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Abstract. We establish the Hardy-Littlewood-Pólya inequality, the Hardy inequality and the
Hilbert inequality on block spaces. Furthermore, we also have the boundedness of the Haus-
dorff operators on block spaces.

1. Introduction

In this paper, we aim to extend the Hardy-Littlewood-Pólya inequalities and the
boundedness of Hausdorff operators to block spaces. Particularly, as consequences of
the Hardy-Littlewood-Pólya inequalities, we also obtain the Hardy inequalities and the
Hilbert inequality on block spaces.

The Hardy-Littlewood-Pólya inequalities for Lebesgue spaces were established in
[20]. These inequalities unify several important results in analysis such as the Hardy
inequality, the Hilbert inequalities, the Riemann-Liouville integral and the Weyl inte-
gral. The Hardy inequalities have been developed extensively, for detail references for
the study of the Hardy inequality and its related topics, the reader is referred to [13, 37].

There exists another generalization of the Hardy inequalities, namely, the Haus-
dorff operators. The study of the Hausdorff operators dated back to 1917 where the
Hausdorff summability method was introduced [19]. The reader is referred to [29] for
the history of the development of the Hausdorff operators. The studies of the Hausdorff
operators had been extended to several different setting and function spaces, the reader
is refereed to a long but incomplete list of references [5, 6, 9, 10, 11, 15, 16, 17, 18, 24,
26, 27, 28, 29, 30, 31, 32, 34, 35, 38, 40].

One of the main results in this paper is the boundedness of the Hausdorff operators
on block spaces. Block space is one of the natural generalization of Lebesgue spaces. It
arises from the study of Morrey spaces. More precisely, block space is the predual of the
Morrey space [1, 4, 25, 41]. In [1], some important results in analysis, such as the ca-
pacity theory and the potential theory, had been extended to block spaces. Furthermore,
the mapping properties of some vector-valued operators with singular kernels for block
spaces are obtained in [23]. Using these mapping properties, the Triebel-Lizorkin-block
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spaces were introduced in [23]. In addition, the block spaces also provide some crucial
supporting results for the studies of Sobolev embedding of Triebel-Lizorkin-Morrey-
Lorentz spaces and the atomic decompositions of Hardy-Morrey spaces with variable
exponents in [21, 22], respectively. The reader is also referred to the surveys [7, 8] for
the recent progress on the studies of classical operators in general Morrey type spaces.

Therefore, in this paper, we have two main results for block spaces. We find
that both of them rely on the Minkowski inequality and the mapping properties of the
dilation operators on block spaces. To establish the Minkowski’s inequality, we use the
predual space of the block space, namely, the Zorko space. The details of the above
mentioned results are given in Section 2.

This paper is organized as follows. Some basic properties of block spaces are given
in Section 2. The Hardy-Littlewood-Pólya inequalities on block spaces are established
in Section 3. Finally, in Section 4, we present the boundedness of Hausdorff operators
on block spaces.

2. Block spaces

In this section, we present some basic properties for block spaces. Precisely, we
have the duality of Morrey spaces and block spaces, the Minkowski’s inequality on
block spaces and the mapping properties of the dilation operators on block spaces.

We begin with the definitions of Morrey spaces and block spaces.
The Morrey space is defined by

Mp,λ (Rn) = { f ∈ Lp
loc : ‖ f‖Mp,λ (Rn) < ∞},

where 1 � p < ∞ and 0 � λ < n and

‖ f‖Mp,λ (Rn) = sup
B∈B

(
1

rλ

∫
B
| f (x)|pdx

)1/p

.

The Morrey space was introduced by Morrey [34] in order to study some quasi-
linear elliptic partial differential equations. Next, we recall the definition of block
spaces [4].

DEFINITION 1. Let 1 � p < ∞ and 0 � λ < n . A measurable function b is called
a (p,λ )-block if it is supported in a ball B(x0,r) , x0 ∈ R

n , r > 0, and

‖b‖Lp(Rn) � r−
λ
p . (1)

We write b ∈ bp,λ if b is a (p,λ )-block.
Define Bp,λ (Rn) by

Bp,λ (Rn) =
{ ∞

∑
k=1

λkbk :
∞

∑
k=1

|λk| < ∞ and bk is a (p,λ )-block

}
. (2)
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The space Bp,λ is endowed with the norm

‖ f‖Bp,λ (Rn) = inf

{
∞

∑
k=1

|λk| : f =
∞

∑
k=1

λkbk

}
, (3)

where the infimum is taken over all such decompositions of f .

Notice that there is another family of function spaces also named as “block spaces”, see
[33, 39].

The dual space of the block space Bp′,λ (Rn) is the Morrey space Mp,λ (Rn) , see
[4, 25, 41]. In fact, this duality property can be further extended. To present this
extension, we recall a function space introduced by Zorko in [41].

Let C0(Rn) denote the class of continuous function with compact support in R
n .

We now recall the definition of Zorko spaces [41].

DEFINITION 2. Let 1 � p < ∞ and 0 � λ < n . The Zorko spaces Zp,λ (Rn) is
the closure of C0(Rn) in Mp,λ (Rn) .

The following result is given in [1, Section 3].

THEOREM 1. Let 1 < p < ∞ and 0 � λ < n. We have

(Zp,λ (Rn))∗ = Bp′,λ (Rn) and (Bp,λ (Rn))∗ = Mp′,λ (Rn).

As stated in [1, Section 3.2], the triple (Zp,λ (Rn),Bp′,λ (Rn),Mp,λ (Rn)) has a
relationship akin to the triple (VMO,H1,BMO) .

Since Mp′,0(Rn) = Lp′(Rn) , Theorem 1 yields that

Bp,0(Rn) = Lp(Rn).

Thus, block space is a generalization of Lebesgue space.
Moreover, we have the Hölder inequality for Bp,λ (Rn) and Mp′,λ (Rn) .

LEMMA 1. Let 1 < p < ∞ and 0 � λ < n. We have∫
Rn

| f (x)g(x)|dx � ‖ f‖Mp,λ (Rn)‖g‖Bp′,λ (Rn).

The proof of the above result follows from the definitions of Mp,λ (Rn) and Bp′,λ (Rn)
and the Hölder inequality for Lebesgue spaces, see [12].

With the above duality results, we now establish the Minkowski’s inequality in
Bp,λ (Rn) .

THEOREM 2. (Minkowski’s inequality) Let 1 < p < ∞ , 0 � λ < n and μ be a
signed σ -finite Borel measure on R

m . Let f (x,s) be a measurable function on R
n×R

m

such that ‖ f (·,s)‖Bp,λ (Rn) ∈ L1(|μ |) . We have∥∥∥∥
∫

Rm
f (·,s)dμ

∥∥∥∥
Bp,λ (Rn)

�
∫

Rm
‖ f (·,s)‖Bp,λ (Rn)d|μ |. (4)
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Proof. Write

F(x) =
∫

Rm
f (x,s)dμ .

Let g ∈ Zp′,λ (Rn) with ‖g‖Zp′,λ (Rn) � 1. By using the Hölder inequality for

Bp,λ (Rn) and Mp′,λ (Rn) , we find that∣∣∣∣
∫

Rn
F(x)g(x)dx

∣∣∣∣ �
∫

Rm

∫
Rn

| f (x,s)||g(x)|dxd|μ |

�
∫

Rm
‖ f (·,s)‖Bp,λ (Rn)‖g‖Mp′,λ (Rn)d|μ |

=
∫

Rm
‖ f (·,s)‖Bp,λ (Rn)‖g‖Zp′,λ (Rn)d|μ |

�
∫

Rm
‖ f (·,s)‖Bp,λ (Rn)d|μ |.

By taking supremum over g ∈ Zp′,λ (Rn) with ‖g‖Zp′,λ (Rn) � 1, Theorem 1 yields that

F ∈ Bp,λ (Rn) and (4) is valid. �
Next, we extend the notion of Boyd’s indices to Bp,λ (Rn) . For each s ∈ R\{0}

and for any measurable function f on R
n , let Ds be the dilation operator defined by

(Ds f )(x) = f (x/s), x ∈ R
n.

LEMMA 2. Let 1 < p < ∞ , 0 � λ < n. Then,

‖Dt f‖Bp,λ (Rn) = |t| n+λ
p ‖ f‖Bp,λ (Rn). (5)

Proof. For any f ∈ Bp,λ (Rn) and ε > 0, there exist families of (p,λ )-blocks
{bk}k∈N with supports {B(xk,rk)}k∈N and scalars {λk}k∈N such that

f = ∑
k∈N

λkbk

and ∑k∈N |λk| < (1+ ε)‖ f‖Bp,λ (Rn) .
We see that Dtbk is a (p,λ )-block with support B(txk, |t|rk) and

‖Dtbk‖Lp(Rn) � |t| n
p r

− λ
p

k = |t| n+λ
p (|t|rk)

− λ
p . (6)

Write
Dt f = ∑

k∈N

λkDtbk = ∑
k∈N

γkck

where
γk = λk|t|

n+λ
p and ck = |t|− n+λ

p Dtbk.

In view of (6), {ck}k∈N is a family of (p,λ )-blocks. Therefore, Dt f ∈ Bp,λ (Rn) with

‖Dt f‖Bp,λ (Rn) � ∑
k∈N

|γk| = ∑
k∈N

|λk||t|
n+λ

p � (1+ ε)|t| n+λ
p ‖ f‖Bp,λ (Rn).
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As ε > 0 is arbitrary, we find that

‖Dt f‖Bp,λ (Rn) � |t| n+λ
p ‖ f‖Bp,λ (Rn). (7)

Since D1/tDt f = f , (7) yields

‖ f‖Bp,λ (Rn) = ‖D1/tDt f‖Bp,λ (Rn) � |t|− n+λ
p ‖Dt f‖Bp,λ (Rn).

Therefore,

‖Dt f‖Bp,λ (Rn) = |t| n+λ
p ‖ f‖Bp,λ (Rn). �

The above result gives us the operator norm of the dilation operators Dt on block
spaces. This result is crucial on the study of Hardy-Littlewood-Pólya inequalities in the
coming sections.

Moreover, the mapping property of the dilation operators is also related to Sobolev
type embedding, the reader is referred to [21] for the use of the mapping property of
the dilation operators on the Sobolev embedding of Triebel-Lizorkin-Morrey-Lorentz
spaces.

3. Hardy-Littlewood-Pólya inequalities

In this section, we establish the Hardy-Littlewood-Pólya inequalities on block
spaces. We also apply these inequalities to extend the Hardy inequalities and the Hilbert
inequality on block spaces.

Since the classical Hardy-Littlewood-Pólya inequalities for Lebesgue spaces are
established for Lebesgue spaces on (0,∞) . Therefore, we consider block spaces defined
on (0,∞) . Notice that the results on the previous section also apply to the block spaces
on (0,∞) , Bp,λ (0,∞) .

THEOREM 3. (Hardy-Littlewood-Pólya inequalities) Let 1 < p < ∞ , 0 � λ < 1
and K(·, ·) be a measurable function on (0,∞)× (0,∞) . If K satisfies

1. K(θ s,θ t) = θ−1K(s,t) , θ > 0 ,

2.
∫ ∞
0 |K(v,1)|v− 1+λ

p dv < ∞ ,

then, the linear operator

T f (t) =
∫ ∞

0
K(s,t) f (s)ds

is bounded on Bp,λ (0,∞) .

Proof. Let v = s/t . We have

|T f (t)| �
∫ ∞

0
|K(vt,t)||(D1/v f )(t)|tdv =

∫ ∞

0
|K(v,1)||(D1/v f )(t)|dv.
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Applying the norm ‖·‖Bp,λ (0,∞) on both sides of the above inequality, Theorem 2 yields

‖T f‖Bp,λ (0,∞) �
∫ ∞

0
|K(v,1)|‖(D1/v f )‖Bp,λ (0,∞)dv.

Consequently, (5) assures that

‖T f‖Bp,λ (0,∞) � C‖ f‖Bp,λ (0,∞)

∫ ∞

0
|K(v,1)|v− 1+λ

p dv � C‖ f‖Bp,λ (0,∞)

for some C > 0. Thus, T is bounded on Bp,λ (0,∞) . �
When λ = 0, Item (2) of the above theorem becomes∫ ∞

0
|K(v,1)|v− 1

p dv < ∞

which is the condition for the Hardy-Littlewood-Pólya inequalities on Lebesgue spaces
[14, Theorem 6.20].

As a consequence of the above theorem, we have the Hardy inequalities on block
spaces.

THEOREM 4. (Hardy’s Inequality) Let 1 < p < ∞ , 0 � λ < 1 .

1. If p > 1+ λ , then

T f (t) =
1
t

∫ t

0
f (s)ds

is bounded on Bp,λ (0,∞) .

2. The operator

S f (t) =
∫ ∞

t

f (s)
s

ds

is bounded on Bp,λ (0,∞) .

Proof. Let K(s,t) = t−1χE(s,t) where E = {(s, t) : s < t} . It satisfies Item (1) of
Theorem 3. Furthermore, we have

∫ ∞

0
|K(v,1)|v− 1+λ

p dv =
∫ 1

0
v−

1+λ
p dv =

v−
1+λ

p +1

− 1+λ
p +1

∣∣∣∣
1

0
< ∞.

According to Theorem 3, we find that

‖T f‖Bp,λ (0,∞) � C‖ f‖Bp,λ (0,∞).

To establish the boundedness of the operator S , let K(s,t) = s−1χE(s, t) where
E = {(s, t) : s > t} . It also satisfies Item (1) of Theorem 3. Similarly, we have∫ ∞

0
|K(v,1)|v− 1+λ

p dv =
∫ ∞

1
v−

1+λ
p −1dv < ∞.



HARDY-LITTLEWOOD-PÓLYA INEQUALITIES AND HAUSDORFF OPERATORS 703

Thus, Theorem 3 concludes that

‖S f‖Bp,λ (0,∞) � C‖ f‖Bp,λ (0,∞)

for some C > 0. �
We also have the Hilbert inequality on block spaces.

THEOREM 5. (Hilbert’s inequality) Let 1 < p < ∞ , 0 � λ < 1 . If p > 1+λ , then

T f (t) =
∫ ∞

0

f (s)
t + s

ds

is bounded on Bp,λ (0,∞) .

Proof. Let K(s,t) = (s+ t)−1 . It obviously fulfills Item (1) of Theorem 3. More-
over, we have∫ ∞

0
(v+1)−1v−

1+λ
p dv �

∫ ∞

1
v−

1+λ
p −1dv+

∫ 1

0
v−

1+λ
p dv < ∞.

Hence, Theorem 3 yields the boundedness of T on Bp,λ (0,∞) . �

4. Multidimensional Hausdorff operators

In this section, we extend the boundedness of Hausdorff operators to block spaces.
The boundedness of Hausdorff operators had already been extended to a number of
function spaces such as the Hardy spaces, the Herz spaces and the Morrey spaces. The
reader is referred to [2, 5, 6, 9, 15, 24, 26, 27, 28, 30, 31, 32, 35, 40] for details.

We use the definition of multidimensional Hausdorff operators from [27, 28].
Let A = A(u) = (ai j)n

i, j=1 = (ai j(u))n
i, j=1 be an n×n matrix with the entries ai j(u)

being measurable functions of u . The matrix A(u) is non-degenerate almost every-
where. Recall that xA(u) , x ∈ R

n , is the row n -vector obtained by multiplying the row
n -vector x by the matrix A(u) .

Let Φ(u) be a measurable function. The multidimensional Hausdorff operator
associated with A(u) and Φ(u) is given by

(H f )(x) = (HΦ f )(x) = (HΦ,A f )(x) =
∫

Rn
Φ(u) f (xA(u))du.

Notice that, as given in [6, 27, 35], the Hausdorff operator is defined in term of Borel
measure rather than the Lebesgue measure.

The adjoint operator H ∗ is defined as

(H ∗ f )(x) = (H ∗
Φ,A f )(x) =

∫
Rn

Φ(u)|detA−1(u)| f (xA−1(u))du.

For any measurable function f on R
n , let DA(u) be the dilation operator defined

by
(DA(u) f )(x) = f (xA(u)), x ∈ R

n.
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In order to study the multidimensional Hausdorff operators HΦ,A and H ∗
Φ,A , we

need the following result which is an extension of Lemma 2.
Even though the proof of the subsequent lemma is similar to the proof of Lemma

2, for completeness, we present the details.

LEMMA 3. Let 1 < p < ∞ , 0 � λ < n. Then,

‖DA(u) f‖Bp,λ (Rn) � |detA(u)|−1/p‖A−1(u)‖ λ
p |‖ f‖Bp,λ (Rn) (8)

where ‖A−1(u)‖ is the operator norm of A−1(u) .

Proof. Let f ∈ Bp,λ (Rn) . According to the definition of Bp,λ (Rn) , for any
ε > 0, there exist families of (p,λ )-blocks {bk}k∈N with supports {B(xk,rk)}k∈N and
scalars {λk}k∈N such that

f = ∑
k∈N

λkbk and ∑
k∈N

|λk| < (1+ ε)‖ f‖Bp,λ (Rn).

We find that DA(u)bk is a (p,λ )-block,

suppDA(u)bk ⊆ B(xkA
−1(u),‖A−1(u)‖rk)

and

‖DA(u)bk‖Lp(Rn) � |detA(u)|− 1
p r

− λ
p

k (9)

= |detA(u)|− 1
p ‖A−1(u)‖ λ

p (‖A−1(u)‖ λ
p rk)

− λ
p .

Consequently,
DA(u) f = ∑

k∈N

λkDA(u)bk = ∑
k∈N

γkck

where

γk = λk|detA(u)|− 1
p ‖A−1(u)‖ λ

p and ck = |detA(u)| 1
p ‖A−1(u)‖− λ

p DA(u)bk.

According to (9), {ck}k∈N is a family of (p,λ )-blocks. Therefore, DA(u) f ∈Bp,λ (Rn)
with

‖DA(u) f‖Bp,λ (Rn) � ∑
k∈N

|γk| = ∑
k∈N

|λk|detA(u)|− 1
p ‖A−1(u)‖ λ

p

� (1+ ε)|detA(u)|− 1
p ‖A−1(u)‖ λ

p ‖ f‖Bp,λ (Rn).

As ε > 0 is arbitrary, we find that

‖DA(u) f‖Bp,λ (Rn) � |detA(u)|− 1
p ‖A−1(u)‖ λ

p ‖ f‖Bp,λ (Rn). (10)

�
The following theorem extends the results in [27, 28] to block spaces.
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THEOREM 6. Let 1 < p < ∞ , 0 � λ < 1 .

1. If

‖Φ‖λ ,p,A =
∫

Rn
|Φ(u)||detA(u)|− 1

p ‖A−1(u)‖ λ
p du < ∞,

then
‖Hμ f‖Bp,λ (Rn) � ‖Φ‖λ ,p,A‖ f‖Bp,λ (Rn).

2. If

‖Φ‖∗λ ,p,A =
∫

Rn
|Φ(u)||detA−1(u)|1− 1

p ‖A(u)‖ λ
p du < ∞,

then
‖H∗

μ f‖Bp,λ (Rn) � ‖Φ‖∗λ ,p,A‖ f‖Bp,λ (Rn).

Proof. In view of the Minkowski inequality for Bp,λ (Rn) and Lemma 3, we find
that

‖HΦ,A f‖Bp,λ (Rn) �
∫

Rn
|Φ(u)|‖DA(u) f‖Bp,λ (Rn)du

�
(∫

Rn
|Φ(u)||detA(u)|− 1

p ‖A−1(u)‖ λ
p du

)
‖ f‖Bp,λ (Rn)

= ‖Φ‖λ ,p,A‖ f‖Bp,λ (Rn).

Similarly, we have

‖H∗
μ f‖Bp,λ (Rn) �

∫
Rn

|Φ(u)||detA−1(u)|‖DA−1(u) f‖Bp,λ (Rn)du

�
(∫

Rn
|Φ(u)||detA−1(u)|1− 1

p ‖A(u)‖ λ
p du

)
‖ f‖Bp,λ (Rn)

= ‖Φ‖∗λ ,p,A‖ f‖Bp,λ (Rn). �
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