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TURÁN TYPE INEQUALITIES FOR GENERAL BESSEL FUNCTIONS

ÁRPÁD BARICZ, SAMINATHAN PONNUSAMY AND SANJEEV SINGH

(Communicated by T. Erdélyi)

Abstract. In this paper some Turán type inequalities for the general Bessel function, monotonic-
ity and bounds for its logarithmic derivative are derived. Moreover we find the series represen-
tation and the relative extrema of the Turánian of general Bessel functions. The key tools in the
proofs are the recurrence relations together with some asymptotic relations for Bessel functions.

1. Introduction and the main results

The Turán type inequalities for orthogonal polynomials and special functions have
been studied extensively in the last 70 years. Usually, these orthogonal polynomi-
als and special functions are solutions of some second order differential equations.
The log-concave/log-convex nature of orthogonal polynomials and special functions
have attracted many researchers, and the topic seems to be interesting still nowadays.
Some of the results on modified Bessel functions of the first and second kind have been
used recently in different problems of applied mathematics and this motivated new re-
searches in this topic. See for example the paper [1] and the references therein for more
details. In this paper we focus on general Bessel functions, sometimes called cylin-
der functions. The main motivation to write this paper emerges from the fact about
the Bessel functions of the first kind Jν , Bessel functions of the second kind Yν and
the zeros cν,n of general Bessel function satisfying some Turán type inequalities (see
[3, 5, 7, 9, 13]). It is natural to ask whether the general Bessel functions Cν , defined
by Cν(x) = (cosα)Jν (x)− (sinα)Yν (x), 0 � α < π , has some similar properties. As
we can see below, from the point of view of Turán type inequalities, the general Bessel
function Cν behaves like Jν and Yν . The results presented in this paper complement
the picture about the Turán type inequalities for Bessel functions of the first and second
kind. The case α = 0 corresponds to the case of Bessel function Jν , while α = π/2
corresponds to the case of Bessel function Yν . See [3, 5, 7, 13] for more details. Note
that in the proof of our main results we used ideas from the papers [2, 3, 5, 7, 11, 13],
the recurrence relations, asymptotics and the differential equation play an important
role in the proof of the main results.
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THEOREM 1. The following assertions are valid:

a. If ν > 0 , 0 < α < π and x � cν,1 where cν,1 is the first positive zero of the
general Bessel function Cν , then the following Turán type inequality holds

Δν(x) = C2
ν (x)−Cν−1(x)Cν+1(x) >

1
ν +1

C2
ν (x). (1)

Moreover, for α = 0 the above Turán type inequality holds true for all x > 0 and
ν > 0 .

b. If ν > 1 , 0 < α < π and xν ∈ (0,cν,1) is the unique root of the equation

C2
ν(x)−Cν−1(x)Cν+1(x) =

1
ν +1

C2
ν(x),

then the Turán type inequality (1) holds true for all x > xν . Moreover, the in-
equality (1) is reversed for 0 < x < xν .

c. The function x �→ xC′
ν (x)/Cν(x) is strictly decreasing on (cν,1,∞) \Z for all

ν > 0 , 0 < α < π , where Z = {cν,n}n�1 , and cν,n denote the nth positive zeros
of the general Bessel functions Cν . Moreover, if α = 0 then x �→ xC′

ν (x)/Cν(x)
is strictly decreasing on (0,∞) \Z for all ν > 0 and if 0 < α < π then x �→
xC′

ν (x)/Cν(x) is strictly decreasing on (xν ,∞)\Z for all ν > 1. Furthermore,
the following inequality holds true for ν > 0 , 0 < α < π and x ∈ (cν,1,∞)\Z

[
xC′

ν (x)
Cν(x)

]2

> ν2 − ν
ν +1

x2. (2)

If α = 0, then the inequality (2) is valid for all ν > 0 , x ∈ (0,∞)\Z . However,
if 0 < α < π , then the inequality (2) is valid for all ν > 1 , x ∈ (xν ,∞)\Z , and
for x ∈ (0,xν) it is reversed. The following inequality is also valid for ν > 1,
0 < α < π and x ∈ (xν ,cν,1)

xC′
ν (x)

Cν(x)
< −

√
ν2 − ν

ν +1
x2

ν . (3)

The proof of Theorem 1 will be presented in Section 2.
Now we let μ = ν

ν+1 and denote by jν,n , the n th positive zero of the Bessel
function Jν . We would like to mention that by using the particular case of (2) when
α = 0, it can be shown that for ν > 0, x∈ (0,

√
ν(ν +1)] such that x �= jν−1,n, n∈N ,

we have
Jν(x)

Jν−1(x)
� ν −

√
ν2 − μx2

μx
� ν +

√
ν2− μx2

μx
, (4)

and this inequality corrects the inequality [3, eq. 2.20]

Jν(x)
Jν−1(x)

� ν +
√

ν2− μx2

μx
,
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where ν > 0, x ∈ (0,
√

ν(ν +1)] such that x �= jν−1,n , n ∈ N .
Indeed, to prove inequality (4), we first consider the inequality [3, eq. 2.17]

[xJ′ν(x)]2 +(μx2−ν2)J2
ν (x) � 0, ν > −1 and x ∈ R,

which implies

[
xJ′ν(x)
Jν(x)

]2

� ν2 − μx2, ν > −1, x ∈ R, x �= jν,n, n ∈ N.

In view of the limit

lim
x→0

xJ′ν(x)
Jν(x)

= ν > 0

and the fact that smallest positive zero j′ν,1 of J′ν satisfies the inequality j′ν,1 >
√

ν(ν +2)
for ν > 0 [14, p. 487], it follows that

xJ′ν (x)
Jν(x)

> 0, ν > 0 and x ∈ (0,
√

ν(ν +2)], x �= jν,n.

Hence for ν > 0, x ∈ (0,
√

ν(ν +1)] such that x �= jν,n , n ∈ N we have

xJ′ν(x)
Jν(x)

�
√

ν2− μx2

which on using the recurrence relation

xJ′ν(x)+ νJν(x) = xJν−1(x) (5)

gives the inequality √
ν2 − μx2 � xJν−1(x)

Jν(x)
−ν.

Rewriting the last inequality as

0 <
ν +

√
ν2− μx2

x
� Jν−1(x)

Jν(x)
,

we obtain
Jν(x)

Jν−1(x)
� x

ν +
√

ν2 − μx2
=

ν −
√

ν2− μx2

μx
,

where x ∈ (0,
√

ν(ν +1)] such that x �= jν−1,n , n ∈ N . This completes the proof of
inequality (4).

We also note that the monotonicity of x �→ xC′
ν (x)/Cν(x) has been proved already

by Spigler [12] (as it is mentioned in the paper of Elbert and Siafarikas [4]), but only for
the intervals (cν,n,cν,n+1) , n∈N. Our proof, which is based on Turán type inequalities,
is completely different and we proved the above monotonicity property for x∈ (xν ,cν,1)
and also for x ∈ (cν,n,cν,n+1) , n ∈ N .
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We recall the inequality from part c of Theorem 1[
xC′

ν(x)
Cν (x)

]2

< ν2− ν
ν +1

x2,

where ν > 1, 0 < α < π and x ∈ (0,xν) . We may rewrite the above inequality as

−
√

ν2 − ν
ν +1

x2 <
xC′

ν(x)
Cν (x)

<

√
ν2 − ν

ν +1
x2, (6)

where ν > 1, 0 < α < π and x ∈ (0,xν). We would like to mention that for ν > 1,
0 < α < π and x ∈ (0,xν) the right-hand side of (6) is better than an earlier inequality
of Laforgia [6, p. 76]

xC′
ν(x)

Cν (x)
< ν − x2

2(ν +1)
, (7)

which is valid for ν > 0, 0 � α < π and x ∈ (0,cν,1) . This can be verified by com-
paring the corresponding right-hand sides of the last two inequalities. We also note that
for ν > 1 and 0 < α < π we have xν <

√
ν(ν +1), since the expression in the square

root in (3) is positive.
Again, it is worth to mention that the inequality (3) is better than the inequality (7)

for all ν > 1, 0 < α < π and x ∈ (xν ,min{√ν(ν +1),cν,1}) as the right-hand side of
(3) is negative and the right-hand side of (7) is positive on (xν ,min{√ν(ν +1),cν,1}) .

The next theorem is about the series representation of the Turánian of general
Bessel functions. Clearly, this result implies inequality (1).

THEOREM 2. For 0 � α < π , ν > 0 and x > cν,1 , the following identity holds

C2
ν(x)−Cν−1(x)Cν+1(x) =

1
ν +1

C2
ν(x)+2ν ∑

i�1

C2
ν+i(x)

(ν + i)2−1
. (8)

The next result, whose proof will also be given in Section 2, is about the relative
extrema of the Turánian of general Bessel functions and is a generalization of the main
result from [7]. Figure 1 illustrates this result for α = π/6 and ν = 3/2.

THEOREM 3. For 0 � α < π and ν > 0 , the relative maxima (denoted by Mν,k )
of the function x �→ Δν(x) occurs at the zeros of the function Cν−1(x) and the relative
minima (denoted by mν,k ) occurs at the zeros of the function Cν+1(x) . Since the val-
ues of Mν,k and mν,k can be expressed as Mν,k = Δν(cν−1,k) = C2

ν(cν−1,k) > 0 and
mν,k = Δν(cν+1,k) = C2

ν(cν+1,k) > 0, for ν > 0 and x � cν−1,1, the following Turán
type inequality is valid:

C2
ν(x)−Cν−1(x)Cν+1(x) > 0.

We also mention that for x ∈ (0,ν] such that x �= jν−1,n , n ∈ N , the following
inequality is valid:

Jν(x)
Jν−1(x)

<
ν −√

ν2− x2

x
<

ν +
√

ν2− x2

x
. (9)
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Note that the above inequality corrects the recent known inequality [3, eq 2.16]

Jν(x)
Jν−1(x)

� ν +
√

ν2 − x2

x
,

where ν > 0, x ∈ (0,ν] such that x �= jν−1,n , n ∈ N.
To prove the first inequality (9), it is suffices to observe the following inequality√

ν2− x2 <
√

ν2− μx2, x ∈ (0,ν),

and consequently we have

ν −
√

ν2− μx2

μx
=

x

ν +
√

ν2 − μx2
<

x

ν +
√

ν2 − x2
, x ∈ (0,ν),

which in view of left-hand side of (4) implies left-hand side of (9). This proves inequal-
ity (9).
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Figure 1: The graph of the functions Δ3/2, C1/2 and C5/2 for α = π/6 on [0,10].

Finally, it is worth to mention that the Turánian

Δα(x) = C2
ν,α(x)−Cν,α−1(x)Cν,α+1(x),

where as above Cν,α (x) = (cosα)Jν (x)− (sinα)Yν (x), 0 � α < π , is in fact indepen-
dent of α. Namely, by using some elementary trigonometric identities it can be shown
that Δα(x) = (sin2 1)

(
J2

ν(x)+Y 2
ν (x)

)
, which is clearly strictly positive for all real ν

and x.
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2. Proofs of the main results

Proof of Theorem 1. a. We first recall the recurrence relation and the derivative
formula for general Bessel functions [10, p. 222], which will be used in the sequel

Cν−1(x)+Cν+1(x) =
2ν
x

Cν (x), (10)

and

d
dx

(x−νCν(x)) = −x−νCν+1(x). (11)

Define the normalized general Bessel function by Φν(x) = 2νx−νΓ(ν +1)Cν(x), where
ν > −1 and x > 0. Since Cν(x) is the solution of the Bessel differential equation

x2y′′(x)+ xy′(x)+ (x2−ν2)y(x) = 0,

we see that Φν(x) satisfies the differential equation

x2Φ′′
ν (x)+ (2ν +1)xΦ′

ν(x)+ x2Φν(x) = 0. (12)

Now, if we consider the Turánian Θν(x) = Φ2
ν (x)−Φν−1(x)Φν+1(x), then the Turán

type inequality (1) is equivalent to Θν(x) > 0. Using the definition of the normalized
general Bessel function Φν (x) , we can write

x2ν+2Θν(x) = 22νΓ(ν)Γ(ν +2)
[
x2 (

C2
ν(x)−Cν−1(x)Cν+1(x)

)− x2

ν +1
C2

ν (x)
]
. (13)

Taking into account (10) we have

x2Φν+1(x)
4ν(ν +1)

= Φν (x)−Φν−1(x), (14)

and consequently, in view of (11),

Φ′
ν (x) = −xΦν+1(x)

2(ν +1)
=

2ν
x

(Φν−1(x)−Φν(x)) . (15)

By using the left-hand side of (15) for ν − 1 instead of ν and the right-hand side of
(15) for ν +1 instead of ν , we have
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xΘ′
ν(x) = 2xΦν(x)Φ′

ν (x)− xΦν+1(x)Φ′
ν−1(x)− xΦν−1(x)Φ′

ν+1(x)

= 2xΦν(x)
[
2ν
x

(Φν−1(x)−Φν(x))
]
− xΦν+1(x)

[
−xΦν(x)

2ν

]

−xΦν−1(x)
[

2(ν +1)
x

(Φν (x)−Φν+1(x))
]

= 2(ν −1)Φν(x)Φν−1(x)−4νΦ2
ν(x)+

x2

2ν
Φν (x)Φν+1(x)

+2(ν +1)Φν−1(x)Φν+1(x)
= 2(ν −1)Φν(x)Φν−1(x)−4νΦ2

ν(x)+ Φν(x) [2(ν +1)(Φν(x)−Φν−1(x))]
+2(ν +1)Φν−1(x)Φν+1(x)

= −4Φν(x)Φν−1(x)−2(ν −1)Φ2
ν(x)+2(ν +1)Φν−1(x)Φν+1(x)

= −4Φν(x)
[ x
2ν

Φ′
ν (x)+ Φν(x)

]
−2(ν −1)Φ2

ν(x)+2(ν +1)Φν−1(x)Φν+1(x)

= −2x
ν

Φν(x)Φ′
ν (x)−2(ν +1)

[
Φ2

ν(x)−Φν−1(x)Φν+1(x)
]
.

Thus, we obtain

xΘ′
ν(x) = −2x

ν
Φν(x)Φ′

ν (x)−2(ν +1)Θν(x),

which on multiplying by x2ν+1 both sides can be written as

x2ν+2Θ′
ν(x)+ (2ν +2)x2ν+1Θν(x) = − 2

ν
x2ν+2Φν (x)Φ′

ν (x).

Thus, we have
d
dx

(x2ν+2Θν(x)) = − 2
ν

x2ν+2Φν(x)Φ′
ν (x).

From the above expression, at the roots of Φν (x) = 0 we have

d2

dx2 (x2ν+2Θν(x)) = − 2
ν

x2ν+2 (
Φ′

ν (x)
)2

< 0

and at the roots of Φ′
ν (x) = 0, by using (12) we obtain

d2

dx2 (x2ν+2Θν(x)) =
2
ν

x2ν+2 (Φν(x))2 > 0.

These two inequalities show that the relative extrema of x �→ x2ν+2Θν(x) occurs at the
roots of Φν (x) = 0 and Φ′

ν(x) = 0, respectively. At the roots of Φν(x) = 0, by (14)
we have

Θν(x) = −Φν−1(x)Φν+1(x) =
x2

4ν(ν +1)
Φ2

ν+1(x) > 0,
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and in view of (15) at the roots of Φ′
ν (x) = 0 we have Θν(x) = Φ2

ν(x) > 0. On the
other hand, Φν (x) = 0 if and only if Cν(x) = 0 and in view of (15) we have that

Φ′
ν (x) = 0 ⇐⇒ Φν+1(x) = 0 ⇐⇒Cν+1(x) = 0.

Therefore, the first relative extrema of x �→ x2ν+2Θν(x) occurs at x = cν,1 , as cν,1 <
cν+1,1 (since ν �→ cν,k is increasing function of ν [14, p. 508]). Since x �→ x2ν+2Θν(x)
has all its relative extrema positive, it follows that x2ν+2Θν(x) > 0 for all x � cν,1

and ν > 0, which implies that Θν(x) > 0 and consequently the Turán type inequal-
ity (1) follows for all ν > 0 and x � cν,1 . Since the first relative extrema of x �→
x2ν+2Θν(x) occurs at x = cν,1, which is the point of relative maxima, we conclude that
x �→ x2ν+2Θν(x) is strictly increasing on (0,cν,1). Now, if we take α = 0, then Cν(x) =
Jν(x) and using the fact that Jν(0) = 0 for ν > 0 we have limx→0+ x2ν+2Θν(x) = 0.
Hence x2ν+2Θν(x) > 0 on (0,cν,1) and consequently, Θν(x) > 0. Therefore in this
case, the Turán type inequality (1) holds true for all ν > 0 and x > 0.

b. In view of (13) and the fact that Jν(0) = 0 for ν > 0, the asymptotic formula
which is valid for ν > 0 fixed and x → 0 [10, p. 223]

Yν(x) ∼− 1
π

Γ(ν)
( x

2

)−ν
,

and the limit (see [3, p. 316])

lim
x→0+

x2 (
Y 2

ν (x)−Yν−1(x)Yν+1(x)
)

= −∞,

where ν > 1 is fixed, we obtain that

lim
x→0+

x2ν+2Θν(x) = −∞.

Therefore, since x2ν+2Θν(x) is positive at x = cν,1, x2ν+2Θν(x) tends to −∞ as x →
0+ and x �→ x2ν+2Θν(x) is strictly increasing on (0,cν,1) , it follows that there exists
an unique xν ∈ (0,cν,1) such that⎧⎪⎨

⎪⎩
x2ν+2Θν(x) < 0 for x ∈ (0,xν),
x2ν+2Θν(x) = 0 for x = xν ,

x2ν+2Θν(x) > 0 for x ∈ (xν ,cν,1).

Hence Θν(x) > 0 for x ∈ (xν ,cν,1) . Consequently, by part a of this theorem, the Turán
type inequality (1) is indeed true for all ν > 1 and x > xν . We also note that Θν(x) < 0
for x ∈ (0,xν) and hence in this case inequality (1) is reversed.

c. By the recurrence relations [10, p. 222]

C′
ν (x) = Cν−1(x)− ν

x
Cν(x) and C′

ν(x) = −Cν+1(x)+
ν
x
Cν(x), (16)

the Turán expression Δν(x) can be written as

Δν(x) = C2
ν(x)−Cν−1(x)Cν+1(x) =

(
1− ν2

x2

)
C2

ν (x)+ [C′
ν(x)]2. (17)
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Now, by (17) and the Bessel differential equation we get(
xC′

ν (x)
Cν(x)

)′
= −xΔν(x)

C2
ν (x)

.

Thus, in view of parts a and b of Theorem 1, the monotonicity of x �→ xC′
ν (x)/Cν(x)

follows. We note that the inequality (2) follows from (1) by using the above recurrence
relations in (16).

Since x �→ xC′
ν(x)/Cν(x) is strictly decreasing on (xν ,cν,1) for all ν > 1, we see

that
xC′

ν(x)
Cν (x)

< lim
x→xν

xC′
ν(x)

Cν (x)
, for all x ∈ (xν ,cν,1). (18)

Using relation (17) we obtain

[
xC′

ν(x)
Cν (x)

]2

=
x2Δν(x)
C2

ν (x)
+ (ν2− x2),

which together with the fact that (see [6, p. 78])

Cν(x) > 0 and C′
ν(x) < 0 for 0 < x < cν,1

implies

xC′
ν (x)

Cν(x)
= −

√
x2Δν(x)
C2

ν(x)
+ (ν2− x2), for all x ∈ (xν ,cν,1).

Taking the limit x→ xν in the above equation and using (18) and (13), we get inequality
(3). �

Before we give the proof of Theorem 2, recall a result of Ross [11, Theorem 3].

LEMMA 1. Let I be an interval and let {yn}n�0 be a sequence of functions of real
variable x , which is uniformly bounded in n for each x ∈ I. If these functions satisfy

yn(x) = Bnyn+1(x)+Cnyn−1(x),

where Bn and Cn are functions of x, x∈ I, with the property that Cn(x) �= 0, Bn(x)→ 0
and ∏n

i=1 |Bi(x)/Ci(x)| converges as n → ∞ for all x ∈ I, then

y2
n(x)−yn−1(x)yn+1(x) =−δCn

Cn
y2
n(x)−∑

i�1

Bn+1Bn+2 · · ·Bn+i+1

CnCn+1 · · ·Cn+i
δ (Bn+i−1Cn+i)y2

n+i(x),

(19)
where δ is the forward difference operator defined by δyn = yn+1− yn .

We note here that (as mentioned in [2]) in formula (i) of [11, p. 28] the expression
Bnyn should be written as Bn+1yn , and in the main formula of [11, Theorem 3] the
expression Bn+i−1 should be written as Bn+i+1 , just like in (19).
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Proof of Theorem 2. We recall one of the main results of Landau [8, p. 151]: the
magnitude of the general Bessel function of order ν is decreasing in ν at all of its
positive stationary points. We note that here by stationary points we mean actually
zeros of C′

ν(x) . This means that if ν > 0 and x > cν,1, then we have that |Cν (x)| <
|C0(x)| < |τ|, where τ = C0(x1) and x1 is the abscissa of the first minimum point of
C0(x). Hence in view of the recurrence relation (10), all the conditions of Lemma 1 are
satisfied and consequently we obtain identity (8). �

Proof of Theorem 3. Using the recurrence relations in (16), we have

Δ′
ν(x) = 2Cν(x)C′

ν (x)−C′
ν−1(x)Cν+1(x)−Cν−1(x)C′

ν+1(x)

= Cν (x) [Cν−1(x)−Cν+1(x)]−Cν+1(x)
[
−Cν(x)+

ν −1
x

Cν−1(x)
]

−Cν−1(x)
[
Cν (x)− ν +1

x
Cν+1(x)

]
.

Therefore

Δ′
ν(x) =

2
x
Cν−1(x)Cν+1(x). (20)

Hence the relative extrema of x �→ Δν (x) occurs at the zeros of Cν−1(x) and Cν+1(x) .
From (20), by using the second recurrence relation in (16) for ν −1 instead of ν, and
(10), we get

Δ′′
ν(x)

∣∣
x=cν−1,k

= − 4ν
c2

ν−1,k

C2
ν(cν−1,k) < 0.

Similarly, by using the first recurrence relation in (16) for ν +1 instead of ν, and (10),
we get

Δ′′
ν(x)

∣∣
x=cν+1,k

=
4ν

c2
ν+1,k

C2
ν (cν+1,k) > 0.

The desired conclusion follows. �
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[3] Á. BARICZ AND T. K. POGÁNY Turán determinants of Bessel functions, Forum Math. 26, (2014),

295–322.
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