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Abstract. In this paper we show that if f : [0,∞) → [0,∞) is an operator monotone function and
A,B are positive operators such that 0 < pA � B � qA , then for all α ∈ [0,1]

f (A)�α f (B) � max{S(p),S(q)} f (A�αB),

where S(t) is the so called Specht’s ratio, and �α is α -geometric mean.
Moreover, we present some majorization and norm inequalities for operator monotone

functions. Operator monotone decreasing functions are also discussed.

1. Introduction

Let B(H) denote the C∗ -algebra of all bounded linear operators on a Hilbert
space (H,〈·, ·〉) . An operator A ∈ B(H) is called positive if 〈Ax,x〉 � 0 for every
x ∈H and then we write A � 0. For self-adjoint operators A,B∈B(H) , we say A � B
if B−A � 0. Also we say A is positive definite and we write A > 0, if 〈Ax,x〉 > 0
for every x ∈ H . Let f be a continuous real function on (0,∞) . Then f is said to be
operator monotone (more precisely, operator monotone increasing) if A � B implies
f (A) � f (B) for positive definite operators A,B , and operator monotone decreasing if
− f is operator monotone or A � B implies f (A) � f (B) .

Also, f is said to be operator convex if f (αA+(1−α)B) � α f (A)+(1−α) f (B)
for all positive definite operators A,B and α ∈ [0,1] , and operator concave if − f is
operator convex.

For each α ∈ [0,1] the α -arithmetic and the α -harmonic means are defined as
A�α B := (1−α)A+ αB and A!αB := ((1−α)A−1 + αB−1)−1 for positive definite
operators A,B . Also, the α -geometric mean is

A�αB = A1/2(A−1/2BA−1/2)αA1/2.
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For α = 1
2 one obtains the arithmetic mean A�B =

A+B
2

, harmonic mean A!B =
(A−1 +B−1

2

)−1
and geometric mean A�B = A1/2(A−1/2BA−1/2)1/2A1/2 .

Basic properties of the arithmetic, harmonic and geometric means can be found in
[1].

It is well-known the Young inequality

A�αB � (1−α)A+ αB (1)

for positive definite operators A and B .

The constant Specht’s ratio [7, 9] is defined as S(t) =
t

1
t−1

e logt
1

t−1

for a positive real

number t . Note that limt→1 S(t) = 1 and S(t) = S(1/t) > 1 for t �= 1, t > 0.
One of reverse inequalities for (1) is given by M. Tominaga in [9], using the

Specht’s ratio, as follows:
If 0 < mI � A,B � MI with h = M/m and α ∈ [0,1] , then

(1−α)A+ αB � S(h)(A�αB). (2)

This paper is organized as follows. In section 2 we study an analogue of geometric
concavity property

f (a)�α f (b) � f (a�αb),

for operator functions, by using several revers Young’s inequalities. More precisely, we
show that if f : [0,∞)→ [0,∞) is an operator monotone function and 0 < pA � B � qA ,
then for all α ∈ [0,1]

f (A)�α f (B) � max{S(p),S(q)} f (A�αB),

where S(t) is the so called Specht’s ratio.
As an immediate result we have: if f : [0,∞) −→ [0,∞) is operator monotone

function and 0 < mI � A,B � MI with h = M
m , then for all α ∈ [0,1]

f (A)�α f (B) � S(h) f (A�αB).

At the end of this section, we also present a norm inequality involving Specht’s ratio
S(h) , for operator convex functions.

Section 3 is devoted to prove some majorization inequalities for operator mono-
tone functions. Let A be a finite rank operator, we always denote the eigenvalues of
|A| = (A∗A)1/2 by s1(A) � s2(A) � . . . � sn(A) listed in decreasing order with multi-
plicities and put s(A) = (s1(A), · · · ,sn(A)) . These are called the singular values of A .
The weakly log-majorization s(A) ≺w log s(B) means that

k

∏
j=1

s j(A) �
k

∏
j=1

s j(B), k = 1,2, ...,n.
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We refer to [3, 8], for a detailed study. In this section, we show that if f is a nonnegative
operator monotone function on (0,∞) , then for every 1 � k � n

k

∏
j=1

s j( f (A!B)) �
k

∏
j=1

s1/2
j ( f (A)) · s1/2

j ( f (B)).

Then we deduce some norm and determinantal inequalities from this majorization re-
lation. We also give the counterpart of this results for operator monotone decreasing
functions.

2. Operator monotone functions and ratio type reverse inequalities

We first show the following converse ratio-type inequality for the Young’s inequal-
ity. The sketch of proof is similar to that of [9, Theorem 2.1].

LEMMA 1. Let 0 < pA � B � qA, p,q > 0 and α ∈ [0,1] . Then

(1−α)A+ αB � max{S(p),S(q)}(A�αB), (3)

where S(t) is the so called Specht’s ratio.

Proof. From [9, Lemma 2.3] if b is a positive number and α ∈ [0,1] , then

(1−α)b+ α � S(b)b1−α .

Thus for the invertible positive operator 0 < pI � C � qI , we have

(1−α)C+ αI � max
p�t�q

S(t)C1−α .

Putting C = B−1/2AB−1/2 we get

(1−α)B−1/2AB−1/2 + αI � max
p�t�q

S(t)(B−1/2AB−1/2)1−α .

Multiplying B1/2 to the both sides in the above inequality, and using this fact that
maxp�t�q S(t) = max{S(p),S(q)} , inequality (3) is obtained. Since A�αB = B�1−αA .

�

REMARK 1. Note that Tominaga’s inequality (2), can be derived from Lemma 1.
Because if 0 < mI � A,B � MI , then m

M A � B � M
m A . Since S(h) = S( 1

h) , we obtain
inequality (2) by letting p = m

M and q = M
m in Lemma 1.

THEOREM 1. Let f : [0,∞) −→ [0,∞) be operator monotone function and 0 <
pA � B � qA. Then for all α ∈ [0,1]

f (A)�α f (B) � max{S(p),S(q)} f (A�αB),

where S(t) is the so called Specht’s ratio.



760 M. BAGHER GHAEMI AND V. KALEIBARY

Proof. First note that since f is analytic on (0,∞) , we may assume that f (x) > 0
for all x > 0; otherwise f is identically zero. Also, since f is operator monotone
function on [0,∞) , so it is operator concave function [3, Theorem V.2.5]. For the
convenience we put M = max{S(p),S(q)} . So M � 1. Now compute

f (A)�α f (B) � (1−α) f (A)+ α f (B) � f ((1−α)A+ αB))
� f (M(A�αB)) � M f (A�αB),

where the first inequality follows from inequality (1), the second follows from operator
concavity of f and the third follows from Lemma 1 and monotony of f . �

As an immediate result we have the following corollary:

COROLLARY 1. Let f : [0,∞) −→ [0,∞) be operator monotone function and let
0 < mI � A,B � MI . Then for all α ∈ [0,1]

f (A)�α f (B) � S(h) f (A�αB),

where S(h) is the so called Specht’s ratio and h = M
m .

COROLLARY 2. Let g be a non-negative operator monotone decreasing function
on (0,∞) and let 0 < mI � A,B � MI . Then for all α ∈ [0,1]

g(A�αB) � S(h)(g(A)�αg(B)),

where S(h) is the so called Specht’s ratio and h = M
m .

Proof. Since g is operator monotone decreasing on (0,∞) , so 1/g is operator
monotone on (0,∞) . Now by applying Corollary 1 for f = 1/g , we have

(g(A)�αg(B))−1 = g(A)−1�αg(B)−1 � S(h)g(A�αB)−1.

By reversing both sides, the alleged inequality is obtained. �
Furuichi and Minculete in [7], gave another reverse inequalities for Young’s in-

equality without using Specht’s ratio as follows:

LEMMA 2. Let 0 < mI � A � B � MI � I with h = M
m . Then for all α ∈ [0,1]

(1−α)A+ αB � exp
(

α(1−α)
(
1− 1

h

)2)
A�αB. (4)

Using this lemma we state the next theorem.

THEOREM 2. Let f : [0,∞)−→ [0,∞) be operator monotone function and let 0 <
mI � A � B � MI � I with h = M

m . Then for all α ∈ [0,1]

f (A)�α f (B) � exp
(

α(1−α)
(
1− 1

h

)2)
f (A�αB).
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Proof. The assertion is obtained similar to the proof of Theorem 1, with applying
inequality (4) instead of inequality (3). Note that the factor exp

(
α(1−α)(1− 1

h )2
)

�
1. �

In the remaining part of this section, we let H be a finite dimensional Hilbert
space and α = 1

2 . We show a norm inequality for operator convex function g involving
Specht’s ratio S(h) . For this purpose, the following subadditivity results are needed.
Recall that the norm ‖·‖u is said a unitarily invariant norm, if satisfies ‖A‖u = ‖UAV‖u

for all A and all unitaries U,V .

LEMMA 3. [6, Theorem 1.2] Let A,B � 0 and let g : [0,∞)−→ [0,∞) be a convex
function with g(0) = 0 . Then for every unitarily invariant norm ‖ · ‖u

‖g(A)+g(B)‖u � ‖g(A+B)‖u.

LEMMA 4. [4, Theorem 2.1] Let f : [0,∞) −→ [0,∞) be a concave function. Let
A � 0 and let Z be expansive. Then for every unitarily invariant norm ‖ · ‖u

‖ f (Z∗AZ)‖u � ‖Z∗ f (A)Z‖u.

THEOREM 3. Let g : [0,∞)−→ [0,∞) be an operator convex function with g(0) =
0 and let 0 < mI � A,B � MI . Then for every unitarily invariant norm ‖ · ‖u

‖g(A)�g(B)‖u

‖A�B‖u
� 2S(h)2

∥∥∥g(A�B)
A�B

∥∥∥
u
,

where S(h) is the so called Specht’s ratio and h = M
m .

Proof. From revers Young’s inequality (2), for α = 1
2 , we have

A+B � 2S(h)(A�B). (5)

Since g(t) is operator convex with g(0) = 0, then f (t) = g(t)/t is operator monotone
function on (0,∞) . [3, Theorem V.2.9]. Therefore,

g(A+B)
A+B

� g(2S(h)(A�B))
2S(h)(A�B)

. (6)

Now compute

‖g(A)+g(B)‖u

‖A+B‖u
� ‖g(A+B)‖u

‖A+B‖u
�

∥∥∥g(A+B)
A+B

∥∥∥
u

�
∥∥∥g(2S(h)(A�B))

2S(h)(A�B)

∥∥∥
u

� 2S(h)
∥∥∥g(A�B)

A�B

∥∥∥
u
, (7)
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where the first inequality follows from applying Lemma 3 for g(t) , and the last inequal-
ity follows from applying Lemma 4 for f (t) . The second inequality is due to submul-
tiplicativity of unitarily invariant norms. Also applying with AM−GM inequality for
g(A) and g(B) , we get

2‖g(A)�g(B)‖u � ‖g(A)+g(B)‖u. (8)

Combining left side of (7) with (8), we deduce

‖g(A)�g(B)‖u

‖A+B‖u
� S(h)

∥∥∥g(A�B)
A�B

∥∥∥
u
. (9)

On the other hand, from inequality (5)

1
2S(h)‖A�B‖u

� 1
‖A+B‖u

, (10)

So, inequalities (9) and (10), give the assertion as follows

‖g(A)�g(B)‖u

‖A�B‖u
� 2S(h)2

∥∥∥g(A�B)
A�B

∥∥∥
u
. �

3. Operator monotone functions and majorization inequalities

In this section, we obtain some majorization and norm inequalities for operator
monotone and operator monotone decreasing functions on (0,∞) . Throughout this
section, Hilbert space H is assumed to be finite dimensional.

Let A and B , be positive definite operators. It is known that A!B � A�B . So for
every 1 � k � n we have

k

∏
j=1

s j(A!B) �
k

∏
j=1

s j(A�B) �
k

∏
j=1

s j(A)�
k

∏
j=1

s j(B), (11)

where the second inequality follows from [5, Proposition 3.5].
The following proposition is the extension of inequality (11) to operator monotone

functions on (0,∞) .

PROPOSITION 1. Let f be a non-negative operator monotone function on (0,∞) .
Then for every A,B > 0 and 1 � k � n

k

∏
j=1

s j( f (A!B)) �
k

∏
j=1

s1/2
j ( f (A)) · s1/2

j ( f (B)). (12)

Proof. By [2, Theorem 3.7], if f � 0 is an operator monotone function on (0,∞) ,
then [

f (A) f (A!B)
f (A!B) f (B)

]
� 0.
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So by [3, Theorem IX.5.9] there exist a contraction K such that f (A!B)= f (A)1/2K f (B)1/2.
Hence

k

∏
j=1

s j( f (A!B)) =
k

∏
j=1

s j( f (A)1/2K f (B)1/2) �
k

∏
j=1

s j( f (A))1/2s j( f (A))1/2,

where the inequality is an immediate result of Horn’s log-majorization and this fact that
s j(K) � 1 for all j . �

COROLLARY 3. Let f be a non-negative operator monotone function on (0,∞)
and let A,B > 0 . Then

det f (A!B) � (det f (A))1/2 · (det f (B))1/2.

LEMMA 5. Let f be a non-negative operator monotone function on (0,∞) and
let A,B > 0 . Then for every unitarily invariant norm ‖ · ‖u

‖ f (A!B)‖u � ‖ f (A)‖1/2
u · ‖ f (B)‖1/2

u � ‖ f (A)‖u �‖ f (B)‖u.

Proof. Since weak log-majorization implies weak majorization [8], from inequal-
ity (12) we have

k

∑
j=1

s j( f (A!B)) �
k

∑
j=1

s1/2
j ( f (A)) · s1/2

j ( f (B)).

Let α = (α1,α2, ...,αn) be a sequence with decreasing nonnegative entries. Define
‖X‖α = ∑k

j=1 α js j(X) for X ∈ B(H) . Compute

‖ f (A!B)‖α =
k

∑
j=1

α js j( f (A!B)) �
k

∑
j=1

α js
1/2
j ( f (A)) · s1/2

j ( f (B))

�
( k

∑
j=1

α js j( f (A))
)1/2 ·

( k

∑
j=1

α js j( f (B))
)1/2

= ‖ f (A)‖1/2
α · ‖ f (B)‖1/2

α ,

where the Cauchy-Schwarz inequality is used in the second inequality. As α is ar-
bitrarily chosen, the first alleged inequality follows from [8, Corollary 3.5.9], and the
second, follows from AM−GM inequality. �

The next proposition is the counterpart of Proposition 1 for operator monotone
decreasing functions.

PROPOSITION 2. Let g be a non-negative operator monotone decreasing function
on (0,∞) . Then for every A,B > 0 and 1 � k � n

k

∏
j=1

s j(g(A�B)) �
k

∏
j=1

s j(g(A))1/2 ·
k

∏
j=1

s j(g(B))1/2. (13)
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Proof. The proof is similar to that of Proposition 1, by using this fact that for every

operatormonotone decreasing function g � 0, the operatormatrix

[
g(A) g(A�B)

g(A�B) g(B)

]

is positive [2, Theorem 3.1]. �

COROLLARY 4. Let g be a non-negative operator monotone decreasing function
on (0,∞) and let A,B > 0 . Then

detg(A�B) � det(g(A))1/2 ·det(g(B))1/2.

LEMMA 6. Let g be a non-negative operator monotone decreasing function on
(0,∞) and let A,B > 0 . Then for every unitarily invariant norm ‖ · ‖u

‖g(A�B)‖u � ‖g(A)‖1/2
u · ‖g(B)‖1/2

u � ‖g(A)‖u�‖g(B)‖u.

Proof. The proof is similar to that of Lemma 5, by applying inequality (13). Also,
we can get the result in a direct way as follows: It is well known that ‖AσB‖u �
‖A‖uσ‖B‖u for every unitarily invariant norm ‖ ·‖u and every operator mean σ . Since
g � 0 is operator monotone decreasing on (0,∞) , then it is operator log-convex [2,
Theorem 2.1]. Hence

‖g(A�B)‖u � ‖g(A�B)‖u � ‖g(A)‖1/2
u · ‖g(B)‖1/2

u . �
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