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WEIGHTED REGULARITY ESTIMATES IN ORLICZ SPACES

FOR THE PARABOLIC SCHRÖDINGER OPERATORS

FENGPING YAO

(Communicated by I. Perić)

Abstract. In this paper we study regularity estimates in weighted Orlicz spaces for the parabolic
Schrödinger operator

P =
∂
∂ t

−Δ+V(x,t)

with non-negative potentials V(x,t) satisfying certain reverse Hölder class. As a corollary we
obtain the classical Lp -type regularity estimates for such operator.

1. Introduction

In this paper we consider regularity estimates in weighted Orlicz spaces for the
following parabolic Schrödinger differential operator

P =
∂
∂ t

−Δ +V(z) in R
n+1, (1.1)

with V ∈V∞ (see Definition 1), where z = (x,t) = (x1, ...,xn,t) and Δ =
n
∑
i=1

∂ 2

∂x2
i
.

Shen [33] proved the Lp boundedness with 1 < p � 2 of the nontangential maxi-
mal function of ∇u for the Lp -Neumann problem of the elliptic Schrödinger operator

L = −Δ +V(x), (1.2)

with V ∈V∞ (see Definition 1) in a domain Ω ⊂ R
n . Moreover, Shen [34] obtained the

following Lp estimates for (1.2)∫
Rn

∣∣D2 (−Δ +V(x))−1 f
∣∣p dx � C

∫
Rn

| f |p dx

for 1 < p � q , assuming that V ∈Vq for some q � n/2.
Gao and Jiang [18] proved the following Lp estimates of the parabolic Schrödinger

operator ∂
∂ t −Δ +V(x)

∫
Rn×(0,T ]

∣∣∣∣∣D2
(

∂
∂ t

−Δ +V(x)
)−1

f

∣∣∣∣∣
p

dz � C
∫

Rn×(0,T ]
| f |p dz for 1 < p � q,
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where z = (x, t) and V ∈Vq for some q � n
2μ with 0 < μ < n

n+2 and n � 3. Recently,
Carbonaro, Metafune and Spina [13] proved

∫
Rn+1

∣∣∣∣∣D2
(

∂
∂ t

−Δ +V(z)
)−1

f

∣∣∣∣∣
p

dz � C
∫

Rn+1
| f |p dz (1.3)

for the parabolic Schrödinger operator ∂
∂ t −Δ +V (z) , assuming that V ∈ Vp for 1 <

p < ∞ .

DEFINITION 1. ([3, 34, 35]) The function V (z) is said to belong to the reverse
Hölder class Vq for some 1 < q � ∞ if V ∈ Lq

loc(R
n+1) , V � 0 almost everywhere and

there exists a constant C such that(∫
Q
Vq(z)dz

)1/q

� C
∫

Q
V (z)dz

for any square cubes Q in R
n+1 , where∫

Q
V (z)dz =

1
|Q|

∫
Q
V (z)dz.

If q = ∞ , then the left hand side is the essential supremum in Q , i.e.,

sup
Q

|V (z)| � C
∫

Q
V (z)dz.

Actually, if V ∈V∞ , it clearly implies V ∈Vq for every q > 1.

Sobolev spaces, which are sets of functions with a certain degree of smoothness,
are commonly used and studied in a wide variety of fields of mathematics, and have
turned out to be one of the most powerful tools in analysis created in the 20th century.
Since the 1960s, the need to use wider spaces of functions than Sobolev spaces came
from various practical problems. Orlicz spaces have been studied as the generalization
of Sobolev spaces since they were introduced by Orlicz [31] (see [3, 4, 14, 15, 22]).
The theory of Orlicz spaces plays a crucial role in many fields of mathematics including
geometric, probability, stochastic, Fourier analysis and PDE (see [32]).

We denote Φ by

Φ =
{

φ : [0,+∞) −→ [0,+∞)
∣∣ φ are increasing and convex

}
. (1.4)

DEFINITION 2. A function φ ∈ Φ is said to be a Young function if

lim
t→0+

φ(t)
t

= lim
t→+∞

t
φ(t)

= 0.
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DEFINITION 3. A Young function φ ∈ Φ is said to satisfy the global Δ2 condi-
tion, denoted by φ ∈ Δ2 , if there exists a positive constant K such that for every t > 0,

φ(2t) � Kφ(t).

Moreover, a Young function φ ∈ Φ is said to satisfy the global ∇2 condition, denoted
by φ ∈ ∇2 , if there exists a number a > 1 such that for every t > 0,

φ(t) � φ(at)
2a

.

REMARK 1. We remark that the Δ2∩∇2 condition makes the function grow mod-
erately. For example, φ(t) = t p and φ(t) = t p(1 + | log t|) with p > 1 satisfy the
Δ2∩∇2 condition.

Now we consider

hφ (λ ) = sup
ρ>0

φ(λ ρ)
φ(ρ)

for λ > 0

and

i(φ) = lim
λ→0+

loghφ (λ )
logλ

= sup
0<λ<1

loghφ (λ )
logλ

. (1.5)

If φ ∈ Δ2∩∇2 , then from [9, 17] we know that i(φ) > 1 and

1
c

min{λ α1 ,λ α2}φ(ρ) � φ(λ ρ) � cmax{λ α1 ,λ α2}φ(ρ) for any λ ,ρ > 0, (1.6)

where the constants α1,α2 ∈ (1,∞) , α1 � α2 . It is worth pointing out that i(φ) is equal
to the supremum of those α1 for which (1.6) holds true with λ � 1.

We shall give some definitions and properties on the weighted Lebesgue spaces
(see [8, 10, 20, 23, 27, 28, 35, 36]).

DEFINITION 4. Ap for some p > 1 is the class of the Muckenhoupt weights:
w ∈ Ap if w ∈ L1

loc(R
n+1) , w > 0 almost everywhere and there exists a constant C

such that for all square cubes Q in R
n+1 ,(∫

Q
w(z)dz

)(∫
Q

w(z)
−1
p−1 dz

)p−1

� C.

Moreover, we denote

A∞ =
⋃

1<p<∞
Ap and w(Q) =

∫
Q

w(z) dz,

where Q ⊂ R
n+1 . Furthermore, the corresponding weighted Lebesgue space Lp

w(Q)
consists of all functions h which satisfy

‖h‖Lp
w(Q) =:

(∫
Q
|h|p w(z) dz

)1/p

< ∞.
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DEFINITION 5. Let φ ∈ Δ2 ∩∇2 and w ∈ Ai(φ) . Then the weighted Orlicz class

Kφ
w(Q) is the set of all measurable functions g : Q → R satisfying∫

Q
φ(|g|)w(z)dz < ∞.

The weighted Orlicz space Lφ
w(Q) is the linear hull of Kφ

w(Q) .

We use the Hardy-Littlewood maximal function which controls the local behavior
of a function.

DEFINITION 6. Let v be a locally integrable function. The Hardy-Littlewood
maximal function M v(z) is defined as

M v(z) = sup
∫

Q
|v(y,s)|dyds,

where the sup is taken over all square cubes Q in R
n+1 containing z = (x,t) .

It is well known that the maximal functions satisfy strong p - p estimate for any
1 < p < ∞ and weak 1-1 estimate (see [35]).

LEMMA 1. (see [8, 10, 23, 27, 28, 35, 36]) Assume that w ∈ Ap for some p > 1 .
Then we have

1. Ap1 ⊂ Ap for any 1 < p1 � p < ∞ .

2. w
({

z ∈ R
n+1 : M g(z) > μ

})
� Cμ−p ∫

Rn+1 |g(z)|p w(z)dz for any μ > 0 .

3.
1
C1

( |Q1|
|Q2|

)p

� w(Q1)
w(Q2)

� C1

( |Q1|
|Q2|

)σ

for any square cubes Q1 ⊂ Q2 ⊂ R
n+1 , where σ > 0 and C1 > 1 .

LEMMA 2. Assume that φ ∈ Δ2∩∇2 and w ∈ Ai(φ) .

1. There exists a small positive constant ε0 < 1 and a constant C > 1 such that(∫
Q

w(z)1+ε0dz

) 1
1+ε0 � C

∫
Q

w(z)dz

for any square cube Q ⊂ R
n+1 .

2. There exists a positive constant p2 ∈ (1, i(φ)) such that

w ∈ Ap2 .
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3. There exists a positive constant q > 1 such that

Lφ
w(Q) ⊂ Lq(Q) ⊂ L1(Q) for any square cube Q ⊂ R

n+1.

Proof. The conclusion (1) can follow from Theorem 3.5 in Chapter 9 of [36].
Since w ∈ Ai(φ) , from Definition 4 we have(∫

Q
w(z)dz

)(∫
Q

w(z)
−1

i(φ )−1 dz

)i(φ)−1

=

(∫
Q

(
w(z)

−1
i(φ )−1

)1−i(φ)

dz

)(∫
Q

w(z)
−1

i(φ )−1 dz

)i(φ)−1

=

⎡⎢⎢⎣
⎛⎝∫

Q

(
w(z)

−1
i(φ )−1

)− 1
i(φ )

i(φ )−1
−1

dz

⎞⎠
i(φ )

i(φ )−1−1(∫
Q

w(z)
−1

i(φ )−1 dz

)⎤⎥⎥⎦
i(φ)−1

� C (1.7)

for any square cube Q in R
n+1 , which implies that w(z)

−1
i(φ )−1 ∈ A i(φ )

i(φ )−1
. Therefore,

from the conclusion (1) we have(∫
Q

w(z)−
1+ε ′0

i(φ )−1 dz

) 1
1+ε ′0

� C
∫

Q
w(z)

−1
i(φ )−1 dz (1.8)

for some ε ′0 ∈ (0,1) . Let

p2 = 1+
i(φ)−1
1+ ε ′0

∈ (1, i(φ)) .

Then from (1.8) and the fact that w ∈ Ai(φ) we find that(∫
Q

w(z)dz

)(∫
Q

w(z)
−1

p2−1 dz

)p2−1

=
(∫

Q
w(z)dz

)(∫
Q

w(z)−
1+ε ′0

i(φ )−1 dz

) i(φ )−1
1+ε ′0

� C

(∫
Q

w(z)dz

)(∫
Q

w(z)−
1

i(φ )−1 dz

)i(φ)−1

� C, (1.9)

which implies that w ∈ Ap2 . Thus, the conclusion (2) is true. Recalling that i(φ) >
p2 > 1 and the fact that i(φ) = supα1 > 1, where the supremum is taken over those α1

for which (1.6) holds true with λ � 1, we can choose a proper constant

α0
1 ∈ (p2, i(φ)) satisfying (1.6). (1.10)
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Let

q =
α0

1

p2
∈ (1,α0

1 ). (1.11)

Then, from Hölder’s inequality and (1.9) we have∫
Q
| f |q dz =

∫
Q
| f |q w(z)

1
p2 w(z)−

1
p2 dz

�
(∫

Q
| f |α0

1 w(z)dz

) 1
p2

(∫
Q

w(z)−
1

p2−1 dz

)1− 1
p2

�
(∫

Q
(1+ | f |)α0

1 w(z)dz

) 1
p2

( |Q|
w(Q)

) 1
p2

� C

(∫
Q

(1+ | f |)α0
1 w(z)dz

) 1
p2

,

since w ∈ L1
loc(R

n) and w > 0 almost everywhere. Furthermore, if f ∈ Lφ
w(Q) , then

from (1.6) and (1.10) we find that

∫
Q
| f |q dz � C

(∫
Q

φ (1+ | f |)w(z)dz

) 1
p2

� C

(
1+

∫
Q

φ (| f |)w(z)dz

) 1
p2 � C.

This finishes our proof. �

LEMMA 3. (see [9, 21]) Let φ ∈ Δ2∩∇2 , w ∈ Ai(φ) and g ∈ Lφ
w(Rn+1) . Then we

have ∫
Rn+1

φ(|g|)w(z)dz =
∫ ∞

0
w
({z ∈ R

n+1 : |g| > λ})d [φ(λ )]

and ∫
Rn+1

φ (|g|)w(z)dz �
∫

Rn+1
φ (M (|g|))w(z)dz � C

∫
Rn+1

φ (|g|)w(z)dz,

where C = C(n,φ ,w) .

Now let us state the main results of this work: Theorem 1 and Theorem 2. We shall
give the direct proofs of the main results via the maximal function approach which was
employed by [2, 8, 11, 24, 27, 28].

THEOREM 1. Assume that φ ∈ Δ2∩∇2 , w ∈ Ai(φ) and f ∈ Lφ
w(Rn+1) . If u is the

solution of the heat equation

ut(z)−Δu(z) = f (z) in R
n+1,
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then we have∫
Rn+1

φ (|ut |)w(z)dz+
∫

Rn+1
φ
(∣∣D2u

∣∣)w(z)dz � C
∫

Rn+1
φ (| f |)w(z)dz.

REMARK 2. We remark that the condition φ ∈ Δ2∩∇2 is optimal for the type of
regularity results (see [37]). Especially when w(z) ≡ 1 and φ(t) = t p with p > 1, the
above estimate is reduced to the classical Lp estimate.

Recently, Bramanti, Brandolini, Harboure’s & Viviani [5] proved that

‖u‖W2,p(Rn) +‖Vu‖Lp(Rn) � C
(‖ f‖Lp(Rn) +‖u‖Lp(Rn)

)
,

if u ∈C∞
0 (Rn) satisfies

−ai juxix j +Vu = f , (1.12)

where V ∈ Vq with 1 < p � q and q � n/2. Furthermore, Zhang [38] extended the
result in [5] in the setting of the general Orlicz spaces.

THEOREM 2. Assume that φ ∈ Δ2 ∩∇2 , w ∈ Ai(φ) , V ∈ V∞ and f ∈ Lφ
w(Rn+1) .

If u ∈C∞
0 (Rn+1) is the solution of the following parabolic Schrödinger equation

ut(z)−Δu(z)+V(z)u(z) = f (z) in R
n+1, (1.13)

then we have∫
Rn+1

φ (|Vu|)w(z)+ φ (|ut |)w(z)+ φ
(∣∣D2u

∣∣)w(z)dz � C
∫

Rn+1
φ (| f |)w(z)dz.

Our approach is much influenced by [8, 9, 10, 25, 27, 28]. The authors [8, 9, 27,
28] obtained the local/global weighted gradient estimates for second-order elliptic and
parabolic equations in the bounded domain, where they used harmonic analysis tools
such as the maximal function operator which is first developed by Caffarelli and Peral
[11]. Moreover, Byun and Ryu [10] proved the global weighted gradient estimates
for nonlinear elliptic equations of p -Laplacian type, in which they used the harmonic
analysis free approach based on the covering/iteration argument (see [1, 6, 7, 29]).

2. Proofs of the main results

In this section we shall finish the proofs of the main results: Theorem 1 and The-
orem 2.

2.1. Proof of Theorem 1

In this subsection we shall prove Theorem 1. We first give the following Calderón-
Zygmund decomposition, which is much influenced by [25].



650 F. YAO

LEMMA 4. Let D be a square cube in R
n+1 and A,B ⊂ D be measurable sets.

Assume that 0 < w(A) < μw(D) for 0 < μ < 1 . Then there exists a sequence of disjoint
square cubes {Qk}k∈N

satisfying

1. w(A\⋃
k∈N Qk) = 0 ,

2. w(A∩Qk) > μw(Qk) ,

3. w
(
A∩ Q̃k

)
� μw

(
Q̃k

)
if Q̃k is the predecessor (father) of Qk .

Furthermore, if for any Qk , its predecessor Q̃k satisfies

w
(
B∩ Q̃k

)
> αw

(
Q̃k

)
for 0 < α < 1, (2.14)

then we have
w(A) � μ

α
w(B).

Proof. 1. We first divide D into 2n+1 (denote by
{

Qj1
1

}2n

j1=1
) disjoint square

cubes (daughters)with the same size. Choose those square cubes satisfying w
(
A∩Qj1

1

)
> μw

(
Qj1

1

)
and continue to divide every remaining square cube Qj1

1 into 2n+1 (de-

note by
{

Qj1, j2
2

}2n

j2=1
) disjoint square cubes with the same size. Therefore, we obtain a

sequence of disjoint square cubes {Qk}k∈N
which satisfy (2)–(3) by repeating the pro-

cess above. If z ∈ D\ {Qk}k∈N
, then there is a sequence of square cubes Pi containing

z with the diameters of Pi converging to 0 and

w(A∩Pi) � μw(Pi) .

That is to say, ∫
A∩Pi

w(z)dz � μ
∫

Pi

w(z)dz.

From the elementary measure theory and the fact that w(z) > 0 almost everywhere we
can conclude that z ∈ D\A for almost every z ∈ D\ {Qk}k∈N

, which implies that∣∣A\ {Qk}k∈N

∣∣ = 0.

Thus, from Lemma 1 (3) we conclude that (1) is true.
2. Let Q̃k be the predecessor (father) of Qk . Now we choose a disjoint predecessor

subsequence
{

Q̃k j

}
(still denote by

{
Q̃k

}
) such that

⋃
k∈N

Qk ⊂
⋃
k∈N

Q̃k.
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Thus, from (1), (3) and the hypothesis (2.14) we deduce that

w(A) = ∑
k

w
(
A∩ Q̃k

)
� μ ∑

k

w
(
Q̃k

)
<

μ
α ∑

k

w
(
B∩ Q̃k

)
� μ

α
w(B) ,

which finishes our proof. �
Next, we shall prove the following important result.

LEMMA 5. (cf. Lemma 9) Assume that φ ∈ Δ2 ∩ ∇2 and w ∈ Ai(φ) for i(φ) >

α0
1 > q > 1 , where α0

1 ,q are defined in (1.10)–(1.11). For any μ ∈ (0,1) there exist
two constants M2 = M2(n) > 1 and δ = δ (n,σ ,μ) ∈ (0,1) such that if

w
({

z ∈ Q̃ : M
(∣∣D2u

∣∣q)(z) � 1
}
∩
{

z ∈ Q̃ : M (| f |q)(z) � δ q
})

>
1
2
w
(
Q̃
)

,

(2.15)

where Q̃ is a so-called predecessor (father) of the square cube Q with
∣∣∣Q̃∣∣∣ = |2Q| ,

then we have
w
({

z ∈ Q : M
(∣∣D2u

∣∣q)(z) � Mq
2

})
� μw(Q) .

Proof. From Lemma 1 (3) and (2.15) we find that∣∣∣{z ∈ Q̃ : M
(∣∣D2u

∣∣q)(z) � 1
}
∩
{

z ∈ Q̃ : M (| f |q)(z) � δ q
}∣∣∣∣∣∣Q̃∣∣∣

�

⎡⎣w
({

z ∈ Q̃ : M
(∣∣D2u

∣∣q) (z) � 1
}
∩
{

z ∈ Q̃ : M (| f |q) (z) � δ q
})

C1w
(
Q̃
)

⎤⎦
1
σ

� (2C1)
− 1

σ ∈ (0,1),

since C1 > 1 and σ > 0. That is to say,∣∣∣{z ∈ Q̃ : M
(∣∣D2u

∣∣q)(z) � 1
}
∩
{

z ∈ Q̃ : M (| f |q)(z) � δ q
}∣∣∣ � (2C1)

− 1
σ
∣∣∣Q̃∣∣∣ .

Therefore, there exists z0 ∈ Q̃ satisfying

M
(∣∣D2u

∣∣q)(z0) � 1 and M (| f |q) (z0) � δ q.

Since z0 ∈ Q̃ ⊂ 3Q , we conclude that∫
4Q

∣∣D2u
∣∣q dz � 1 and

∫
4Q

| f |q dz � δ q. (2.16)

Let f be the zero extention of f from 4Q to R
n+1 and v1 be the solution of

(v1)t −Δv1 = f in R
n+1.
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Then recalling the elementary Lp -type estimates, we have∫
Rn+1

∣∣D2v1
∣∣q dz � C

∫
Rn+1

| f |q dz,

which implies that∫
4Q

∣∣D2v1
∣∣q dz �

∫
Rn+1

∣∣D2v1
∣∣q dz � C

∫
Rn+1

| f |q dz = C
∫

4Q
| f |q dz.

Therefore, from (2.16) we conclude that∫
4Q

∣∣D2v1
∣∣q dz � C

∫
4Q

| f |q dz � Cδ q. (2.17)

Set h1 = u− v1 . From the definition of f , we find that h1 satisfies the heat equation

(h1)t −Δh1 = 0 in 4Q.

It is easy to check that D2h1 still satisfies the heat equation in 4Q . Moreover, it follows
from the local bounded estimates (see [16], Theorem 9 in §2.3) that

sup
3Q

|D2h1| � M1,

where M1 > 1 only depends on n . The proof is totally similar to the proof of Lemma
9. Here we omit the details. �

COROLLARY 1. (cf. Corollary 3) Assume that μ ∈ (0,1) with C1μσ < 1 and w,δ ,
q,M2 satisfy the same conditions as those in Lemma 5. For any λ > 0 we have

w
({

z ∈ R
n+1 : M

(∣∣D2u
∣∣q)(z) � λ qMq

2

})
� 2C1μσ

[
w
({

z ∈ R
n+1 : M

(∣∣D2u
∣∣q)(z) > λ q

})
+w

({
z ∈ R

n+1 : M (| f |q)(z) > λ qδ q})] .

Furthermore, we can obtain the following result from Corollary 1.

COROLLARY 2. Assume that μ ∈ (0,1) with C1μσ < 1 and w,δ ,q,M2 satisfy
the same conditions as those in Lemma 5. For any λ > 0 we have

w
({

z ∈ R
n+1 : M

(∣∣D2u
∣∣)(z) � λM2

})
� 2C1μσ

[
w
({

z ∈ R
n+1 : M

(∣∣D2u
∣∣q)(z) > λ q

})
+w

({
z ∈ R

n+1 : M (| f |q)(z) > λ qδ q})] .
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Proof. Let z be a point in
{
z ∈ R

n+1 : M
(|D2u|q)(z) < λ qMq

2

}
. Assume that Q′

is any square cube with z ∈ Q′ . Then from Hölder’s inequality we have

∫
Q′

∣∣D2u
∣∣dz �

(∫
Q′

∣∣D2u
∣∣q dz

) 1
q

< λM2, (2.18)

which implies that M
(|D2u|)(z) < λM2 . Therefore, we have

{
z ∈ R

n+1 : M
(|D2u|q)(z) < λ qMq

2

}⊂ {
z ∈ R

n+1 : M
(|D2u|)(z) < λM2

}
, (2.19)

which implies that{
z ∈ R

n+1 : M
(|D2u|)(z) � λM2

}⊂ {
z ∈ R

n+1 : M
(|D2u|q) (z) � λ qMq

2

}
.

Thus, we can finish the proof. �

Moreover, we need the following result.

LEMMA 6. Assume that φ ∈	2∩∇2 and w∈Ai(φ) for i(φ) > α0
1 > q > 1 , where

α0
1 ,q are defined in (1.10)–(1.11). Then we have

∫ ∞

0
w
({

z ∈ R
n+1 : M (| f |q) (x) > λ q})d [φ(M2λ )] � C

∫
Rn+1

φ(| f |)w(x)dz.

Proof. Let

f1(z) =
{

f (z), i f | f (z)| > λ
2 ,

0, i f | f (z)| � λ
2 ,

and f2(z) = f (z)− f1(z) . Then it is easy to see that

M (| f |q)(z) � 2q−1 (M (| f1|q) (z)+M (| f2|q)(z)) � 2q−1
(

M (| f1|q) (z)+
(

λ
2

)q)
.

Therefore, from Lemma 1 (2) we have

w
({

z ∈ R
n+1 : M (| f |q)(z) > λ q})

� w

({
z ∈ R

n+1 : M (| f1|q)(z) >

(
λ
2

)q})
� Cλ−q

∫
Rn+1

| f1|qw(z)dz = Cλ−q
∫{

z∈Rn+1:| f |> λ
2

} | f |qw(z)dz.
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Interchanging the order of integration and integrating by parts, we deduce that∫ ∞

0
w
({

z ∈ R
n+1 : M (| f |q) > λ q})d [φ(M2λ )]

� C
∫ ∞

0
λ−q

∫{
z∈Rn+1:| f |> λ

2

} | f |qw(z)dzd [φ(M2λ )]

= C
∫ ∞

0
λ−q

∫
Rn+1

χ{
z∈Rn+1:| f |> λ

2

}| f |qw(z)dzd [φ(M2λ )]

= C
∫

Rn+1
| f |qw(z)

{∫ 2| f |

0
λ−qd [φ(M2λ )]

}
dz

=
∫

Rn+1
| f |qw(z)

{
φ(2M2| f |)

(2| f |)q +q
∫ 2| f |

0

φ(M2λ )
λ q+1 dλ

}
dz.

Therefore, we have∫ ∞

0
w
({

z ∈ R
n+1 : M (| f |q) > λ q})d [φ(M2λ )]

� C
∫

Rn+1
φ(| f |)w(z)dz+C

∫
Rn+1

φ (2M2| f |) | f |q−α0
1 w(z)

{∫ 2| f |

0

1

λ q+1−α0
1

dλ
}

dz

� C
∫

Rn+1
φ(| f |)w(z)dz,

since α0
1 > q and

φ (2M2| f |) = φ
(

M2λ · 2| f |
λ

)
� 1

c

(
2| f |
λ

)α0
1

φ (M2λ ) for 0 � λ � 2| f |

in view of (1.6) and (1.10). Thus we complete the proof. �
Now we are ready to prove the main result: Theorem 1.

Proof. From the fact that |D2u|(z) � M
(|D2u|)(z) , Lemma 3, Corollary 2 and

Lemma 6 we have∫
Rn+1

φ
(∣∣D2u

∣∣)w(z)dz

�
∫

Rn+1
φ
(
M

(∣∣D2u
∣∣))w(z)dz

=
∫ ∞

0
w
({

z ∈ R
n+1 : M

(∣∣D2u
∣∣)(z) > M2λ

})
d [φ(M2λ )]

� 2C1μσ
∫ ∞

0
w
({

z ∈ R
n+1 : M

(∣∣D2u
∣∣q)(z) > λ q

})
d [φ(M2λ )]

+2C1μσ
∫ ∞

0
w
({

z ∈ R
n+1 : M (| f |q)(z) > δ qλ q})d [φ(M2λ )] ,

which implies that∫
Rn+1

φ
(|D2u|)w(z)dz � C3μσ

∫
Rn+1

φ
(|D2u|)w(z)dz+C4

∫
Rn+1

φ (| f |)w(z)dz,
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for any μ ∈ (0,1) with C1μσ < 1, where C3 =C3(φ ,w,n) and C4 =C4(n,φ ,μ ,w) . In
a standard way via an approximation argument as the one in [1, 37] we can assume that
the integral

∫
Rn+1 φ

(|D2u|)w(z)dz is finite. Now selecting μ small enough to ensure
that C3μσ � 1/2, we have∫

Rn+1
φ
(|D2u|)w(z)dz � C

∫
Rn+1

φ (| f |)w(z)dz,

for some constant C = C(n,φ ,w) > 0. This completes our proof. �

2.2. Proof of Theorem 2

In this subsection we shall finish the proof of Theorem 2. Now let us first recall
the following result.

LEMMA 7. ([35], page 195) Assume that V ∈V∞ . There exist 1 � t < ∞ and C >
0 such that ∫

Q
gdz �

(
C

V (Q)

∫
Q
Vgt dz

) 1
t

holds for any nonnegative function g and all square cubes Q, where

V (Q) =
∫

Q
V dz.

Let h be the solution of the following homogeneous equation

ht(z)−Δh(z)+V(z)h(z) = 0, z = (x, t) ∈ 2Q ⊂ R
n+1. (2.20)

Then we have the following local bounded property.

LEMMA 8. Assume that V ∈V∞ . If h(z) satisfies (2.20) in 2Q, then

sup
Q

|h| � C
V (2Q)

∫
2Q

V |h|dz.

Proof. In view of the fact that u ∈C∞
0 (Rn+1) we may as well assume that

supp u ⊂ Qr0

for some r0 > 0. Moreover, since V ∈V∞ and u ∈C∞
0 (Rn+1) satisfies ut(z)−Δu(z)+

V (z)u(z) = f (z) , we can suppose that

V (z) ≡ 0 in R
n+1 \Qr0 and |V (z)| � C in R

n+1.

Using the elementary local bounded property of the second-order parabolic equation
(see [26], Theorem 7.21), we have

sup
Q

|h| � C

(∫
2Q

|h|r dz

) 1
r
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for any r > 0, which implies that

sup
Q

|h| � C

(∫
2Q

|h| 1
t dz

)t

� C
V (2Q)

∫
2Q

V |h| dz

in view of Lemma 7 with r = 1
t . Thus, we finish the proof. �

Next, we shall prove the following important result.

LEMMA 9. Assume that φ ∈	2∩∇2 , w ∈ Ai(φ) and V ∈V∞ . For any μ ∈ (0,1)
there exist two constants N2 = N2(n) > 1 and δ = δ (n,σ ,μ) ∈ (0,1) such that if

w
({

z ∈ Q̃ : M (V |u|)(z) � 1
}
∩
{

z ∈ Q̃ : M (| f |)(z) � δ
})

>
1
2
w
(
Q̃
)

, (2.21)

where Q̃ is a so-called predecessor (father) of the square cube Q with
∣∣∣Q̃∣∣∣ = |2Q| ,

then we have
w({z ∈ Q : M (V |u|)(z) � N2}) � μw(Q) .

Proof. 1. We first find that∣∣∣{z ∈ Q̃ : M (V |u|)(z) � 1
}
∩
{

z ∈ Q̃ : M (| f |)(z) � δ
}∣∣∣ � (2C1)

− 1
σ
∣∣∣Q̃∣∣∣ ,

since ∣∣∣{z ∈ Q̃ : M (V |u|)(z) � 1
}
∩
{

z ∈ Q̃ : M (| f |)(z) � δ
}∣∣∣∣∣∣Q̃∣∣∣

�

⎡⎣w
({

z ∈ Q̃ : M (V |u|)(z) � 1
}
∩
{

z ∈ Q̃ : M (| f |)(z) � δ
})

C1w
(
Q̃
)

⎤⎦
1
σ

� (2C1)
− 1

σ ∈ (0,1),

in view of Lemma 1 (3) and (2.21). Therefore, there exists z0 ∈ Q̃ such that

M (V |u|)(z0) � 1 and M (| f |)(z0) � δ . (2.22)

Since z0 ∈ Q̃ ⊂ 3Q , we conclude that∫
4Q

|Vu|dz � 1 and
∫

4Q
| f |dz � δ . (2.23)

Let v be the solution of

vt −Δv+V(z)v = f , z ∈ R
n+1,
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where f is the zero extention of f from 4Q to R
n+1 . Then recalling the well-known

L1 maximal inequality (see [13], Lemma 3.1), we have∫
Rn+1

V |v|dz �
∫

Rn+1
| f |dz,

which implies that∫
4Q

V |v|dz �
∫

Rn+1
V |v|dz �

∫
Rn+1

| f |dz =
∫

4Q
| f |dz.

Therefore, from (2.23) we conclude that∫
4Q

V |v|dz �
∫

4Q
| f |dz � δ . (2.24)

Set h = u− v . From the definition of f , we find that h satisfies

ht −Δh+V(z)h = 0 in 4Q.

Moreover, it follows from (2.23) and (2.24) that∫
4Q

V |h|dz �
∫

4Q
V |v|dz+

∫
4Q

V |u|dz < 2.

Then from the above inequality and Lemma 8 we find that

sup
3Q

V |h| � C sup
4Q

V [V (4Q)]−1
∫

4Q
V |h|dz � C sup

4Q
V

(∫
4Q

V dz

)−1

,

which implies that

sup
3Q

V |h| � N1, (2.25)

since V ∈V∞ , where N1 > 1 only depends on n .
2. Now we shall prove that

{z ∈ Q : M (V |u|)(z) > N2} ⊂ {z ∈ Q : M (|Vv|)(z) > N1} , (2.26)

where N2 =: max
{
2N1,9n+1

}
. To prove this, we fix

z ∈ {z ∈ Q : M (V |v|)(z) � N1} .

Case 1: z ∈ Q1 ⊂ 3Q . Then we have∫
Q1

V |u|dz �
∫

Q1

V |v|dz+N1 � 2N1,

since (2.25) and

V |u| � V |v|+V |h| � V |v|+N1 for any z ∈ 3Q.
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Case 2: z ∈ Q1 
⊂ 3Q . Then we have z ∈ Q ⊂ 3Q1 and 3Q ⊂ 9Q1 . Since z0 ∈
Q̃ ⊂ 3Q ⊂ 9Q1 and M (V |u|)(z0) � 1, from (2.22) we find that∫

Q1

V |u|dy � 9n+1
∫

9Q1

V |u|dy � 9n+1.

Thus, combining Case 1 and Case 2, we conclude that

M (V |u|)(z) � N2,

which implies that the desired result (2.26) is true. Finally, from (2.24), (2.26) and the
weak (1,1) estimate of the maximal functions we have

|{z ∈ Q : M (V |u|)(z) > N2}| � |{z ∈ Q : M (|Vv|)(z) > N1}|
� C

∫
Q
|Vv|dz � C

∫
4Q

|Vv|dz � Cδ |4Q| � Cδ |Q| .

Then Lemma 1 (3) implies that

w({z ∈ Q : M (V |u|)(z) � N2}) � Cδ σ w(Q) � μw(Q)

by choosing δ small enough satisfying the last inequality. Thus we complete the
proof. �

Furthermore, we can obtain the following result.

COROLLARY 3. Assume that μ ∈ (0,1) with C1μσ < 1 and w,δ ,N2 satisfy the
same conditions as those in Lemma 9. For any λ > 0 we have

w
({

z ∈ R
n+1 : M (V |u|)(z) � λN2

})
� 2C1μσ [

w
({

z ∈ R
n+1 : M (V |u|)(z) > λ

})
+w

({
z ∈ R

n+1 : M (| f |)(z) > λ δ
})]

.

Proof. Without loss of generality, we may as well assume that λ = 1. Let

R
n+1 =

∞⋃
i=1

Di,

where {Di} is a sequence of disjoint square cubes. Moreover, from weak 1-1 estimate
and the well-known L1 maximal inequality (see [13], Lemma 3.1) we conclude that∣∣{z ∈ R

n+1 : M (V |u|)(z) � N2
}∣∣ � C

N2
‖Vu‖L1(Rn+1) � C

N2
‖ f‖L1(Rn+1).

We may as well assume that f ∈C∞
0 (Rn+1) via an elementary approximation argument.

So, we can obtain
|{z ∈ Di : M (V |u|)(z) � N2}| � μ |Di|

by selecting |Di| large enough for i ∈ N . Furthermore, from Lemma 1 (3) we have

w({z ∈ Di : M (V |u|)(z) � N2}) � C1μσ w(Di) .
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We denote
A = {z ∈ Di : M (V |u|)(z) � N2}

and
B = {z ∈ Di : M (V |u|)(z) > 1}∪{z ∈ Di : M (| f |)(z) > δ} .

Then A,B ⊂ Di and w(A) � C1μσ w(Di) with C1μσ < 1. Therefore, it follows from
Lemma 4 that there exists a sequence of disjoint square cubes {Qk} satisfying

1. w(A\⋃
k∈N Qk) = 0,

2. w(A∩Qk) > C1μσw(Qk) ,

3. w
(
A∩ Q̃k

)
� C1μσ w

(
Q̃k

)
if Q̃k is the predecessor (father) of Qk .

If w
(
Q̃k ∩B

)
� 1

2w
(
Q̃k

)
, where Q̃k is the predecessor of Qk , then we obtain

w
({

z ∈ Q̃k : M (V |u|)(z) � 1
}
∩
{

z ∈ Q̃k : M (| f |) (z) � δ
})

> w
(
Q̃k ∩B

)
>

1
2
w
(
Q̃k

)
.

Furthermore, it follows from Lemma 9 that

w(A∩Qk) � w({z ∈ Qk : M (V |u|)(z) � N2}) � C1μσ w(Qk) .

So, we get a contradiction with (2) and then know that w
(
Q̃k ∩B

)
> 1

2w
(
Q̃k

)
. Finally,

we can use Lemma 4 again to get that

w(A) � 2C1μσ w(B) ,

which implies that

w({z ∈ Di : M (V |u|)(z) � N2})
� 2C1μσ

[
w({z ∈ Di : M (V |u|)(z) > 1})+w({z ∈ Di : M (| f |) (z) > δ})

]
.

Thus, we obtain the desired estimate by the summation. This finishes our proof. �
Now we are ready to prove the main result: Theorem 2.

Proof. From Lemma 3 and Corollary 3 we have∫
Rn+1

φ (|M (V |u|) |)w(z)dz

=
∫ ∞

0
w
({

z ∈ R
n+1 : M (V |u|)(z) > N2λ

})
d [φ(N2λ )]

� 2C1μσ
∫ ∞

0
w
({

z ∈ R
n+1 : M (V |u|)(z) > λ

})
d [φ(N2λ )]

+2C1μσ
∫ ∞

0
w
({

z ∈ R
n+1 : M (| f |) (z) > λ δ

})
d [φ(N2λ )]

� C5μσ
∫

Rn+1
φ (|M (V |u|)|)w(z)dz+C6

∫
Rn+1

φ (|M (| f |)|)w(z)dz
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for any μ ∈ (0,1) with C1μσ < 1, where C5 =C5(n,w,φ) and C6 = C6(n,w,φ ,μ ,σ) .
Without loss of generality we may as well assume that f ∈C∞

0 (Rn+1) . Then choosing
a suitable μ such that C5μσ < 1, we obtain∫

Rn+1
φ (|M (V |u|)|)w(z)dz � C

∫
Rn+1

φ (|M (| f |)|)w(z)dz � C
∫

Rn+1
φ (| f |)w(z)dz

in view of Lemma 3. From the fact that V |u|(z) � M (V |u|)(z) , we can obtain∫
Rn+1

φ (V |u|)w(z)dz � C
∫

Rn+1
| f |pw(z)dz.

Thus from Theorem 1 and (1.13) we deduce that∫
Rn+1

φ
(|D2u|)w(z)dz � C

(∫
Rn+1

φ (V |u|)w(z)dz+
∫

Rn+1
| f |pw(z)dz

)
� C

∫
Rn+1

| f |pw(z)dz,

which completes the proof. �
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[31] W. ORLICZ, Üeber eine gewisse Klasse von Räumen vom Typus B, Bull. Int. Acad. Pol. Ser. A, 8,

(1932), 207–220.
[32] M. RAO AND Z. REN, Applications of Orlicz spaces, Marcel Dekker Inc., New York, 2000.
[33] Z. SHEN, On the Neumann problem for Schrödinger operators in Lipschitz domains, Indiana Univ.

Math. J., 43, (1) (1994), 143–176.
[34] Z. SHEN, Lp estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Greno-

ble), 45, (2) (1995), 513–546.
[35] E. M. STEIN, Harmonic Analysis, Princeton Univareity Press, Princeton, 1993.
[36] A. TORCHINSKY, Real-Variable Methods in Harmonic Analysis, Pure Appl. Math., vol. 123, Aca-

demic Press, Inc., Orlando, FL, 1986.
[37] L. WANG, F. YAO, S. ZHOU AND H. JIA, Optimal regularity for the Poisson equation, Proc. Amer.

Math. Soc., 137, (2009), 2037–2047.
[38] K. ZHANG, Regularity in Orlicz spaces for nondivergence elliptic operators with potentials satisfying
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