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Abstract. In the article, we prove that the double inequality λ
√

L(a,b)I(a,b) < TQ(a,b) <

μ
√

L(a,b)I(a,b) holds for all a,b > 0 with a �= b if and only if λ �
√

e/π and μ � 1 ,
and give an affirmative answer to the conjecture proposed by Yang in [39], where L(a,b) =
(b− a)/(logb− loga) , I(a,b) = (bb/aa)1/(b−a)/e and TQ(a,b) = 2

π
∫ π/2
0 acos2 θ bsin2 θ dθ are

respectively the logarithmic, identric and Toader-Qi means of a and b .

1. Introduction

Let a,b > 0 with a �= b . Then the logarithmic mean L(a,b) , identric mean I(a,b)
and Toader-Qi mean TQ(a,b) [21, 32] of a and b are defined by

L(a,b) =
b−a

logb− loga
, I(a,b) =

1
e

(
bb

aa

)1/(b−a)

, (1.1)

TQ(a,b) =
2
π

∫ π/2

0
acos2 θ bsin2 θ dθ . (1.2)

Recently, the logarithmic mean L(a,b) and identric mean I(a,b) have been the
subject of intensive research. In particular, many remarkable inequalities for L(a,b)
and I(a,b) can be found in the literature [2, 5, 7–12, 14–16, 22, 24, 29–31, 34–39, 41,
42]. In [26, 27, 33], the inequalities between the logarithmic mean, arithmetic mean
and classical arithmetic-geometric mean of Gauss are presented. The ratio of identric
means leads to the weighted geometric mean

I
(
a2,b2

)
I(a,b)

=
(
aabb

)1/(a+b)
,

which was investigated in [23, 25, 28]. It might be surprising that the logarithmic mean
has applications in physics, economics, and even in meteorology [13, 17, 18]. In [13],
the authors studied a variant of Jensen’s functional equation involving the logarithmic
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mean, which appears in a heat conduction problem. A representation of the logarithmic
mean as an infinite product and an iterative algorithm for computing the logarithmic
mean as the common limit of two sequences of special geometric and arithmetic means
are given in [5]. In [4, 6], it is shown that the logarithmic mean can be expressed in
terms of Gauss hypergeometric function 2F1 . Carlson and Gustafson [6] proved that
the reciprocal of the logarithmic mean is strictly totally positive, that is, every n× n
determinant with elements 1/L(ai,b j) , where 0 < a1 < a2 < · · · < an and 0 < b1 <
b2 < · · · < bn , is positive for all n � 1.

Very recently, Qi et al. [21] proved that the identity

TQ(a,b) =
√

abI0

(
1
2

log
b
a

)
(1.3)

and the inequalities

L(a,b) < TQ(a,b) <
A(a,b)+G(a,b)

2
<

2A(a,b)+G(a,b)
3

< I(a,b)

hold for all a,b > 0 with a �= b , where

I0(t) =
∞

∑
n=0

t2n

22n(n!)2 (1.4)

is the modified Bessel function of the first kind [1], and A(a,b) = (a + b)/2 and
G(a,b) =

√
ab are respectively the classical arithmetic and geometric means of a and

b .
In [40], Yang proved that the double inequalities√

2A(a,b)L(a,b)
π

< TQ(a,b) <
√

A(a,b)L(a,b),

A1/4(a,b)L3/4(a,b) < TQ(a,b) <
1
4
A(a,b)+

3
4
L(a,b)

and conjectured that the inequality

TQ(a,b) <
√

L(a,b)I(a,b) (1.5)

hold for all a,b > 0 with a �= b .
Let b > a > 0 and t = (logb− loga)/2 > 0. Then from (1.1) we clearly see that

the logarithmic mean L(a,b) and identric mean I(a,b) can be expressed as

L(a,b) =
√

ab
sinh t

t
, I(a,b) =

√
abet/ tanh t−1, (1.6)

and (1.2) and (1.3) lead to

TQ(a,b)√
ab

=
2
π

∫ π/2

0
et cos(2θ)dθ = I0(t) (1.7)

=
2
π

∫ π/2

0
cosh(t cosθ )dθ =

2
π

∫ π/2

0
cosh(t sinθ )dθ .
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The main purpose of this paper is to present the best possible parameters λ and μ
such that the double inequality

λ
√

L(a,b)I(a,b) < TQ(a,b) < μ
√

L(a,b)I(a,b)

holds for all a,b > 0 with a �= b and give a positive answer to the conjecture given in
(1.5).

2. Lemmas

In order to prove our main result we need several lemmas, which we present in
this section.

LEMMA 2.1. (See [19]) Let

(
n
k

)
be the number of different ways to choose k

elements from a given set with n distinct elements, that is(
n
k

)
=

n!
k!(n− k)!

.

Then
∞

∑
k=0

(
n
k

)2

=
(

2n
n

)
.

LEMMA 2.2. (See [19]) Let {an}∞
n=0 and {bn}∞

n=0 be two real sequences with
bn > 0 and limn→∞ an/bn = s. Then the power series ∑∞

n=0 antn is convergent for all
t ∈ R and

lim
t→∞

∑∞
n=0 antn

∑∞
n=0 bntn

= s

if the power series ∑∞
n=0 bntn is convergent for all t ∈ R .

LEMMA 2.3. (See [20]) The double inequality

1
(x+a)1−a <

Γ(x+a)
Γ(x+1)

<
1

x1−a

holds for all x > 0 and a ∈ (0,1) , where Γ(x) =
∫ ∞
0 e−t tx−1dt is the classical Euler

gamma function.

LEMMA 2.4. (See [3]) Let A(t) = ∑∞
k=0 aktk and B(t) = ∑∞

k=0 bktk be two real
power series converging on (−r,r) (r > 0) with bk > 0 for all k . If the non-constant
sequence {ak/bk} is increasing (decreasing) for all k , then the function A(t)/B(t) is
strictly increasing (decreasing) on (0,r) .
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LEMMA 2.5. Let I0(t) be defined by (1.4). Then the identity

I2
0 (t) =

∞

∑
n=0

(2n)!
22n(n!)4 t2n

holds for all t ∈ R .

Proof. From (1.4) and Lemma 2.1 together with the Cauchy product we have

I2
0 (t) =

∞

∑
n=0

(
n

∑
k=0

1
22k(k!)2

1

22(n−k)[(n− k)!]2

)
t2n

=
∞

∑
n=0

(
1

22n(n!)2

n

∑
k=0

(n!)2

(k!)2[(n− k)!]2

)
t2n =

∞

∑
n=0

(2n)!
22n(n!)4 t2n. �

LEMMA 2.6. Let I0(t) be defined by (1.4) and

B(t) =

√
15[sinh(2t)+ sinht]

44t
− 1

44

(
1+

1
2
t2
)

. (2.1)

Then the double inequality √
44
15π

B(t) < I0(t) < B(t)

holds for all t > 0 .

Proof. Let the sequences {an}∞
n=0 and {bn}∞

n=0 be defined by

an =
(2n)!

22n(n!)4 ,

b0 = 1, b1 =
1
2
, bn =

15
(
22n+1 +1

)
44(2n+1)!

(n � 2).

Then simple computations lead to

a0

b0
=

a1

b1
=

a2

b2
= 1 >

a3

b3
=

385
387

>
a4

b4
=

2695
2736

, (2.2)

an

bn
=

44
15

22n

22n+1 +1
(2n)!(2n+1)!

24n(n!)4 (2.3)

=
44
15

22n(2n+1)
22n+1 +1

(
Γ
(
n+ 1

2

)
Γ
(

1
2

)
Γ(n+1)

)2

=
44
15π

22n(2n+1)
22n+1 +1

(
Γ
(
n+ 1

2

)
Γ(n+1)

)2

,
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an+1
bn+1
an
bn

−1 = −22n+1− (3n2 +6n+2
)

(n+1)2 (22n+3 +1)
(2.4)

and

22n+1− (3n2 +6n+2
)

(2.5)

> 2

(
1+2n+

2n(2n−1)
2

)
− (3n2 +6n+2

)
= n(n−4) � 0

for all n � 4.
From Lemma 2.3 and (2.2)–(2.5) we clearly see that the sequence {an/bn}∞

n=0 is
decreasing and

44
15π

22n(2n+1)
(22n+1 +1)

(
n+ 1

2

) <
an

bn
<

44
15π

22n(2n+1)
(22n+1 +1)n

(2.6)

for all n � 4.
Inequality (2.6) leads to

lim
n→∞

an

bn
=

44
15π

. (2.7)

It follows from Lemma 2.5 and (2.1) together with the monotonicity of the se-
quence {an/bn}∞

n=0 that

I2
0 (t)

B2(t)
= ∑∞

n=0 ant2n

15
44 ∑∞

n=0
(22n+1+1)

(2n+1)! t2n− 1
44

(
1+ 1

2 t2
) = ∑∞

n=0 ant2n

∑∞
n=0 bnt2n (2.8)

and the function I2
0 (t)/B2(t) is strictly decreasing on the interval (0,∞) .

Lemma 2.2, (2.2), (2.7), (2.8) and the monotonicity of I2
0 (t)/B2(t) lead to the

conclusion that

44
15π

= lim
n→∞

an

bn
= lim

t→∞

I2
0(t)

B2(t)
<

I2
0(t)

B2(t)
< lim

t→0+

I2
0(t)

B2(t)
=

a0

b0
= 1 (2.9)

for all t > 0.
Therefore, Lemma 2.6 follows easily from (2.9). �

LEMMA 2.7. The double inequality

15
44

(2cosh t +1)− 1
44

(
1+

1
2
t2
)

t
sinh t

< et/ tanht−1 (2.10)

<
44
15e

[
15
44

(2cosh t +1)− 1
44

(
1+

1
2
t2
)

t
sinht

]

holds for all t > 0 .
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Proof. Let

f1(t) = log
(
et/ tanh t−1

)
− log

[
15
44

(2cosht +1)− 1
44

(
1+

1
2
t2
)

t
sinh t

]
(2.11)

=
t cosht
sinht

− log

[
15
44

(2cosh t +1)− 1
44

(
1+

1
2
t2
)

t
sinht

]
−1,

f2(t) = 15cosh(3t)+62cosh(2t)+3t2 cosh(2t)−2t3 sinh(2t)
−64t sinh(2t)−15t cosht−60t sinh t +2t4 + t2−62

and

un = 30×32n− (4n3−12n2 +133n−124
)
22n−30(8n+1).

Then elaborated computations lead to

f1(0+) = 0, lim
t→∞

f1(t) = log
44
15e

, (2.12)

f ′1(t) =
f2(t)

2 [30sinh(2t)+30sinht− t3−2t]sinh2 t
, (2.13)

f2(t) =
∞

∑
n=3

un

2(2n)!
t2n, (2.14)

u3 = 3520, (2.15)

un+1−9un =
[
20(n−2)3 +12(n−2)2 +521(n−2)+34

]
22n +1920n > 0 (2.16)

for n � 3.
It is not difficult to verify that

30sinh(2t)+30sinht− t3−2t > 0 (2.17)

for t > 0.
It follows from (2.15) and (2.16) that un > 0 for all n � 3. Then (2.13) and (2.14)

together with (2.17) lead to the conclusion that f1(t) is strictly increasing on the interval
(0,∞) .

From (2.12) and the monotonicity of f1(t) we clearly see that

0 < f1(t) < log
44
15e

(2.18)

for all t > 0.
Therefore, inequality (2.10) follows easily from (2.11) and (2.18). �
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3. Main results

THEOREM 3.1. The double inequality

λ
√

L(a,b)I(a,b) < TQ(a,b) < μ
√

L(a,b)I(a,b) (3.1)

holds for all a,b > 0 with a �= b if and only if λ �
√

e/π and μ � 1 .

Proof. Since L(a,b) , TQ(a,b) and I(a,b) are symmetric and homogeneous of
degree 1, without loss of generality, we assume that b > a > 0. Let t = (logb−
loga)/2 > 0. Then from (1.6) and (1.7) we clearly see that inequality (3.1) is equivalent
to

λ 2 sinh t
t

et/ tanht−1 < I2
0 (t) < μ2 sinht

t
et/ tanh t−1. (3.2)

Let B(t) be defined by (2.1). Then it follows from Lemma 2.7 that

B2(t) <
sinht

t
et/ tanh t−1 <

44
15e

B2(t),

which leads to
15e
44

sinh t
t

et/ tanh t−1 < B2(t) <
sinh t

t
et/ tanh t−1. (3.3)

From Lemma 2.6 and (3.3) we have

e
π

sinh t
t

et/ tanh t−1 < I2
0(t) <

sinht
t

et/ tanh t−1. (3.4)

Note that

lim
t→0+

sinht
t

= lim
t→0+

I0(t) = lim
t→0+

et/ tanh t−1 = 1, (3.5)

lim
t→∞

cosh t

et/ tanh t−1
=

e
2

lim
t→∞

1+ e−2t

e
2te−t

et+e−t

=
e
2
. (3.6)

It follows from Lemmas 2.2, 2.3 and 2.5 that

1
n+1/2

<
Γ2(n+1/2)
Γ2(n+1)

<
1
n
,

lim
t→∞

I2
0 (t)

sinh(2t)/(2t)
= lim

t→∞

∑∞
n=0

(2n)!
22n(n!)4 t

2n

∑∞
n=0

22n

(2n+1)!t
2n

= lim
n→∞

(2n)!(2n+1)!
24n(n!)4 (3.7)

= lim
n→∞

[
(2n+1)

(
(2n−1)!!

2nn!

)2
]

= lim
n→∞

[
2n+1

Γ2(1/2)

(
Γ(n+1/2)
Γ(n+1)

)2
]

= lim
n→∞

[
2(n+1/2)

π

(
Γ(n+1/2)

Γ(n+1)

)2
]

=
2
π

.
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Equations (3.5)–(3.7) lead to

lim
t→0+

I2
0(t)

sinht
t et/ tanh t−1

= 1, lim
t→∞

I2
0 (t)

sinht
t et/ tanht−1

=
e
π

. (3.8)

Therefore, inequality (3.2) holds for all t > 0 if and only if λ �
√

e/π and μ � 1
follows from (3.4) and (3.8). �

REMARK 3.1. Theorem 3.1 gives a positive answer to the conjecture given in
(1.5).

Let an , bn and B(t) be defined as in Lemma 2.6. Then a0 = b0 = 1, a1 = b1 =
1/2, a2 = b2 = 3/32, a3/b3 = 385/387 and the sequence {an/bn} is decreasing for
n � 0. It follows from Lemmas 2.2 and 2.4 together with (2.7) we clearly see that

44
15π

= lim
n→∞

an

bn
<

I2
0 (t)− (a0 +a1t2 +a2t4

)
B2(t)− (b0 +b1t2 +b2t4)

=
∑∞

n=3 ant2n

∑∞
n=3 bnt2n <

a3

b3
=

385
387

(3.9)

for all t > 0.
Inequality (3.9) leads to Corollary 3.1 immediately.

COROLLARY 3.1. The double inequality√
sinh(2t)+ sinht

πt
+

π −3
π

(
1+

1
2
t2 +

15π −44
160(π −3)

t4
)

< I0(t)

<

√
175[sinh(2t)+ sinht]

516t
− 3

172

(
1+

1
2
t2− 1

36
t4
)

holds for all t > 0 .

RE F ER EN C ES

[1] M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, U. S. Government Printing Office, Washington, 1964.

[2] H. ALZER, Ungleichungen für Mittelwerte, Arch. Math. 47, 5 (1986), 422–426.
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[27] J. SÁNDOR, On certain inequalities for means II, J. Math. Anal. Appl. 199, 2 (1996), 629–635.
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