
Mathematical
Inequalities

& Applications

Volume 19, Number 2 (2016), 743–756 doi:10.7153/mia-19-54

STRICTLY POSITIVE DEFINITE KERNELS ON

COMPACT TWO–POINT HOMOGENEOUS SPACES

V. S. BARBOSA AND V. A. MENEGATTO

Abstract. We present a necessary and sufficient condition for the strict positive definiteness of
a real, continuous, isotropic and positive definite kernel on a compact two-point homogeneous
space. The characterization is achieved using special limit formulas for Jacobi polynomials and
antipodal manifolds attached to points in the homogeneous spaces. The characterization recovers
that one presented in D. Chen et al. (2003) in the case in which the space is a sphere of dimension
at least 2, adds to that in Menegatto et al. (2006) in the case in which the space is the unit circle
and that in Beatson and zu Castell (2011) in the case of a real projective space. As an application,
we use the characterization to improve upon a recent result on the differentiability of positive
definite kernels on the spaces.
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