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STRICTLY POSITIVE DEFINITE KERNELS ON

COMPACT TWO–POINT HOMOGENEOUS SPACES

V. S. BARBOSA AND V. A. MENEGATTO

(Communicated by I. Franjić)

Abstract. We present a necessary and sufficient condition for the strict positive definiteness of
a real, continuous, isotropic and positive definite kernel on a compact two-point homogeneous
space. The characterization is achieved using special limit formulas for Jacobi polynomials and
antipodal manifolds attached to points in the homogeneous spaces. The characterization recovers
that one presented in D. Chen et al. (2003) in the case in which the space is a sphere of dimension
at least 2, adds to that in Menegatto et al. (2006) in the case in which the space is the unit circle
and that in Beatson and zu Castell (2011) in the case of a real projective space. As an application,
we use the characterization to improve upon a recent result on the differentiability of positive
definite kernels on the spaces.

1. Introduction

Let Md denote a d -dimensional (connected) compact two-point homogeneous
space. As pointed out by Wang ([22]), Md belongs to one of the following categories:
the unit circle S1 , higher dimensional unit spheres Sd , d = 2,3 . . . , the real projective
spaces Pd(R) , d = 2,3, . . . , the complex projective spaces Pd(C) , d = 4,6, . . . , the
quaternionic projective spaces Pd(H) , d = 8,12, . . . , and the Cayley projective plane
Pd(Cay) , d = 16. More information on this classification can be found in [7, 10].

In this paper, we will deal with real, continuous, isotropic (zonal), and positive
definite kernels on M

d . The positive definiteness of a real and symmetric kernel K on
Md requires that

n

∑
μ,ν=1

cμcνK(xμ ,xν ) � 0, (1)

whenever n is a positive integer, x1,x2, . . . ,xn are distinct points on Md and
c1,c2, . . . ,cn are real scalars. The continuity of K can be defined through the usual
Riemannian (geodesic) distance on Md , here assumed to be normalized so that all
geodesics on Md have the same length 2π . The distance between two points x,y ∈ Md

will be written as |xy| . Since Md possesses a group of motions Gd which takes any
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pair of points (x,y) to (z,w) when |xy|= |zw| , isotropy of a kernel K on Md will refer
to the property

K(x,y) = K(Ax,Ay), x,y ∈ M
d , A ∈ Gd .

An isotropic kernel K on Md can be written in the form

K(x,y) = Kd
r (cos(|xy|/2)), x,y ∈ M

d ,

for some function Kd
r : [−1,1]→ R , here called the isotropic part of K .

According to [4, 10], a real, continuous and isotropic kernel K on Md is positive
definite if and only if the isotropic part Kd

r of K has a series representation in the form

Kd
r (t) =

∞

∑
k=0

aα ,β
k Pα ,β

k (t), t ∈ [−1,1], (2)

in which aα ,β
k ∈ [0,∞) , k ∈Z+ and ∑∞

k=0 aα ,β
k Pα ,β

k (1) < ∞ . The first upper exponent α
depends only on the dimension d and is given by α := (d−2)/2, whereas β can take
the values (d − 2)/2,−1/2,0,1,3, depending on the respective category Md belongs

to, among the five we have mentioned at the beginning of the paper. The symbol Pα ,β
k

stands for the Jacobi polynomial of degree k associated with the pair (α,β ) as defined
in [19]. In the case in which Md is a sphere the theorem is originally due to I. J.
Schoenberg ([18]).

The intended target in the present paper is to characterize the real, continuous,
isotropic and strictly positive definite kernels on Md . A positive definite kernel K on
M

d is strictly positive definite if the inequality (1) is strict for n � 1, distinct points
x1,x2, . . . ,xn ∈Md and scalars c1,c2, . . . ,cn not simultaneously zero. A characterization
in the cases in which Md is a sphere Sd was previously obtained as we now update. In
the case of S1 , the additional condition for the strict positive definiteness of the kernel
is that the set {

k ∈ Z : a−1/2,−1/2
|k| > 0

}
has a nonempty intersection with every full arithmetic progression in Z . The actual
arguments that lead to this characterization are in Theorems 2.2 and 2.9 in [15]. An
independent and direct proof will be sketched in the appendix at the end of the present
paper, for the convenience of the reader. As for Sd , d � 2, the additional condition is
much simpler ([8]): the set {

k ∈ Z+ : a(d−2)/2,(d−2)/2
k > 0

}
needs to contain infinitely many even integers and infinitely many odd integers. The
main contribution in this paper is the following complement to the above information.

THEOREM 1. Let K be a real, continuous, isotropic and positive definite kernel
on Md , d � 2 . If Md �= Sd , then K is strictly positive definite if and only if the set

{k ∈ Z+ : a(d−2)/2,β
k > 0} is infinite.
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As mentioned before, in the case in which Md is a sphere of dimension at least 2,
the respective result was originally proved in [8]. However, the proof presented in that
reference comprehended specific arguments with coordinate systems on the sphere. An
additional contribution of the present paper resides in the fact that the proof of Theorem
1 implies a much simpler proof for the characterization of strict positive definiteness on
Sd , d � 2, obtained in [8].

An outline of the paper is as follows. Section 2 contains the basic material to be
used in the proof of the main theorem: a rewriting for the concept of strict positive
definiteness, a key limit property of Jacobi polynomials and isometric embeddings of
the spaces Md among themselves. Section 3 contains the actual proof of Theorem 1
while an application of the theorem to differentiability of positive definite kernels on
Md is the content of Section 4. It complements the main theorem proved in [2]. Finally,
an update on the characterization of the strict positive definiteness of a real, continuous,
isotropic and positive definite kernel on S1 appears in the Appendix section.

2. Basic notation and technical results

In this section and the others to come, we will assume the upper indices α and
β belong to the scope considered in the previous section. Here, we will include the
technical results to be used in the proof of the main result of the paper.

The spectrum of the Laplace-Beltrami operator Δd on Md is discrete, real and
non-positive, so that its elements can be arranged in decreasing order, say, 0 = λ0 >
λ1 > λ2 > .. . . If H d

k is the eigenspace of Δd corresponding to the eigenvalue λk , it is
well known that the spaces H d

k are mutually orthogonal in L2(Md ,σd) , in which σd

is the normalized Riemannian measure on M
d . We will write {Sd

k,1,S
d
k,2, . . . ,S

d
k,δ (k,d)}

to denote an orthonormal basis of H d
k with respect to the inner product of the space

above while δ (k,d) is its dimension. A result of Giné ([11, 13]) justifies the addition
formula

δ (k,d)

∑
j=1

Sd
k, j(x)S

d
k, j(y) = cα ,β

k Pα ,β
k (cos(|xy|/2)) , x,y ∈ M

d ,

where

cα ,β
k :=

Γ(β +1)(2k+ α + β +1)Γ(k+ α + β +1)
Γ(α + β +2)Γ(k+ β +1)

.

More information on this formula and on the general harmonic analysis on Md can be
found in the references [5, 6, 14, 17].

The following lemma has extreme importance in the analysis of the strict positive
definiteness pertaining to this paper.

LEMMA 1. Let K be a nonzero, real, continuous, isotropic and positive definite
kernel on Md , x1,x2, . . . ,xn distinct points on Md , and c1,c2, . . . ,cn real scalars. Con-
sider the representation (2) for the isotropic part Kd

r of K . The following statements
are equivalent:

(i) ∑n
μ,ν=1 cμcνK(xμ ,xν ) = 0 ;
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(ii) The equality
n

∑
μ=1

cμPα ,β
k (cos(|xμx|/2)) = 0

holds for all x ∈ Md and all k in the set {k : aα ,β
k > 0} .

Proof. Let us write ctAc to denote the quadratic form in (i) . Introducing (2) and
the addition formula in the quadratic form and arranging leads to

ctAc =
n

∑
μ,ν=1

cμcν
∞

∑
k=0

aα ,β
k Pα ,β

k (cos(|xμxν |/2))

=
n

∑
μ,ν=1

cμcν
∞

∑
k=0

aα ,β
k

cα ,β
k

δ (k,d)

∑
j=1

Sd
k, j(xμ)Sd

k, j(xν)

=
∞

∑
k=0

aα ,β
k

cα ,β
k

δ (k,d)

∑
j=1

∣∣∣∣∣
n

∑
μ=1

cμSd
k, j(xμ)

∣∣∣∣∣
2

.

Thus, ∑n
μ,ν=1 cμcνK(xμ ,xν ) = 0 if and only if

n

∑
μ=1

cμSd
k, j(xμ) = 0, j ∈ {1,2, . . . ,δ (k,d)}, k ∈ {k : aα ,β

k > 0}.

Multiplying by Sd
k, j(x) and adding up on j , we obtain that

n

∑
μ=1

cμ

δ (k,d)

∑
j=1

Sd
k, j(xμ)Sd

k, j(x) = 0, x ∈ M
d , k ∈ {k : aα ,β

k > 0}.

Another application of the addition formula leads to the statement in (ii) .
Conversely, if (ii) holds, then

n

∑
μ=1

cμ

δ (k,d)

∑
j=1

Sd
k, j(xμ)Sd

k, j(x) = 0, x ∈ M
d , k ∈ {k : aα ,β

k > 0},

that is,

δ (k,d)

∑
j=1

[
n

∑
μ=1

cμSd
k, j(xμ)

]
Sd

k, j(x) = 0, x ∈ M
d , k ∈ {k : aα ,β

k > 0}.

Since {Sd
k,1,S

d
k,2, . . . ,S

d
k,δ (k,d)} is a basis of H d

k ,

n

∑
μ=1

cμSd
k, j(xμ) = 0, j ∈ {1,2, . . . ,δ (k,d)}, k ∈ {k : aα ,β

k > 0}.
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Now, the computations made in the first half of the proof imply that the equality ctAc =
0 holds. �

In some points of the paper, normalized Jacobi polynomials will be more suitable.
We will write

Rα ,β
k :=

Pα ,β
k

Pα ,β
k (1)

, k ∈ Z+,

in which

Pα ,β
k (1) =

(
k+ α

k

)
:=

Γ(k+ α +1)
k!Γ(α +1)

, k ∈ Z+, α,β > −1.

As usual, Γ denotes de Gamma function.
Below, we collect a few properties of the Jacobi polynomials.

LEMMA 2. The Jacobi polynomials have the following properties:
(i) Pα ,β

k (−t) = (−1)kPβ ,α
k (t) , t ∈ [−1,1];

(ii) limk→∞ Rα ,β
k (t) = 0 , t ∈ (−1,1);

(iii) If α > β , then limk→∞ Pβ ,α
k (1)[Pα ,β

k (1)]−1 = 0 .

Proof. Property (i) is a classical result in the theory of orthogonal polynomials
([19, p. 59]). Property (ii) follows from a formula derived in [19, p. 196]. However, for
the values of α and β pertinent to this paper, except for the case in which α = 0 =
β +1/2, it can also be accomplished via the recurrence formula ([19, p. 71])

(1− t)Rα ,β
k (t) =

2α
2k+ α + β +1

[
Rα−1,β

k (t)−Rα−1,β
k+1 (t)

]
, k ∈ Z+, t ∈ (−1,1),

by taking the limit as k → ∞ . The limit formula in (iii) follows from the identity

Pβ ,α
k (1)

Pα ,β
k (1)

=
Γ(α +1)
Γ(β +1)

Γ(k+ β +1)
Γ(k+ α +1)

, k ∈ Z+,

and an application of the following well known limit formula

lim
n→∞

Γ(n+ x)
Γ(n)nx = 1, x ∈ R

for the Gamma function. �
The last result in this section refers to isometric embeddings in M

d . If (M1,d1)
and (M2,d2) are metric spaces, an isometric embedding from M1 into M2 is a function
φ : M1 → M2 for which

d2(φ(x),φ(y)) = d1(x,y), x,y ∈ M1.

If we write M1 ↪→ M2 to indicate the existence of an isometric embedding from
M1 to M2 , the following result holds (see [1, p. 66] and references therein). It is worth
to mention that it takes into account the distance normalization we have adopted for the
metric spaces M

d .
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LEMMA 3. There exists a chain of isometric embeddings as follows

S1 ↪→ P
2(R) ↪→ P

d(R) ↪→ P
2d(C) ↪→ P

4d(H) ↪→ P
8d(Cay), d = 2,3, . . . .

An obvious consequence of the previous lemma is that S1 can be isometrically
embedded in all the Md , d � 2.

3. Strict positive definiteness

The results in this section will converge to a characterization for the real, continu-
ous, isotropic and strictly positive definite kernels on M

d , except for the case in which
Md is a circle. Our proofs in the case in which Md is a sphere of dimension at least 2
are somehow more elegant than those presented in [8].

We begin with a necessary condition. Here, it is convenient to prove the theorem
for all the homogeneous spaces considered in the paper.

THEOREM 2. Let K be a nonzero, real, continuous, isotropic and positive definite
kernel on M

d . In order that it be strictly positive definite it is necessary that in the
representation (2) for Kd

r , aα ,β
k > 0 for infinitely many integers k . If α = β , then it is

also necessary that aα ,β
k > 0 for infinitely many even and infinitely many odd k .

Proof. In the first half of the proof we will show that if {k : aα ,β
k > 0} is finite, then

K is not strictly positive definite on Md . Let φ : S1 → Md be an isometric embedding,
as guaranteed by Lemma 3. This embedding allows the selection of n distinct points
x1,x2, . . . ,xn in Md so that

|xμxν | = |φ−1(xμ)φ−1(xν)|, μ ,ν = 1,2, . . . ,n.

We now look at the n×n matrix with μν -entry

K(xμ ,xν ) = Kd
r (cos(|φ−1(xμ)φ−1(xν )|/2)) =

N

∑
k=0

aα ,β
k Pα ,β

k (φ−1(xμ) ·φ−1(xν)).

in which N := max{k : aα ,β
k > 0} and · is the usual inner product of R2 . Since

{x1,x2, . . . ,xn} is a subset of R2 , the powered Gram matrix with entries (φ−1(xμ) ·
φ−1(xν))k has rank at most 2k . Hence, the matrix [K(xμ ,xν )] has rank at most ∑N

k=0 2k =
2N+1−1, a number that does not depend upon n . In particular, if n � 2N+1 , the matrix
[K(xμ ,xν)] cannot be of full rank. This takes care of the first assertion. Next, we assume
α = β . We will show that if {k : aα ,α

2k > 0} is finite, then K is not strictly positive def-
inite on Md . The other half of the proof, under the assumption that {k : aα ,α

2k+1 > 0} is
finite, is similar and will not be sketched. If {k : aα ,α

2k > 0} is finite, then we can write

Kd
r (t) =

2N′

∑
k=0

aα ,α
k Pα ,α

k (t)+ ∑
k�2N′+1

aα ,α
k Pα ,α

k (t), t ∈ [−1,1],
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in which N′ = max{k : aα ,α
2k > 0} . Now, we select 2n distinct points y1,y2, . . . ,y2n in

Md so that
φ−1(yμ) = −φ−1(yn+μ), μ = 1,2, . . . ,n,

|yμyν | = |φ−1(yμ)φ−1(yν )|, μ ,ν = 1,2, . . . ,2n,

and define 2n×2n matrices A and B with entries given by

Bμν =
2N′

∑
k=0

aα ,α
k Pα ,α

k (cos(|xμxν |/2)) Aμν = Kd
r (cos(|xμxν |/2)).

If for μ ∈ {1,2, . . . ,n} , cμ is the vector having its μ -th and (n + μ)-th components
equal to 1 and all the others equal to 0, it is promptly seen that cμ belongs to the
kernel of A−B . In particular, the rank of A−B is at most n . Taking into account the
first half of the proof, it is now clear that the rank of A = [K(xμ ,xν)] does not exceed
22N′+1−1+n . Therefore, if n > 22N′+1−1, the matrix A cannot be of full rank. �

Next, we will prepare the terrain for the proof of the sufficiency part of the condi-
tions presented in the previous theorem. For a fixed x ∈ Md , the antipodal manifold of
x is the set

Γx := {y ∈ M
d : |xy| = 2π}.

The following lemma was originally proved by E. Cartan ([7]) and T. Nagano ([16]).
But, it is also quoted and re-obtained in [12, 20]. It describes what the antipodal mani-
fold of a point in Md is.

LEMMA 4. Let x be a fixed point in Md . The antipodal manifold Γx of x is a
point if Md = Sd and is isometrically isomorphic to Pd−1(R) , Pd−2(C) , Pd−4(H) ,
and S8 in the cases Md is respectively, Pd(R) , Pd(C) , Pd(H) , and Pd(Cay) .

In particular, the previous lemma reveals that if Md is not a sphere, then for a
fixed point x in Md , there are infinitely many y in Md for which cos(|xy|/2) = −1.
This will have significance in the arguments in the proof of the next theorem.

THEOREM 3. Let K be a real, continuous, isotropic and positive definite kernel
on Md , d � 2 . In order that it be strictly positive definite it is sufficient that in the
representation (2) for Kd

r , aα ,β
k > 0 for infinitely many odd and infinitely many even

integers k . If α > β , the condition can be weakened to aα ,β
k > 0 for infinitely many

integers k .

Proof. Assume aα ,β
k > 0 for infinitely many even and infinitely many odd integers

k , let n be a positive integer and x1,x2, . . . ,xn distinct points in Md . As before, write
A to denote the n×n matrix with entries Aμν := Kd

r (cos |xμxν |/2) . We intend to show
that the equality ∑n

μ,ν=1 cμcνAμν = 0 implies cμ = 0 for all μ ∈ {1,2, . . . ,n} . Due to
Lemma 1, that corresponds to showing that the only solution of the system

n

∑
μ=1

cμPα ,β
k (cos(|xμx|/2)) = 0, x ∈ M

d , k ∈ {k : aα ,β
k > 0},
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is c1 = c2 = · · · = cn = 0. In order to achieve that, we will fix an arbitrary coordinate
index γ ∈ {1,2, . . . ,n} and will conclude that cγ = 0 via a specific choice for the point
x ∈ Md in the system above. There are two cases to be considered:

Case 1: cos(|xμxγ |/2) �= −1, μ �= γ .
Choosing x = xγ , the system reduces itself to

cγP
α ,β
k (1)+ ∑

μ �=γ
cμPα ,β

k (cos(|xμxγ |/2)) = 0, k ∈ {k : aα ,β
k > 0}.

Since aα ,β
k > 0 for infinitely many integers k , we can select a sequence {kr}r∈Z+

of positive integers for which aα ,β
kr

> 0, r ∈ Z+ and limr→∞ kr = ∞ . Inserting this
sequence in the previous system, we are left with

cγ + ∑
μ �=γ

cμRα ,β
kr

(cos(|xμxγ |/2)) = 0, r ∈ Z+.

Since |cos(|xμxγ |/2)| �= 1, μ �= γ , Lemma 2-(ii) implies that

0 = cγ + lim
r→∞ ∑

μ �=γ
cμRα ,β

kr
(cos(|xμxγ |/2)) = cγ .

Case 2: cos(|xμxγ |/2) = −1, for at least one μ �= γ .
In this case we need to consider the antipodal manifold Γ of xγ . The same choice x = xγ
supplies the following sub-system

cγ +(−1)k Pβ ,α
k (1)

Pα ,β
k (1)

∑
xμ∈Γ

cμ + ∑
xμ �∈Γ∪{xγ}

cμRα ,β
k (cos(|xμxγ |/2)) = 0, k ∈ {k : aα ,β

k > 0}.

We now split the proof into two subcases.
Subcase α > β : Here we can select a sequence {kr}r∈Z+ ⊂ Z+ so that aα ,β

kr
> 0,

r ∈ Z+ , and limr→∞ kr = ∞ . Inserting it into the main equation and letting r → ∞ we
reach

cγ +

[
lim
r→∞

(−1)kr
Pβ ,α

kr
(1)

Pα ,β
kr

(1)

]
∑

xμ∈Γ
cμ + ∑

xμ �∈Γ∪{xγ}
cμ

[
lim
r→∞

Rα ,β
kr

(cos(|xμxγ |/2))
]

= 0.

The first limit above is zero due to Lemma 2-(iii) while the second one is zero due to
Lemma 2-(ii) . Thus, cγ = 0.

Subcase α = β : Here, we select two sequences {ke
r}r∈Z+ ⊂ 2Z+ and {ko

s}s∈Z+ ⊂
Z+ \ 2Z+ so that aα ,β

ke
r

aα ,β
ko
s

> 0, r,s ∈ Z+ , and limr→∞ ke
r = lims→∞ ko

s = ∞ . Inserting
them in the main equation and using Lemma 2-(ii) once again, the outcome is

cγ + ∑
xμ∈Γ

cμ = cγ − ∑
xμ∈Γ

cμ = 0.

In particular, cγ = 0. �
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The formula

P(d−1)/2
2k (t) =

P(d−1)/2,−1/2
2k (1)

P(d−2)/2,−1/2
k (1)

P(d−2)/2,−1/2
k (2t2−1), t ∈ [−1,1], k ∈ Z+, (3)

allows an alternative description for a real, continuous, isotropic and positive definite

kernel K on Pd(R) via the Gegenbauer polynomials P(d−1)/2
2k ([19, p. 59]). In fact, by

(3) we have for all k ∈ Z+ ,

P(d−1)/2
2k (cos(|xy|/4)) =

P(d−1)/2,−1/2
2k (1)

P(d−2)/2,−1/2
k (1)

P(d−2)/2,−1/2
k (cos(|xy|/2)), t ∈ [−1,1],

that is,

K(x,y) =
∞

∑
k=0

a2kP
(d−1)/2
2k (cos |xy|/4), t ∈ [−1,1],

in which a2k � 0 is a positive multiple of a(d−2)/2,−1/2
k and ∑∞

k=0 a2kP
(d−1)/2
2k (1) < ∞ .

Hence, the following alternative description previously obtained in [3] holds.

COROLLARY 1. (d � 2 ) Let K be a real, continuous, isotropic and positive def-
inite kernel on Pd(R) written as above. It is strictly positive definite on Pd(R) if and
only if a2k > 0 for infinitely many integers.

4. An application on differentiability

It is known that the isotropic part of a real, continuous, isotropic, and positive
definite kernel on Md is differentiable up to a certain order (that depends upon d ) in
(−1,1) ([2]). As a matter of fact, the following description was obtained in [2], as a
generalization of another one proved in [23].

THEOREM 4. If K is a real, continuous, isotropic and positive definite kernel on
Md , d � 3 , then the isotropic part Kd

r of K is continuously differentiable on (−1,1) .
The derivative (Kd

r )′ of Kd
r in (−1,1) satisfies a relation of the form

(1− t2)(Kd
r )′(t) = f1(t)− f2(t), t ∈ (−1,1),

in which f1 and f2 are the isotropic parts of two continuous, positive definite and
isotropic kernels on some compact two point homogeneous space M which is isomet-
rically embedded in Md . The specifics on each case are as follows:

(i) Md = Sd : d � 3 and M = Sd−2 ;
(ii) Md = Pd(R): d � 3 and M = Pd−2(R);
(iii) M

d = P
d(C): d � 4 and M = P

d−2(C);
(iv) Md = Pd(H): d � 8 , M = Pd/2−2(C) , when d ∈ 8Z++8 and M = Pd/2(C) ,

when d ∈ 8Z+ +12 ;
(v) M

d = P
16(Cay): M = S2 .
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Below, we will need some additional information provided by the proof of Theo-
rem 4 in [2]. But before that, we need to mention the following technical result.

LEMMA 5. Let K be a real, continuous, isotropic and positive definite kernel
on Md . Assume there exists an isometric embedding from a space M from the list
introduced at the beginning of the paper into Md . Then K is continuous, isotropic and
positive definite on M . In addition, if K is strictly positive definite on Md , then it is so
on M .

Proof. It is quite standard and it will be omitted. �
Based upon the previous lemma, here we will strengthen the notation of the coef-

ficient aα ,β
k in the expansion (2) of the isotropic part Kd

r of a real, continuous, isotropic

and positive definite kernel K on Md , by writing aα ,β
k (Kd

r ) instead. If K is positive
definite on another space M , as in the setting of the previous lemma, we may write

aα ′,β ′
k (Kd

r ) with the actual values of α ′ < α and β ′ that are attached to the space M .

THEOREM 5. Under the setting adopted in Theorem 4, the functions f1 and f2
have closed forms as follows. In cases (ii) and (iii) ,

f1 =
∞

∑
n=0

bα−1,β
n Rα−1,β

n

and

f2 =
∞

∑
n=2

(
bα ,β

n +bα ,β
n−1

)
Rα−1,β

n ,

in which the bα−1,β
n and the bα ,β

n−1 are positive multiples of aα−1,β
n (Kd

r ) and aα ,β
n (Kd

r )
respectively. In cases (i) and (iv) ,

f1 =
∞

∑
n=0

bα−1,β−1
n Rα−1,β−1

n

and

f2 =
∞

∑
n=2

bα ,β
n−1R

α−1,β−1
n

in which the bα−1,β−1
n and bα ,β

n−1 are positive multiples of aα−1,β−1
n (Kd

r ) and aα ,β
n−1(K

d
r )

respectively.

The main theorem in this section is now within reach. It demands the follow-
ing additional isometric embeddings: P

d(C) ↪→ P
d+2(C) , d = 4,6, . . . and P

d(H) ↪→
Pd+4(H) , d = 8,12, . . . ([1, p. 66] and references therein).

THEOREM 6. Under the setting adopted in Theorem 4, if the kernel K is strictly
positive definite on Md , then the functions f1 and f2 are actually the isotropic parts
of continuous, isotropic, and strictly positive definite kernels on M .
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Proof. We will give a proof of the theorem in the case (ii) only. In case (i) , it can
be adapted from results in [23] along with the characterization for strict positive defi-
niteness on spheres mentioned at the introduction and proved in [8]. In case (iii) , the
arguments are similar to those in case (ii) . If K is strictly positive definite on Pd(R) ,
it is so on Pd−2(R) . In particular, aα−1,−1/2

n (Kd
r ) > 0 for infinitely many integers, and

the same is true for the aα ,−1/2
n (Kd

r ) . Recalling the definitions for the coefficients in the

expansions defining f1 and f2 in Theorem 5, we conclude that bα−1,−1/2
n > 0 for in-

finitely many integers and the same is true for the coefficients bα ,−1/2
n +bα ,−1/2

n−1 . Thus,
due to Theorem 1, f1 and f2 are the isotropic parts of strictly positive definite kernels
on P

d−1(R) . The proofs in the cases (iv) and (v) follow a similar path. �

5. Appendix

In this section, we include an independent proof for Theorem 1 in the case in which
Md = S1 . This case is different from the others in the sense that the additional condition
for strict positive definiteness on the coefficients in the expansion of the isotropic part
of the kernel has a different structure. We emphasize that one of the characterizations to
be deduced here was originally obtained in [15], but via a complexification approach.

Lemma 1 takes the following form (see [21] and references quoted there).

LEMMA 6. Let K be the isotropic part of a nonzero, continuous, isotropic and
positive definite kernel on S1 . It is strictly positive definite if and only if there exists no
non-zero function f : Z+ → C of the form

f (k) =
n

∑
μ=1

cμeiθμ k, {θ1,θ1, . . . ,θn} ⊂ [0,2π), {c1,c2, . . . ,cn} ⊂ R,

that vanishes on {k : a−1/2,−1/2
k > 0} .

THEOREM 7. Let K be a nonzero, continuous, isotropic and positive definite ker-
nel on S1 . In order that it be strictly positive definite it is necessary that, in the rep-

resentation (2) for K1
r , the set {k : a−1/2,−1/2

|k| > 0} intersects every full arithmetic
progression in Z .

Proof. We will assume that {k : a−1/2,−1/2
|k| > 0}∩(nZ+ j)= /0 for some n � 2 and

j ∈ {0,1, . . . ,n−1} and will show that K is not strictly positive definite, with the help

of Lemma 6. If a−1/2,−1/2
|k| > 0, our assumption implies that exp[i2π(±k− j)/n] �= 1.

Defining cμ = exp(−i2πμ j/n) , μ = 1,2, . . . ,n , we now have that

n

∑
μ=1

cμei2πμk/n =
n

∑
μ=1

[ei2πμ/n]k− j = ei2π(k− j)/n ei2π(k− j)−1

ei2π(k− j)/n−1
= 0,
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and, likewise, ∑n
μ=1 cμe−i2πμk/n = 0. Thus,

n

∑
μ=1

(Re cμ)ei2πμk/n = 0, k ∈ {k : a−1/2,−1/2
|k| > 0}.

Since Re cn �= 0, K is not strictly positive definite on S1 . �

The proof of the sufficiency of the condition presented above demands arguments
from analytic number theory.

THEOREM 8. Let K be a real, continuous, isotropic and positive definite kernel
on S1 . In order that it be strictly positive definite is sufficient that, in the representation

(2) for K1
r , the set {k : a−1/2,−1/2

|k| > 0} intersects every full arithmetic progression in
Z .

Proof. Fix n � 2, distinct points θ1,θ2, . . . ,θn in [0,2π) and c1,c2, . . . ,cn real

numbers, not all zero. We intend to show that if {k : a−1/2,−1/2
|k| > 0} intersects every full

arithmetic progression in Z , then ∑n
μ=1 cμeiθμ k �= 0 for at least one k∈{k : a−1/2,−1/2

k >
0} . In order to do that, we define

bk =
n

∑
μ=1

cμeiθμ k, k ∈ Z,

and consider the set {k : bk = 0} . Since this set is a linear recurrence, the classical
Skolem-Mahler-Lech theorem ([9, p. 25]) asserts that {k : bk = 0} coincides with the
union of a finite set F and a finite number of full arithmetic progressions, say, dνZ+ jν ,
ν = 1,2, . . . ,m . Since the cμ are not all zero, {k : bk = 0} �= Z . This information
allows us to conclude that {k : bk = 0} has an empty intersection with at least one
full arithmetic progression in Z . Indeed, choose l ∈ Z \ {k : bk = 0} and let p be the
least common multiple of all the dν . If for a fixed ν , pm + l = dνm + jν for two
integers m and m , then l = (m− pm/dν)dν + jν ∈ dνZ + jν , a contradiction. Thus,
if the finite set in the union decomposition of {k : bk = 0} is empty, the arithmetic
progression pZ+ l satisfies what is required. Otherwise, we can pick a subset of pZ+ l
that is an arithmetic progression itself and avoids the set F . It is now clear that if

{k : a−1/2,−1/2
|k| > 0} intersects every full arithmetic progression in Z , then it cannot be a

subset of {k : bk = 0} . Therefore, there exists at least one k ∈Z for which a−1/2,−1/2
|k| >

0 and ∑n
μ=1 cμeiθμ k �= 0. Since the cμ are real, then ∑n

μ=1 cμeiθμ k �= 0 for at least one

k∈ {k : a−1/2,−1/2
k > 0} . Lemma 1 implies that K is strictly positive definite on S1 . �

Before stating the main result in this section, we will prove the following lemma.

LEMMA 7. Let A be a subset of Z . If it intersects every arithmetic progression in
Z then it intersects every arithmetic progression in Z infinitely many times.
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Proof. Assume A intersects every arithmetic progression in Z and suppose there
exists one, say, nZ+ j which intersects A only a finite number of times. Let

np1 + j < np2 + j < · · · < npα + j

be the elements in the intersection and define p := max{|p1|, . . . , |pα |} . Since p > 0
and

0 � 2np+ j � 2np+n−1= (2p+1)n−1,

the set 2n(2p+1)Z+2np+ j is a full arithmetic progression for which A∩ (2n(2p+
1)Z+2np+ j) = /0 . This is a contradiction. �

The main theorem in the appendix is this.

THEOREM 9. Let K be a continuous, isotropic and positive definite kernel on S1

and consider the representation (2) for K1
r . The following assertions are equivalent:

(i) K is strictly positive definite on S1 ;

(ii) The set {k : a−1/2,−1/2
|k| > 0} intersects every full arithmetic progression in Z;

(iii) The set {k : a−1/2,−1/2
|k| > 0} intersects every full arithmetic progression in Z

infinitely many times.
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