|2
)

log 2
1−|ϕ(z)|

= 0,

and

lim
|ϕ(z)|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ(z)ϕ(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

= 0.

Next we consider the compactness of the operator Tψ1,ψ2,ϕ : Blog → Blog,0 . The
compactness of operators of which the range is in Blog,0 has a close relation with
Lemma 7.

THEOREM 2. Let ψ1,ψ2 ∈ H(D) and ϕ denote an analytic self-map of D . Then
the following statements are equivalent.

(a) Tψ1,ψ2,ϕ : Blog → Blog,0 is compact;
(b) Tψ1,ψ2,ϕ : Blog,0 → Blog,0 is compact;
(c) ψ1 ∈ Blog,0,

lim
|z|→1

(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)| log log
2

1−|ϕ(z)| = 0, (20)

lim
|z|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)|(
1−|ϕ(z)|2

)
log 2

1−|ϕ(z)|
= 0, (21)

and

lim
|z|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ2(z)ϕ ′(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

= 0. (22)

Proof. (c)⇒ (a) . Suppose that ψ1 ∈Blog,0, (20), (21), and (22) hold. By Lemma
5, it is clear that Tψ1,ψ2,ϕ : Blog →Blog,0 is bounded. Since for every z∈ D , f ∈Blog ,
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by Lemmas 1 and 2 we have

(
1−|z|2)(log

2
1−|z|

)∣∣∣(Tψ1,ψ2,ϕ f
)′ (z)∣∣∣

=
(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z) f (ϕ(z))

+
(
ψ1(z)ϕ ′(z)+ ψ ′

2(z)
)

f ′(ϕ(z))+ ψ2(z)ϕ ′(z) f ′′(ϕ(z))|

�
(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)|| f (ϕ(z))|

+
(
1−|z|2)(log

2
1−|z|

)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)|| f ′(ϕ(z))|

+
(
1−|z|2)(log

2
1−|z|

)
|ψ2(z)ϕ ′(z) f ′′(ϕ(z))|

� C‖ f‖Blog

(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)|
(

2+ loglog
2

1−|ϕ(z)|
)

+C‖ f‖Blog

(
1−|z|2)(log 2

1−|z|
)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)|(
1−|ϕ(z)|2

)
log 2

1−|ϕ(z)|

+C‖ f‖Blog

(
1−|z|2)(log 2

1−|z|
)
|ψ2(z)ϕ ′(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

. (23)

Taking the supremum in inequality (23) over all f ∈ Blog such that ‖ f‖Blog � 1 and
letting |z| → 1, yields

lim
|z|→1

sup
‖ f‖Blog

�1

(
1−|z|2)(log

2
1−|z|

)∣∣∣(Tψ1,ψ2,ϕ f
)′ (z)∣∣∣= 0.

Therefore, by Lemma 7, we have Tψ1,ψ2,ϕ : Blog → Blog,0 is compact.
(a) ⇒ (b) . This implication is clear.
(b) ⇒ (c) . Assume that Tψ1,ψ2,ϕ : Blog,0 → Blog,0 is compact. Firstly, it is ob-

vious ψ1 ∈ Blog,0 and Tψ1,ψ2,ϕ : Blog,0 → Blog is compact. By Theorem 1, ψ1,ψ2 ,
and ϕ satisfy conditions (7), (8), and (9). It follows that for every ε > 0, there ex-
ists ρ ∈ (0,1) such that (10), (11), and (12) hold for ρ < |ϕ(z)| < 1. On the other
hand, since Tψ1,ψ2,ϕ : Blog,0 → Blog,0 is compact, then Tψ1,ψ2,ϕ : Blog,0 → Blog,0 is
bounded. By Lemma 4, ψ1,ψ2 , and ϕ also satisfy conditions (4), (5), and (6). Thus
for ε > 0, there exists γ ∈ (0,1) such that

(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)| <
ε

log log 2
1−ρ

, (24)

(
1−|z|2)(log

2
1−|z|

)
|ψ1(z)ϕ ′(z)+ ψ ′

2(z)| < ε(1−ρ2) log2, (25)
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and

(
1−|z|2)(log

2
1−|z|

)
|ψ2(z)ϕ ′(z)| < ε(1−ρ2)2 log2, (26)

for γ < |z| < 1. Next, we prove that (24) and (10) imply (20). The proof of (21) and
(22) is similar, hence it will be omitted.

From (10) one has, when γ < |z| < 1 and ρ < |ϕ(z)| < 1,

(
1−|z|2)(log

2
1−|z|

)
loglog

2
1−|ϕ(z)| |ψ

′
1(z)| < ε. (27)

By (24) we get, when γ < |z| < 1 and |ϕ(z)| � ρ ,

(
1−|z|2)(log

2
1−|z|

)
log log

2
1−|ϕ(z)| |ψ

′
1(z)|

�
(
1−|z|2)(log

2
1−|z|

)
|ψ ′

1(z)| log log
2

1−ρ
< ε. (28)

Having in mind (27) and (28) we conclude that (20)) holds. This finishes the proof. �
Due to Theorem 2, the characterization of the compactness of the weighted com-

position operator uCϕ on Blog,0 is now obvious.

COROLLARY 4. ([53, Theorem 4.2]) Let u ∈ H(D) and ϕ denote an analytic
self-map of D . Then the weighted composition operator uCϕ : Blog,0 → Blog,0 is
compact if and only if u ∈ Blog,0 ,

lim
|z|→1

|u′(z)|(1−|z|2)(log
2

1−|z|
)

loglog
2

1−|ϕ(z)| = 0,

and

lim
|z|→1

|u(z)ϕ ′(z)|(1−|z|2)(log 2
1−|z|

)
(
1−|ϕ(z)|2

)
log 2

1−|ϕ(z)|
= 0.

REMARK 1. In [53, Theorem 4.2], the condition u ∈ Blog,0 is missing. In fact, if

inf
z∈D

log log
2

1−|ϕ(z)| = C > 0,

then

lim
|z|→1

|u′(z)|(1−|z|2)(log
2

1−|z|
)

� 1
C

lim
|z|→1

|u′(z)|(1−|z|2)(log
2

1−|z|
)

loglog
2

1−|ϕ(z)| = 0.
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If

inf
z∈D

log log
2

1−|ϕ(z)| = 0,

then

lim
|z|→1

|u′(z)|(1−|z|2)(log
2

1−|z|
)

loglog
2

1−|ϕ(z)| = 0

�

lim
|z|→1

|u′(z)|(1−|z|2)(log
2

1−|z|
)

= 0.

Thus we think the condition u ∈ Blog,0 in Corollary 4 should not be deleted.

COROLLARY 5. Let ψ ∈ H(D) and ϕ denote an analytic self-map of D . Then
the following statements are equivalent.

(a) DWψ,ϕ : Blog,0 → Blog,0 is compact;
(b) DWψ,ϕ : Blog → Blog,0 is compact;
(c) ψ ′ ∈ Blog,0 ,

lim
|z|→1

(
1−|z|2)(log

2
1−|z|

)
|ψ ′′(z)| log log

2
1−|ϕ(z)| = 0,

lim
|z|→1

(
1−|z|2)(log 2

1−|z|
)
|(ψ(z)+ ψ ′(z))ϕ ′(z)+ ψ ′(z)ϕ(z)|(

1−|ϕ(z)|2
)

log 2
1−|ϕ(z)|

= 0,

and

lim
|z|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ(z)ϕ(z)ϕ ′(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

= 0.

COROLLARY 6. Let ψ ∈ H(D) and ϕ denote an analytic self-map of D . Then
the following statements are equivalent.

(a) Wψ,ϕD : Blog,0 → Blog,0 is compact;
(b) Wψ,ϕD : Blog → Blog,0 is compact;
(c)

lim
|z|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ(z)|(

1−|ϕ(z)|2
)

log 2
1−|ϕ(z)|

= 0

and

lim
|z|→1

(
1−|z|2)(log 2

1−|z|
)
|ψ(z)ϕ(z)|(

1−|ϕ(z)|2
)2

log 2
1−|ϕ(z)|

= 0.
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[34] S. STEVIĆ, On new Bloch-type spaces, Appl. Math. Comput. 215, (2) (2009), 841–849.
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