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WEIGHTED HARDY TYPE INEQUALITIES

ON THE HEISENBERG GROUP H
n

ABDULLAH YENER

Abstract. In the present article, we provide a sufficient condition on a pair of nonnegative weight
functions V and W on the Heisenberg group H

n, so that we establish a general Lp Hardy type
inequality involving these weights with a remainder term. The method we use here is practical
enough to get more weighted Hardy type inequalities. We also obtain new results on two-weight
Hardy and Hardy-Poincaré type inequalities with remainder terms on H

n . Our findings improve
and include many previously known results in special cases.
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