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SHARP BOUNDS FOR TOADER–QI MEAN IN
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Abstract. In the article, we prove that the double inequality λ
√

L(a,b)I(a,b) < TQ(a,b) <

μ
√

L(a,b)I(a,b) holds for all a,b > 0 with a �= b if and only if λ �
√

e/π and μ � 1 ,
and give an affirmative answer to the conjecture proposed by Yang in [39], where L(a,b) =
(b− a)/(logb− loga) , I(a,b) = (bb/aa)1/(b−a)/e and TQ(a,b) = 2

π
∫ π/2
0 acos2 θ bsin2 θ dθ are

respectively the logarithmic, identric and Toader-Qi means of a and b .
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