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ISOPERIMETRIC–TYPE INEQUALITIES

FOR GENERALIZED CENTROID BODIES

KEJIE SHI AND GANGSONG LENG

(Communicated by H. Martini)

Abstract. We extend the Orlicz centroid body for probability measures to multivariate case and
establish the affine isoperimetric-type inequality for the generalized centroid body. Moreover,
the concepts of centroid body and mean zonoid are unified through the generalized definition,
which is much more significant.

1. Introduction

Centroid bodies were defined and investigated by Petty [25]. They are special sets
which play an important role in the Brunn-Minkowski theory of convex bodies and have
been proven to be a remarkably powerful tool in establishing a number of fundamental
affine isoperimetric inequalities (see, e.g., [4, 12, 13, 19, 26]).

With the rapid development of the Lp -Brunn-Minkowski theory and its dual in the
last two decades, The Lp -analogues of centroid bodies quickly became a central focus
and affine isoperimetric inequalities for Lp -centroid body were established. See, for
example, [2, 14, 15, 18, 27, 29]. Moreover, The Lp -centroid bodies have turned out to
be a useful tool in the study of asymptotic geometric analysis (see, e.g., [6, 10, 21, 24])
and the theory of stable distributions (e.g. [20]).

Recently, Orlicz Brunn-Minkowski theory which extended the Lp Brunn-Min-
kowski theory emerged and the fundamental notions of Lp centroid body, Lp projection
body and Lp addition were extended to an Orlicz setting. See, e.g., [5, 8, 11, 16, 17,
28]. In this paper, we generalize the Orlicz centroid body for probability measures and
establish the centroid inequality.

Let K n denote the class of convex bodies (compact convex sets with nonempty
interiors) in R

n . We consider convex functions φ : R→ [0,∞) such that φ(0) = 0. This
means that φ must be decreasing on (−∞,0] and increasing on [0,∞). We require that
φ is either strictly decreasing on (−∞,0] or strictly increasing on [0,∞). The class of
such φ is denoted by C . Let C0 be the class of Young functions, i.e., convex, strictly
increasing functions φ : [0,∞) → [0,∞) such that φ(0) = 0.
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Let φ ∈ C and K ∈ K n with voln(K) = 1, the Orlicz centroid body Γφ (K) of K
which is introduced by Lutwak, Yang and Zhang [16] is the convex body whose support
function is given by

hΓφ (K)(x) = inf

{
λ > 0 :

∫
K

φ
( 〈x,y〉

λ

)
dy � 1

}
, (1)

where 〈x,y〉 denotes the standard inner product of x and y in R
n and the integration is

with respect to Lebesgue measure on R
n.

The following Orlicz centroid inequality is also given by Lutwak, Yang and Zhang
[16],

voln(Γφ (K)) � voln(Γφ (Dn)), (2)

where Dn is the Euclidean ball of volume one. Equality holds if and only if K is an
ellipsoid centered at the origin.

Let P[n] be the class of all probabilitymeasures on R
n that are absolutely continu-

ous with respect to Lebesgue measure. By the probabilistic take, Paouris and Pivovarov
[23] extended the symmetric case of (1) to the class of P[n] .

Let φ ∈ C0,μ ∈P[n] . Define the Orlicz centroid body Γφ (μ) of μ corresponding
to φ by its support function

h(Γφ (μ),y) = inf

{
λ > 0 :

∫
Rn

φ
( |〈x,y〉|

λ

)
dμ(x) � 1

}
. (3)

If f denotes the density of μ and if ‖ f‖∞ � 1, then

voln(Γφ (μ)) � voln(Γφ (λDn)), (4)

where λDn is the restriction of Lebesgue measure to Dn .
Recently, the asymmetric case of (3) was discussed in [9] and the centroid inequal-

ity analogous to (4) was also established.
A zonoid in R

n is an origin-symmetric convex body that can be approximated (in
the Hausdorff metric) by finite Minkowski sums of line segments. Clearly, the centroid
body is a zonoid. Zhang [29] defined a mean zonoid Z̃K of a convex body K with
voln(K) = 1 by

hZ̃K(u) =
∫

K

∫
K
|〈u,x− y〉|dxdy for all u ∈ Sn−1, (5)

and showed that the volume of Z̃K satisfies

voln(Z̃K) � voln(Z̃Dn), (6)

equality holds if and only if K is an ellipsoid.
The Lp version and the Orlicz version of mean zonoid and inequalities were ob-

tained recently, see [7, 27].
Inspired by the notion of mean zonoid, we generalize the definition of Orlicz cen-

troid body for probability measure, and make it possible to unify the notions of centroid
body and mean zonoid.
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DEFINITION 1. Let m � 1 be an integer, φ ∈ C0,μi ∈ P[n] , i = 1,2, · · · ,m . Let
fi denote the density of μi, i = 1,2, · · · ,m . We define the generalized centroid body
Γφ (μ1, · · · ,μm) of μ1, · · · ,μm corresponding to φ as the convex body whose support
function at y ∈ R

n is given by

h(Γφ (μ1, · · · ,μm),y)

= inf

{
λ > 0 :

∫
Rn

· · ·
∫

Rn
φ

( |〈x1 + · · ·+ xm,y〉|
λ

)
dμ1(x1) · · ·dμm(xm) � 1

}
. (7)

If m = 1, (7) is just the Orlicz centroid body defined by (3). If m = 2, φ = |t| ,
f1 = 1K , f2 = 1−K where K ∈K n with voln(K) = 1, then Γφ (μ1,μ2) = Z̃K , the mean
zonoid (5) defined by Zhang [29]. That is, the mean zonoid is one of the special cases
of the generalized centroid body defined above.

We will also establish the following affine isoperimetric inequality for the gener-
alized centroid bodies.

THEOREM 1. Let m � 1 be an integer, φ ∈ C0 , μi ∈ P[n] , i = 1,2, · · · ,m. Let fi
denote the density of μi with ‖ fi‖∞ � 1 , i = 1,2, · · · ,m. then

voln(Γφ (μ1, · · · ,μm)) � voln(Γφ (λDn , · · · ,λDn)), (8)

where λDn is the restriction of Lebesgue measure to Dn .

Choosing proper values of m,φ and fi in the above theorem, we can get the affine
isopermetric inequalities obtained in [7, 22, 23, 27, 29] (see corollaries in section 3).
Especially, if m = 2, we can define the general mean zonoid which generalizes the
mean zonoid (5).

COROLLARY 1. Let φ ∈ C0 , μ1,μ2 ∈ P[n] , Define the general mean zonoid
Zφ (μ1,μ2) of μ1 and μ2 corresponding to φ by its support function

h(Zφ (μ1,μ2),y) : = h(Γφ (μ1,μ2),y)

= inf

{
λ > 0 :

∫
Rn

∫
Rn

φ
( |〈x1 + x2,y〉|

λ

)
dμ1(x1)dμ2(x2) � 1

}
.

If fi denotes the density of μi with ‖ fi‖∞ � 1 , i = 1,2. Then

voln(Zφ (μ1,μ2)) � voln(Zφ (λDn ,λDn)),

where λDn is the restriction of Lebesgue measure to Dn .

The idea and the techniques of Paouris and Pivovarov [23], especially the law of
large numbers and the methods of approximation and limiting arguments, play a critical
role throughout the paper.
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2. Preliminaries

We work in R
n, which is equipped with an Euclidean structure 〈·, ·〉 . Let Sn−1

denote the unit sphere, Bn
2 be the unit Euclidean ball and Dn be the Euclidean ball

of volume one. Let voln(·) be n -dimensional Lebesgue measure. Write K n for the
class of compact convex sets in R

n with non-empty interior and K n
o for the class of

members of K n containing the origin in their interiors.
For each K ∈ K n, its support function h(K, ·) = hK : R

n → R is defined by

h(K,y) = max{〈x,y〉 : x ∈ K}.

From the definition of the support function it follows immediately that for a linear
operator T : Rn →R

n, the support function of the image TK = {Tx : x∈K} of K ∈K n

is given by
h(TK,y) = h(K,Tty) (9)

for any y ∈ Sn−1 , where Tt is adjoint of operator T .
The Hausdorff metric δ between sets K,L ∈ K n is defined by

δ (K,L) := min{λ > 0 : K ⊂ L+ λBn
2, L ⊂ K + λBn

2},

or equivalently, by
δ (K,L) = max

u∈Sn−1
|h(K,u)−h(L,u)|.

The polar body K◦ of K ∈ K n is the convex body define by

K◦ = {x ∈ R
n : 〈x,y〉 � 1 for all y ∈ K}.

We write ‖ · ‖K for the Minkowski functional

‖x‖K = min{t � 0 : x ∈ tK} (10)

induced to R
n by K . One can easily check that the body K◦ satisfies

h(K◦,y) = ‖y‖K, (11)

for all y ∈ R
n.

Recall that P[n] is the class of all probability measures on R
n that are absolutely

continuous with respect to Lebesgue measure. If N � n, and X1, · · · ,XN are indepen-
dent random points with Xi distributed according to μi ∈ P[n], Applying the n×N
radom matrix [X1, · · · ,XN ] to a convex body K ⊂ R

N produces a random convex set in
R

n , i.e.,

[X1, · · · ,XN ]K =

{
N

∑
i=1

ciXi : (ci) ⊂ K

}
. (12)

We adopt the common convention that all random vectors are defined on a common
underlying probability space (Ω,Σ,P) and let E denote expectation with respect to P .
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We say that a sequence of random convex bodies {KN}∞
N=1 converges (in the Hausdorff

metric) to a convex body K almost surely (a.s.) as N → ∞ means that

P

(
lim
N→∞

δ (KN ,K) = 0

)
= 1.

The law of large numbers is one of the most important results in probability theory
that describes the results of performing the same experiment of a large number of times.
For independent, identically distributed real random variables {Xj} , j = 1,2, · · · , if
E|X1| < ∞, then the strong law of large numbers holds, that is, the empirical average
converges to the expected value almost surely, i.e.,

lim
N→∞

X1 + · · ·+XN

N
→ EX1 (a.s.). (13)

We refer the reader to [4] and [26] for additional background material on convex
geometry and to [3, Chapter 8] for basic on laws of large numbers. See [1] for a law of
large numbers for random compact sets.

Recall that for an integer m � 1, φ ∈ C0 , μi ∈ P[n] , i = 1,2, · · · ,m , the general-
ized centroid body Γφ (μ1, · · · ,μm) of μ1, · · · ,μm corresponding to φ is defined by its
support function at y ∈ R

n

h(Γφ (μ1, · · · ,μm),y)

= inf

{
λ > 0 :

∫
Rn

· · ·
∫

Rn
φ

( |〈x1 + · · ·+ xm,y〉|
λ

)
dμ1(x1) · · ·dμm(xm) � 1

}
. (14)

Since φ is convex and strictly increasing, and the fact that | · | is subadditivity, it is not
hard to prove that h(Γφ (μ1, · · · ,μm), ·) is a sublinear function and hence is a support
function of a convex body (see e.g., [16, Lemma 2.2]). And from our definition, we can
see Γφ (μ1, · · · ,μm) is symmetric. Set

Bφ/N =

{
t = (t1, · · · ,tN) ∈ R

N :
1
N

N

∑
i=1

φ(|ti|) � 1

}
. (15)

One can check that Bφ/N is convex, symmetric, bounded and the origin is an interior
point, hence from the Minkowski functional (10) we have

‖t‖Bφ/N
= inf{λ > 0 : t ∈ λBφ/N}.

Together with (11), we know that ‖ ·‖Bφ/N
is the support function for Bo

φ/N = {x ∈ R
n :

〈x,y〉 � 1 ∀y ∈ Bφ/N}.
Let xi,1,xi,2, · · · (i = 1,2, · · · ,m) be sequences of vectors in R

n , and let TN =
TN(x1,1 + · · ·+xm,1, · · · ,x1,N + · · ·+xm,N) be the n×N matrix with columns x1,1 + · · ·+
xm,1, · · · ,x1,N + · · ·+ xm,N . Then we can use (9), (15) and (12) to express the support
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function of TNB◦
φ/N as

h(TNB◦
φ/N ,y) = h(B◦

φ/N ,Tt
Ny) = ‖Tt

Ny‖Bφ/N

= ‖(〈x1,1 + · · ·+ xm,1,y〉, · · · ,〈x1,N + · · ·+ xm,N ,y〉)‖Bφ/N

= inf

{
λ > 0 :

1
N

N

∑
i=1

φ
( |〈x1,i + · · ·+ xm,i,y〉|

λ

)
� 1

}
, (16)

for all y ∈ Sn−1.

3. Proof of main results

Let m � 1 be an integer, 1 � t � m , assume that {μt,i}∞
i=1 are m sequences of

probability measures in P[n] and let ft,i denote the density of μt,i for i = 1,2, · · · .
Suppose we have the following sequences of independent random vectors:

(1) Xt,1,Xt,2, · · · with Xt,i distributed according to ft,i ;
(2) Y1,Y2, · · · with Yi distributed according to 1Dn .
The following lemma obtained in [23] is important to the proof of the Theorem 1

in section 1.

LEMMA 1. Suppose that (CN)∞
N=n is a sequence of convex bodies with CN ⊂ R

N .
Let

T (1)
N = [X1,1 + · · ·+Xm,1, · · · ,X1,N + · · ·+Xm,N ] , T (2)

N = [Y1, · · · ,YN ].

Suppose C (1),C (2) are (random) convex bodies in R
n defined as

C (1) := lim
N→∞

T (1)
N CN (a.s.) C (2) := lim

N→∞
T (2)
N CN (a.s.), (17)

where the convergence is in the Hausdoeff metric. Suppose further that there exist
R1,R2 > 0 such that for any N � n,

T (1)
N CN ⊆ R1B

n
2, (a.s.) T (2)

N CN ⊆ R2B
n
2, (a.s.), (18)

and if ‖ ft,i‖∞ � 1 for each 1 � t � m, i = 1,2, · · · , then

Evoln
(
C (1)

)
� Evoln

(
C (2)

)
. (19)

Next following lemma plays a key role in the proof of the main theorem.

LEMMA 2. Let m � 1 be an integer, μ1, · · · ,μm ∈P[n]. Let xt,1,xt,2, · · · ,1 � t � m
be m sequences of vectors in R

n and suppose that

span{xt,1, · · · ,xt,n} = R
n, for each 1 � t � m. (20)
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Let φ ∈ C0 . Assume that for each y ∈ Sn−1 and each λ > 0, we have

lim
N→∞

∣∣∣∣∣ 1
N

N

∑
i=1

φ
( |〈x1,i + · · ·+ xm,i,y〉|

λ

)
−

∫
Rn

· · ·
∫

Rn
φ

( |〈x1 + · · ·+ xm,y〉|
λ

)
dμ1(x1) · · ·dμm(xm)

∣∣∣∣ = 0. (21)

Let TN = TN(x1,1 + · · ·+ xm,1, · · · ,x1,N + · · ·+ xm,N) be the n×N matrix with columns
x1,1 + · · ·+ xm,1, · · · ,x1,N + · · ·+ xm,N . Then

Γφ (μ1, · · · ,μm) = lim
N→∞

TNBo
φ/N .

Proof. Since pointwise convergence of support functions implies uniform conver-
gence in the Hausdorff metric (see e.g., [26, Theorem 1.8.15]), it is sufficient to show
that for each y ∈ Sn−1 , we have

lim
N→∞

h(TNBo
φ/N ,y) = h(Γφ (μ1, · · · ,μm),y). (22)

Fix y ∈ Sn−1 . By (20), we can get

span{x1,1 + · · ·+ xm,1, · · · ,x1,n + · · ·+ xm,n} = R
n,

so there exists i ∈ {1, · · · ,n} such that 〈x1,i + · · ·+ xm,i,y〉 �= 0, hence

1
N

N

∑
i=1

φ
( |〈x1,i + · · ·+ xm,i,y〉|

λ

)
> 0.

For simplicity of notation, for each N � n, let gN : (0,∞) → (0,∞) be defined by

gN(λ ) :=
1
N

N

∑
i=1

φ
( |〈x1,i + · · ·+ xm,i,y〉|

λ

)
> 0.

Consider also g : (0,∞) → (0,∞) defined by

g(λ ) :=
∫

Rn
· · ·

∫
Rn

φ
( |〈x1 + · · ·+ xm,y〉|

λ

)
dμ1(x1) · · ·dμm(xm).

Since φ is convex and strictly increasing, g and gN are continuous and strictly decreas-
ing.

Hence, from (16) and the definition of Γφ (μ1, · · · ,μm) , set

λ (N) := h(TNBo
φ/N ,y) = inf{λ > 0 : gN(λ ) � 1} (23)

and
λ0 := h(Γφ (μ1, · · · ,μm),y) = inf{λ > 0 : g(λ ) � 1}. (24)



738 K. SHI AND G. LENG

We assume that (22) is false and we need to get a contradiction. Then there exists
ε0 > 0 and a subsequence (Nj)∞

j=1 ⊂ N such that either
(i) λ (Nj) � λ0 + ε0 for each j = 1,2, · · · , or
(ii) λ (Nj) � λ0− ε0 for each j = 1,2, · · · .
First, consider the case (i). Let

λ∗ := inf
j

λ (Nj), (25)

then by the assumption, we have

λ∗ � λ0 + ε0. (26)

Let η > 0. For each j = 1,2, · · · , from (23), (25) and the fact that gNj is decreasing, it
follows that

1 < gNj (λ (Nj)−η) � gNj (λ∗ −η).

Thus by (21), we have

1 � lim
j→∞

gNj (λ∗ −η) = g(λ∗ −η).

As η > 0 is arbitrary, and g is continuous, we can get 1 � g(λ∗). If 1 < g(λ∗) , then
from the definition of λ0 there is λ∗ < λ0 , contradicting (26). While if 1 = g(λ∗) ,
then from (24) and the fact that g is a strictly decreasing continuous function, we have
λ∗ = λ0 , contradicting (26).

Now consiger the case (ii). Let

λ ∗ := sup
j

λ (Nj), (27)

from the assumption, there is

λ ∗ � λ0− ε0. (28)

Let η > 0. For each j = 1,2, · · · , from (23), (27) and the fact that gNj is decreas-
ing, we have

gNj (λ
∗ + η) � gNj (λ (Nj)+ η) � 1.

Therefore by (21), we have

g(λ ∗ + η) = lim
j→∞

gNj(λ
∗ + η) � 1.

Together with (24), we can get λ0 � λ ∗ + η . As η > 0 is arbitrary, there is λ0 � λ ∗,
contradicting (28). �

Now using the above lemmas and the strong law of large numbers, we prove the
theorem introduced in the section 1.
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THEOREM 1. Let m � 1 be an integer, φ ∈ C0 , μi ∈ P[n] , i = 1,2, · · · ,m. Let fi
denote the density of μi with ‖ fi‖∞ � 1 , i = 1,2, · · · ,m. then

voln(Γφ (μ1, · · · ,μm)) � voln(Γφ (λDn , · · · ,λDn)), (29)

where λDn is the restriction of Lebesgue measure to Dn .

Proof. First we show that the assumptions in the theorem satisfy (18) in Lemma
1.

For each 1 � t � m , take μt,i = μt for each i = 1,2, · · · . Hence Xt,1,Xt,2, · · · are
independent and identically distributed according to ft , the density of μt . By standard
approximation arguments, we can assume that μ1, · · ·μm are compactly supported, that
is to say there exists R1, · · · ,Rm > 0 such that

supp(μ1) ⊂ R1B
n
2, · · · , supp(μm) ⊂ RmBn

2,

Let R = max{R1, · · · ,Rm}, then supp(μi) ⊂ RBn
2 , i = 1,2, · · · ,m. It follows that

〈Xt,i,y〉 � R (30)

for all 1 � t � m , i ∈ N and y ∈ Sn−1.
For convenience, let

λ :=
mR

φ−1(1)
.

Observe that φ is strictly increasing, then, for any N and y ∈ Sn−1 , by (30), we have

1
N

N

∑
i=1

φ
( |〈X1,i + · · ·+Xm,i,y〉|

λ

)
� 1

N

N

∑
i=1

φ
(

mR

λ

)
=

1
N

N

∑
i=1

φ(φ−1(1)) = 1.

As the notation of T (1)
N defined in Lemma 1, together with (16), it follows that

h(T (1)
N B◦

φ/N ,y) =
∥∥∥(T (1)

N )t y
∥∥∥

Bφ/N

� λ .

Therefore, we have

T (1)
N B◦

φ/N ⊂ λBn
2,

for any N .

The same reasoning applies to T (2)
N and 1Dn , it is not hard to prove that there exists

λ ′ > 0 such that for any N ,

T (2)
N B◦

φ/N ⊂ λ ′Bn
2.

This shows that (18) in Lemma 1 is satisfied.
Next, we prove that the assumptions in the theorem satisfy (17) in Lemma 1 as

well. Fix y ∈ Sn−1, and λ > 0. Let Xi = φ
( |〈X1,i+···+Xm,i,y〉|

λ

)
for i ∈ N . Since φ is
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strictly increasing, μt(Rn) = 1, for t = 1,2, · · · ,m , we have

E|X1| = Eφ
( |〈X1,1 + · · ·+Xm,1,y〉|

λ

)
=

∫
Rn

· · ·
∫

Rn
φ

( |〈x1 + · · ·+ xm,y〉|
λ

)
dμ1(x1) · · ·dμm(xm)

� φ
(

R
λ

)
< ∞.

Thus the strong law of large numbers (13) holds, that is

1
N

N

∑
i=1

φ
( |〈x1,i + · · ·+ xm,i,y〉|

λ

)
=

X1 + · · ·+XN

N
→ E|X1|

=
∫

Rn
· · ·

∫
Rn

φ
( |〈x1 + · · ·+ xm,y〉|

λ

)
dμ1(x1) · · ·dμm(xm), (a.s.)

Therefore, (Xt,i)’s satisfy (21) in Lemma 2 almost surely. By Lemma 2, in the Haus-
dorff metric, we obtain

Γφ (μ1, · · · ,μm) = lim
N→∞

T (1)
N Bo

φ/N

almost surely.
The same reasoning applies to T 2

N and 1Dn , it is not hard to prove that

Γφ (λDn , · · · ,λDn) = lim
N→∞

T (2)
N Bo

φ/N (a.s.).

So (17) in Lemma 1 holds as well.
Finally, Lemma 1 implies that

Evoln(Γφ (μ1, · · · ,μm)) � Evoln(Γφ (λDn , · · · ,λDn)).

From the definition of the generalized centroid body Γφ (μ1, · · · ,μm) , for given μ1, · · · ,
μm , Γφ (μ1, · · · ,μm) is not a random set, and it is obvious that Γφ (λDn , · · · ,λDn) is a
non-random set, thus we complete the proof. �

If m = 1, f1 = 1K , where K ∈ K n with voln(K) = 1, then (16) and (29) are the
symmetric Orlicz centroid body and Orlicz centroid inequality introduced by Lutwak,
Yang and Zhang [16].

COROLLARY 1. Let φ ∈ C0 and K ∈ K n with voln(K) = 1 , the Orlicz centroid
body Γφ (K) of K is defined by

hΓφ (K)(y) = h(Γφ (1K),y) = inf

{
λ > 0 :

∫
K

φ
( |〈x,y〉|

λ

)
dx � 1

}
,

where the integration is with respect to Lebesgue measure on R
n. And the following

Orlicz centroid inequality holds,

voln(Γφ (K)) � voln(Γφ (Dn)),
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where Dn is the Euclidean ball of volume one.

Let m = 2, φ ∈ C0 , μ1,μ2 ∈ P[n] , we call Zφ (μ1,μ2) the general mean zonoid
for probability measures, whose support function is given by

h(Zφ (μ1,μ2),y) : = h(Γφ (μ1,μ2),y)

= inf

{
λ > 0 :

∫
Rn

∫
Rn

φ
( |〈x1 + x2,y〉|

λ

)
dμ1(x1)dμ2(x2) � 1

}
.

(31)

As a corollary of Theorem 1, the following affine isoperimetric inequality for gen-
eral mean zonoid is established.

COROLLARY 2. Let φ ∈ C0 , μ1,μ2 ∈ P[n]. Let fi denote the density of μi with
‖ fi‖∞ � 1 , i = 1,2. Then

voln(Zφ (μ1,μ2)) � voln(Zφ (λDn ,λDn)), (32)

where λDn is the restriction of Lebesgue measure to Dn .

Take φ = |t| , f1 = 1K , f2 = 1−K in Corollary 2 where K ∈K n with voln(K) = 1,
then Zφ (μ1,μ2) = Z̃K , the mean zonoid (5) defined by Zhang [29].

Let f1 = 1K , f2 = 1−K where K ∈ K n with voln(K) = 1, then Orlicz mean
zonoid (see [7]) and corresponding inequality can be obtained from (31) and (32). In
addition, take φ = |t|p, thus (31) is the Lp mean zonoid (see [27]).

COROLLARY 3. If φ ∈ C0 and K ∈ K n with voln(K) = 1 , then the support
function of Orlicz mean zonoid Zφ K is given by

hZφ K(y) : = h(Zφ (1K ,1−K),y)

= inf

{
λ > 0 :

∫
K

∫
K

φ
( |〈x1− x2,y〉|

λ

)
dx1dx2 � 1

}
,

and the following affine isopermetric inequality holds,

voln(Zφ K) � voln(Zφ Dn).
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