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WEIGHTED HARDY TYPE INEQUALITIES

ON THE HEISENBERG GROUP H
n
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Abstract. In the present article, we provide a sufficient condition on a pair of nonnegative weight
functions V and W on the Heisenberg group H

n, so that we establish a general Lp Hardy type
inequality involving these weights with a remainder term. The method we use here is practical
enough to get more weighted Hardy type inequalities. We also obtain new results on two-weight
Hardy and Hardy-Poincaré type inequalities with remainder terms on H

n . Our findings improve
and include many previously known results in special cases.

1. Introduction

It is well known that on the Euclidean space R
n, the Hardy inequality asserts that

∫
Rn

|∇φ (x) |pdx �
∣∣∣∣n− p

p

∣∣∣∣
p ∫

Rn

|φ (x)|p
|x|p dx, (1)

and holds for every φ ∈C∞
0 (Rn) if 1 � p < n, and for every φ ∈C∞

0 (Rn\{0}) if p > n .
Garcia Azorero and Peral Alonso [4] proved that the constant on the right-hand side of
(1) is sharp. However, for p > 1, it is never achieved in the corresponding Sobolev
spaces W 1,p

0 (Rn) and W 1,p
0 (Rn\{0}) respectively, where W 1,p

0 (Rn) is the completion

of C∞
0 (Rn) in the norm ‖φ‖W 1,p := (

∫
Rn (|∇φ (x) |p + |φ (x)|p)dx)1/p .

Inequality (1) was first discovered by Hardy [26] in one dimensional case on the
positive half-line (0,∞) . Later on, it has been extended to higher dimensions and large
number of papers dealing with new proofs, various extensions, refinements and gener-
alizations have appeared in the Euclidean setting, see for example, [32], [7], [4], [2],
[14], [5], [6], [19], [1], [17], [20], [9], [21], [22], [33], [25], [13] and the references
therein. From the points of all these developments, it is natural to ask whether Hardy
type inequalities can hold on the nilpotent Lie groups, especially, on the Heisenberg
group H

n ?
In this direction, the first result was obtained by Garofalo and Lanconelli. That is,

in [18], they established the following L2 Hardy inequality on H
n :

∫
Hn

|∇Hnφ (z, l) |2dzdl �
(Q−2

2

)2 ∫
Hn

|z|2
|z|4 + l2

φ2 (z, l)dzdl, (2)
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where φ ∈ C∞
0 (Hn\{(0,0)}) and Q = 2n+ 2 is the homogeneous dimension of H

n.

Here and hereafter we write z = (x,y) ∈ R
n ×R

n, l ∈ R, |z|2 = |x|2 + |y|2 and (0,0)
is the neutral element of H

n (see Section 2 for definitions and preliminaries).
Since the work of Garofalo and Lanconelli, there has been continuously growing

interest in the study of Hardy type inequalities on H
n , see e.g., [31], [24], [10], [35],

[11], [12], [23], [28], [3], [27], [29], [34] and the references therein. For instance, by
using the Picone-type identity associated with the p -sub-Laplacian, Niu et al. got an
Lp analogue of (2) in [31]:

∫
Hn

|∇Hnφ |pdzdl �
(Q− p

p

)p ∫
Hn

|z|p(
|z|4 + l2

) p
2
|φ |p dzdl, (3)

where φ ∈ C∞
0 (Hn\{(0,0)}) and Q > p > 1. A different proof of (2) with the sharp

constant (Q−2
2 )2 was given by Goldstein and Zhang [24].

On the other hand, as far as we know, weighted Hardy type inequalities on H
n

were first studied in [11]. In that paper, D’Ambrosio proved that for every φ ∈C∞
0 (Hn),

the inequality

∫
Hn

|z|β−p

(
|z|4 + l2

) α−2p
4

|∇Hnφ |pdzdl �
(Q+ β −α

p

)p ∫
Hn

|z|β(
|z|4 + l2

) α
4
|φ |pdzdl (4)

holds, where p > 1 and α,β ∈ R satisfy the conditions Q > α −β and Q > 2+ p−β .
Moreover, the constant appeared on the right-hand side of (4) is sharp.

It is worth mentioning that a constructive method to derive Hardy type inequalities
was presented by D’Ambrosio in the paper [12] for a quite general class of second order
operators, including the sub-elliptic operator defined on H

n. Namely, in the context of
the Heisenberg group, let Φ be any positive weight, for every φ ∈C∞

0 (Hn) the Hardy
type inequality ∫

Hn
|∇Hnφ |p dzdl � c

∫
Hn

|∇HnΦ|p
Φp |φ |p dzdl

is valid, provided −∇Hn ·
(
|∇HnΦ|p−2 ∇HnΦ

)
� 0. Here, the proof relies on the diver-

gence theorem and on the suitable choice of a vector field.
In this article, one of our main goals is to give an alternative method of construction

of general weighted Hardy type inequalities on H
n via utilizing a differential inequality.

More precisely, motivated by an idea of Frank and Seiringer in [17], we show that
if W ∈ L1

loc (Hn) and V ∈ C∞ (Hn) are nonnegative functions and Φ ∈ C∞ (Hn) is a
positive function such that

−∇Hn ·
(
V (z, l) |∇HnΦ|p−2 ∇HnΦ

)
� W (z, l)Φp−1

almost everywhere in H
n, then for every φ ∈C∞

0 (Hn) there holds

∫
Hn

V (z, l) |∇Hnφ |p dzdl �
∫

Hn
W (z, l) |φ |p dzdl + cp

∫
Hn

V (z, l)
∣∣∣∣∇Hn

φ
Φ

∣∣∣∣
p

Φpdzdl,
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where p � 2 and cp > 0. A similar inequality with a different nonnegative remainder
term also exists for the case 1 < p < 2. The method we use here is constitutive in
the sense that, by using proper functions instead of V and Φ, it allows to get several
weighted Hardy type inequalities including previously known and also new results (see
Applications of Theorem 1). Moreover, we would like to mention in particular that our
approach automatically yields a remainder term. For the proof of the above improved
Hardy type inequality, we shall mainly use the well known convexity inequalities (14)
and (16), and the integration by parts formula.

The second goal of this paper is to obtain an improved version of (3) containing
the weight functions g and δ , and the homogeneous norm ρ on H

n which is defined
as in (6). Then we turn our attention to specific weights instead of g and δ that pro-
vide the hypotheses in the Theorem 2 and we derive weighted Hardy type inequalities
with different nonnegative reminder terms. We shall also consider a new form of the
improved Lp Hardy-Poincaré inequality (29) on H

n with a general weight.

Outline of the article The plan of our paper is summarized in the following sen-
tences. Section 2 is concerned with some basic notations, definitions and preliminaries.
In section 3, we start by proving a general form of Lp Hardy type inequality (3) involv-
ing two nonnegative weight functions V and W . We note that our result leads us to
obtain several weighted Hardy type inequalities. Then under a differential assumption
on the weight functions g and δ , and the homogeneous norm ρ , we acquire a two-
weight Lp Hardy type inequality. Finally, in section 4, we focus on improved weighted
Lp Hardy-Poincaré type inequality.

2. Preliminaries and notations

We first introduce some basic notations, definitions and preliminaries on H
n that

will be used throughout the article. For further details on this topic we refer the inter-
ested readers to [8], [18] and the references therein.

DEFINITION 1. Heisenberg group H
n is a Lie group whose underlying manifold

is R
n ×R

n×R, n ∈ N with the following group structure:

w◦w′ = (x+ x′,y+ y′, l + l′ +2∑n
i=1

(
xiy

′
i − yix

′
i

)
)

where w := (x,y, l) = (x1, . . . ,xn,y1, . . . ,yn, l) is a point of H
n .

The left-invariant vector fields for this group structure are

Xi =
∂

∂xi
+2yi

∂
∂ l

, Yi =
∂

∂yi
−2xi

∂
∂ l

, i = 1, . . . ,n. (5)

These vector fields generate the Lie algebra of H
n and the commutators of the vector

fields {X1,Y1, . . . ,Xn,Yn} satisfy the relation

[Xi,Yi] = −4
∂
∂ l

, i = 1, . . . ,n
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with all other brackets being equal to zero. The Kohn’s sub-Laplacian on H
n is ex-

pressed by

ΔHn =
n

∑
i=1

(
X2

i +Y 2
i

)

=
n

∑
i=1

(
∂ 2

∂x2
i

+
∂ 2

∂y2
i

+4yi
∂ 2

∂xi∂ l
−4xi

∂ 2

∂yi∂ l
+4

(
x2
i + y2

i

) ∂ 2

∂ l2

)

and the sub-elliptic gradient is 2n dimensional vector field given by

∇Hn = (X1, . . . ,Xn,Y1, . . . ,Yn).

The homogeneous norm on H
n is defined as follows

‖w‖
Hn = ‖(x,y, l)‖

Hn = (
(
∑n

i=1

(
x2
i + y2

i

))2
+ l2)1/4, (6)

which is smooth away from the neutral element of H
n . In what follows, we shall use

the following notations

z = (x,y) , r = |z| = (
∑n

i=1

(
x2
i + y2

i

))1/2
, ρ = ρ (w) = ‖w‖

Hn =
(
r4 + l2

)1/4

and denote the neutral element of H
n by 0 = (0,0) . The Heisenberg dilation δλ :

H
n −→ H

n is given by δλ (z, l) = (λ z,λ 2l) for each real number λ > 0. The Jacobian
determinant of δλ with respect to the Lebesgue measure is equal to λ Q, where

Q = 2n+2

is the homogeneous dimension of H
n. Hence the change of variable formula gives that

dδλ (z, l) = λ Qdzdl = λ Qdw,

where dw = dzdl denotes the Lebesgue measure on R
2n+1 . The norm function ρ on

H
n is highly related with the fundamental solution of −ΔHn . Folland [15] proved that

the fundamental solution of −ΔHn with pole at zero is

Ψ(w) =
CQ

ρQ−2 ,

where CQ > 0 is a number depending only on Q. The open ball centered at the origin
with radius R will be represented by

BR = {w ∈ H
n : ρ < R} .

Now let us mention, without proofs, some useful formulas which we shall use
throughout the computations in this paper. A direct calculation yields

Xiρ =
r2

ρ3 xi +
l

ρ3 yi, Yiρ =
r2

ρ3 yi − l
ρ3 xi, i = 1, . . . ,n
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for all w ∈ H
n\{0} . Let φ = φ (ρ) be a smooth radial function on H

n , that is only
depends on the function ρ in (6), then

|∇Hnφ (ρ)| = r
ρ

∣∣φ ′ (ρ)
∣∣

and

ΔHnφ (ρ) =
r2

ρ2

(
φ ′′ (ρ)+

Q−1
ρ

φ ′ (ρ)
)

for all w ∈ H
n\{0} . In particular, when φ (ρ) = ρα we have

|∇Hnρα | = |α|rρα−2 (7)

and

ΔHnρα = α (Q+ α −2)r2ρα−4, (8)

where w ∈ H
n\{0} and α ∈ R. Together with the above definitions and formulas (7)

and (8), one can obtain the following identities

∇Hnρ ·∇Hnr =
r3

ρ3 in H
n\{0} (9)

and

∇Hn ·
(

ρ3

r2 ∇Hnρ
)

= Q in H
n\Z , (10)

where Z := {w = (z, l) ∈ H
n : z = 0, l ∈ R} .

3. Weighted Hardy type inequalities and their improved versions

For certain class of functions, an alternative way of constructing Hardy type in-
equalities is based on the careful usage of differential equations or differential inequal-
ities. In this regard, we now give the following result.

THEOREM 1. Let W ∈ L1
loc (Hn) and V ∈C1 (Hn) be nonnegative functions. As-

sume Φ ∈C∞ (Hn) is a positive function satisfying the differential inequality

−∇Hn ·
(
V (w) |∇HnΦ|p−2 ∇HnΦ

)
� W (w)Φp−1, (11)

almost everywhere in H
n . There exists a positive constant cp depending only on p

such that; if p � 2, then

∫
Hn

V (w) |∇Hnφ |p dw �
∫

Hn
W (w) |φ |p dw+ cp

∫
Hn

V (w)
∣∣∣∣∇Hn

φ
Φ

∣∣∣∣
p

Φpdw (12)
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and if 1 < p < 2, then∫
Hn

V (w) |∇Hnφ |p dw �
∫

Hn
W (w) |φ |p dw (13)

+cp

∫
Hn

V (w)

∣∣∣∇Hn
φ
Φ

∣∣∣2 Φ2

(∣∣∣ φ
Φ ∇HnΦ

∣∣∣+ ∣∣∣∇Hn
φ
Φ

∣∣∣Φ
)2−p dw

for all φ ∈C∞
0 (Hn) .

Proof. Suppose that φ = Φϕ , where ϕ ∈C∞
0 (Hn) and 0 < Φ ∈C∞ (Hn) . We now

recall the following convexity inequality that will be used systematically in this paper
(see [30]): Let a,b ∈ R

n and p � 2, then it follows that

|a+b|p � |a|p + cp|b|p + p|a|p−2a ·b, (14)

where cp is a positive constant depending only on p and the symbol “ ·” denotes the
usual inner product in R

n. Taking a = ϕ∇HnΦ and b = Φ∇Hnϕ in the inequality (14),
direct calculation shows that

|∇Hnφ |p = |ϕ∇HnΦ+ Φ∇Hnϕ |p (15)

� |ϕ |p |∇HnΦ|p + cpΦp |∇Hnϕ |p + Φ |∇HnΦ|p−2 ∇HnΦ ·∇Hn (|ϕ |p) .

Multiplying both sides of (15) by V (w) and applying integration by parts formula to
the last term on the right hand side of the inequality over H

n give us∫
Hn

V (w) |∇Hnφ |p dw �
∫

Hn
V (w) |∇HnΦ|p |ϕ |p dw+ cp

∫
Hn

V (w) |∇Hnϕ |p Φpdw

−
∫

Hn
∇Hn ·

(
V (w)Φ |∇HnΦ|p−2 ∇HnΦ

)
|ϕ |p dw

= −
∫

Hn
∇Hn ·

(
V (w) |∇HnΦ|p−2 ∇HnΦ

)
Φ |ϕ |p dw

+cp

∫
Hn

V (w) |∇Hnϕ |p Φpdw.

Next, by using the given weighted p -Laplacian inequality (11), we get∫
Hn

V (w) |∇Hnφ |p dw �
∫

Hn
W (w) |ϕ |p Φpdw+ cp

∫
Hn

V (w) |∇Hnϕ |p Φpdw.

After back substitution ϕ = φ
Φ , we acquire the desired result (12) . Similar to the

derivation of (12) above, the inequality (13) can be derived without any difficulty by
using the following convexity inequality with the same choices of a and b :

|a+b|p � |a|p + p |a|p−2 a ·b+ cp
|b|2

(|a|+ |b|)2−p (16)

where a,b∈R
n, 1 < p < 2 and cp > 0 (see, for example, [30]). Hence, this completes

the proof of Theorem 1. �

REMARK 1. We note that if p = 2, then (12) is an equality with c2 = 1.
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Applications of Theorem 1

Let ε > 0 be given, we set rε :=
(
ε2 + r2

)1/2
and ρε :=

(
r4

ε + l2
)1/4

. We now
apply Theorem 1 to recover some previously known weighted Hardy type inequalities
and to get also other new results on H

n . For instance, considering the following two
functions

Vε = rβ−p
ε ρ2p−α

ε and Φε = ρ
−Q+β−α

p
ε ,

which satisfy the assumptions of the above theorem, we have the inequality (4) by
letting ε −→ 0 :

COROLLARY 1. Let p > 1 and α,β ∈ R satisfy the conditions Q > α −β and
Q > 2+ p−β . Then for every φ ∈C∞

0 (Hn), there holds

∫
Hn

rβ−p

ρα−2p |∇Hnφ |pdw �
(Q+ β −α

p

)p ∫
Hn

rβ

ρα |φ |pdw. (17)

REMARK 2. It was shown by D’Ambrosio [11] that the constant
(

Q+β−α
p

)p
ap-

peared in (17) is sharp.

By choosing the following two pairs

V = 1 and Φε = r
−Q−p−2

p
ε ,

and letting ε −→ 0, we obtain the subsequent Lp Hardy type inequality involving the
weight 1/rp due to D’Ambrosio [11]:

COROLLARY 2. Let Q−2 > p > 1. Then the inequality
∫

Hn
|∇Hnφ |pdw �

(Q− p−2
p

)p ∫
Hn

|φ |p
rp dw

is valid for every φ ∈C∞
0 (Hn).

We now take the subsequent pair

Vε = ρα
ε and Φε =

(
1+ ρ

p
p−1

ε

)−Q+α−p
p

,

and then pass to the limit as ε −→ 0, we derive the following weighted Lp Hardy type
inequality:

COROLLARY 3. Let α ∈ R, 1 < p < Q and Q + α − p > 0 . Then, for every
function φ ∈C∞

0 (Hn), the inequality holds true

∫
Hn

ρα |∇Hnφ |pdw �
(Q+ α − p

p−1

)p−1
(Q+ α)

∫
Hn

ρα−prp(
1+ ρ

p
p−1

)p |φ |pdw.
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Another application of Theorem 1 with the special functions

Vε =
(

1+ ρ
p

p−1
ε

)α(p−1)

and Φε =
(

1+ ρ
p

p−1
ε

)1−α

leads us to the following result by letting ε −→ 0 :

COROLLARY 4. Let Q > p > 1 and α > 1. Then, for all φ ∈C∞
0 (Hn), we have

∫
Hn

(
1+ ρ

p
p−1

)α(p−1) |∇Hnφ |pdw � C(Q,α, p)
∫

Hn

(
1+ ρ

p
p−1

)(α−1)(p−1)
rp

ρ p |φ |pdw,

where C(Q,α, p) := Q
(

α p−p
p−1

)p−1
.

It is worth noting that, in the Euclidean setting, Abdellaoui et al. [1] showed that
if 1 < p < n and −∞ < α < n−p

p , then for all φ ∈C∞
0 (Rn) there holds

∫
Rn

|x|−pα |∇φ |pdx �
(n− p(α +1)

p

)p ∫
Rn

|x|−p(α+1) |φ |p dx. (18)

Now by considering these two units

Vε = ρ−pα
ε and Φε = ρ

−Q−p(α+1)
p

ε ,

and passing to the limit as ε −→ 0, we reach the Heisenberg analogue of the inequality
(18) which is in fact a special case of (4) due to D’Ambrosio [11].

COROLLARY 5. Let α ∈ R, 1 < p < Q and Q > p(α +1) . Then the inequality
∫

Hn
ρ−pα |∇Hnφ |pdw �

(Q− p(α +1)
p

)p ∫
Hn

ρ−p(α+2)rp |φ |p dw

is valid for every function φ ∈C∞
0 (Hn).

With the help of a differential assumption on the weight functions g and δ , and
the homogeneous norm ρ on H

n , we now prove the following Hardy type inequality
which contains two remainder terms.

THEOREM 2. Let α ∈R, 2 � p < Q+α and cp is a positive constant depending
only on p. Let g be a nonnegative C1 -function and δ be a positive C∞ -function such
that −∇Hn · (g(w)ρ p−Qδ 2−p |∇Hnδ |p−2 ∇Hnδ ) � 0 almost everywhere in H

n . Then
the following inequality is valid for all φ ∈C∞

0 (Hn\{0}) :∫
Hn

g(w)ρα |∇Hnφ |pdw �
(

Q+α−p
p

)p ∫
Hn

g(w)ρα−2prp |φ |p dw

+
(

Q+α−p
p

)p−1 ∫
Hn

ρα−2p+3rp−2 (∇Hnρ ·∇Hng) |φ |p dw

+
cp

pp

∫
Hn

g(w)ραδ−p |∇Hnδ |p |φ |p dw. (19)
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Proof. Let φ ∈ C∞
0 (Hn\{0}) and define ψ := ρ−β φ with β < 0 that will be

chosen later. Then we have

∇Hn

(
ρβ ψ

)
= β ρβ−1ψ∇Hnρ + ρβ ∇Hnψ . (20)

Taking a = β ρβ−1ψ∇Hnρ and b = ρβ ∇Hnψ in the convexity inequality (14) and using
the identity (7), we deduce that

|∇Hnφ |p � |β |p ρ p(β−2)rp |ψ |p + cpρ pβ |∇Hnψ |p (21)

+β |β |p−2 ρ p(β−2)+3rp−2∇Hnρ ·∇Hn (|ψ |p) .
Multiplying both sides of (21) by g(w)ρα and applying integration by parts formula
over H

n give
∫

Hn
g(w)ρα |∇Hnφ |pdw � |β |p

∫
Hn

g(w)ρα+p(β−2)rp |ψ |p dw

−β |β |p−2
∫

Hn
∇Hn ·

(
g(w)ρα+p(β−2)+3rp−2∇Hnρ

)
|ψ |p dw

+cp

∫
Hn

g(w)ρα+pβ |∇Hnψ |pdw. (22)

Together with the identities (7), (8) and (9), direct calculation yields

∇Hn ·
(
g(w)ρα+p(β−2)+3rp−2∇Hnρ

)
= (Q+ α + β p− p)g(w)ρα+p(β−2)rp

+ρα+p(β−2)+3rp−2∇Hnρ ·∇Hng. (23)

By substituting (23) into (22), one can obtain
∫

Hn
g(w)ρα |∇Hnφ |pdw � f (Q,α, p;β )

∫
Hn

g(w)ρα+p(β−2)rp |ψ |p dw

−β |β |p−2
∫

Hn
ρα+p(β−2)+3rp−2 (∇Hnρ ·∇Hng) |ψ |p dw

+cp

∫
Hn

g(w)ρα+pβ |∇Hnψ |pdw, (24)

where f (Q,α, p;β ) = |β |p−β |β |p−2 (Q+ α + β p− p). Let us choose β = p−α−Q
p ,

clearly β < 0, then the inequality (24) takes the following form
∫

Hn
g(w)ρα |∇Hnφ |pdw �

(
Q+α−p

p

)p ∫
Hn

g(w)ρ−p−Qrp |ψ |p dw

+
(

Q+α−p
p

)p−1 ∫
Hn

ρ3−p−Qrp−2 (∇Hnρ ·∇Hng) |ψ |p dw

+cp

∫
Hn

g(w)ρ p−Q|∇Hnψ |pdw. (25)

We now concentrate on the integral expression
∫
Hn g(w)ρ p−Q|∇Hnψ |pdw on the right

hand side of the inequality (25). Let us define a new function ϕ := δ−1/pψ , where
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0 < δ ∈C∞ (Hn\{0}) and ψ ∈C∞
0 (Hn\{0}) . It follows from the convexity inequality

(14) that

|∇Hnψ |p =
∣∣∣p−1δ

1−p
p ϕ∇Hnδ + δ

1
p ∇Hnϕ

∣∣∣p
(26)

� p−pδ 1−p |∇Hnδ |p |ϕ |p + p1−pδ 2−p |∇Hnδ |p−2 ∇Hnδ ·∇Hn (|ϕ |p) .

Multiplying both sides of (26) by g(w)ρ p−Q and integrating over H
n , we get

∫
Hn

g(w)ρ p−Q|∇Hnψ |pdw � p−p
∫

Hn
g(w)ρ p−Qδ 1−p |∇Hnδ |p |ϕ |p dw

+p1−p
∫

Hn
g(w)ρ p−Qδ 2−p |∇Hnδ |p−2 ∇Hnδ ·∇Hn (|ϕ |p)dw.

Here, first applying integration by parts formula and then using the differential assump-
tion

−∇Hn · (g(w)ρ p−Qδ 2−p |∇Hnδ |p−2 ∇Hnδ ) � 0,

we conclude that
∫

Hn
g(w)ρ p−Q|∇Hnψ |pdw � p−p

∫
Hn

g(w)ρ p−Qδ 1−p |∇Hnδ |p |ϕ |p dw. (27)

Taking back substitution ϕ = δ−1/pρ
Q+α−p

p φ into the inequality (27), we have
∫

Hn
g(w)ρ p−Q|∇Hnψ |pdw � p−p

∫
Hn

g(w)ρα δ−p |∇Hnδ |p |φ |p dw. (28)

Finally, first substituting (28) into (25) and then using the equality ψ = ρ
Q+α−p

p φ , we
derive the desired result (19). �

REMARK 3. We note that the result stated in Theorem 2 holds also for 1 < p < 2
with a different reminder term and in this case we use the convexity inequality (16).

One virtue of our approach is that it automatically gives remainder terms. To be
specific, choosing different model functions instead of δ and g that satisfy assumptions
of the Theorem 2, we obtain the following weighted Lp Hardy type inequalities with
different nonnegative reminder terms.

COROLLARY 6. Let Ω be a bounded domain with smooth boundary ∂Ω in H
n

and let g ≡ 1 , δ := log(R
ρ ), R > supΩ

(
ρ
)
. Then for all φ ∈C∞

0 (Ω\{0}), we have

∫
Ω

ρα |∇Hnφ |pdw �
(Q+ α − p

p

)p ∫
Ω

ρα−2prp |φ |p dw+
cp

pp

∫
Ω

ρα−2prp

logp
(

R
ρ

) |φ |p dw,

where Q+ α > p � 2, α ∈ R and cp > 0.
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COROLLARY 7. Let BR be a ball with center zero and radius R in H
n and let

g ≡ 1 , δ := R−ρ . Then for all φ ∈C∞
0 (BR\{0}), we have

∫
BR

ρα |∇Hnφ |pdw �
(Q+ α − p

p

)p ∫
BR

ρα−2prp |φ |p dw+
cp

pp

∫
BR

ρα−prp

(R−ρ)p |φ |p dw,

where Q+ α > p � 2, α ∈ R and cp > 0.

4. Weighted Hardy-Poincaré type inequality

We now prove the following two-weight Hardy-Poincaré type inequality with a
remainder term.

THEOREM 3. Let g be a nonnegative C1 -function, Q > p > 1, Q+ α > 0 and
α ∈ R. Then for any φ ∈C∞

0 (Hn\Z ), there holds

∫
Hn

g(w)
ρα+3p

r2p |∇Hnρ ·∇Hnφ |pdw �
(

Q+α
p

)p ∫
Hn

g(w)ρα |φ |pdw (29)

+
(

Q+α
p

)p−1 ∫
Hn

ρα+3

r2 (∇Hnρ ·∇Hng) |φ |pdw.

Proof. The volume growth formula (10) gives

∇Hn ·
(

g(w)
ρ3

r2 ∇Hnρ
)

=
ρ3

r2 ∇Hnρ ·∇Hng+g(w)Q in H
n\Z . (30)

Then multiplying both sides of (30) by ρα |φ |p and integrating over H
n yield

Q
∫

Hn
g(w)ρα |φ |pdw =

∫
Hn

ρα |φ |p∇Hn ·
(

g(w)
ρ3

r2 ∇Hnρ
)

dw

−
∫

Hn

ρα+3

r2 (∇Hnρ ·∇Hng) |φ |pdw.

As an immediate consequence of integration by parts formula we have

Q
∫

Hn
g(w)ρα |φ |pdw = −

∫
Hn

g(w)
ρ3

r2 ∇Hnρ ·∇Hn (ρα |φ |p)dw

−
∫

Hn

ρα+3

r2 (∇Hnρ ·∇Hng) |φ |pdw

= −α
∫

Hn
g(w)ρα |φ |pdw−

∫
Hn

ρα+3

r2 (∇Hnρ ·∇Hng) |φ |pdw

−p
∫

Hn
g(w)

ρα+3

r2 (∇Hnρ ·∇Hnφ) |φ |p−1dw.

After rearranging the terms, the above inequality can be written in the following form

M � −p
∫

Hn
g(w)

ρα+3

r2 (∇Hnρ ·∇Hnφ) |φ |p−1dw, (31)
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where

M = (Q+ α)
∫

Hn
g(w)ρα |φ |pdw+

∫
Hn

ρα+3

r2 (∇Hnρ ·∇Hng) |φ |pdw.

Applying successively the Hölder and Young inequalities on the right hand side of (31),
we get

M � p

(∫
Hn

g(w)ρα |φ |pdw

) p−1
p

(∫
Hn

g(w)
ρα+3p

r2p |∇Hnρ ·∇Hnφ |pdw

) 1
p

� (p−1)ε
−p
p−1

∫
Hn

g(w)ρα |φ |pdw+ ε p
∫

Hn
g(w)

ρα+3p

r2p |∇Hnρ ·∇Hnφ |pdw

for any ε > 0. Hence
∫

Hn
g(w)

ρα+3p

r2p |∇Hnρ ·∇Hnφ |pdw � f (Q,α, p;ε)
∫

Hn
g(w)ρα |φ |pdw

+ε−p
∫

Hn

ρα+3

r2 (∇Hnρ ·∇Hng) |φ |pdw,

where f (Q,α, p;ε) = ε−p
[
Q+ α +(1− p)ε

−p
p−1

]
. Note that the function f attains the

maximum for ε0 =
(

Q+α
p

) 1−p
p

and this maximum value is equal to f (Q,α, p;ε0) =(
Q+α

p

)p
. Therefore we obtain the desired inequality (29). �
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