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Abstract. Let Ai,Bi (i = 1, . . . ,m) be positive definite matrices, r � 1 , t ∈ [0,1] and s > 0 .
Then for any unitarily invariant norm ‖| · ‖|
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A recent result of Audenaert [2] immediately follows from the above inequalities.

1. Introduction

Let Mn be the set of n× n matrices over C and M+
n the set of positive definite

matrices in Mn . Recall that a norm ||| · ||| on Mn is unitarily invariant if |||UAV ||| =
|||A||| for any unitary matrices U,V ∈ Mn and any A ∈ Mn . For t ∈ [0,1] , the t -
geometric mean of A,B ∈ M+

n is defined as:

A�tB := A1/2
(
A−1/2BA−1/2

)t
A1/2.

For A ∈ Mn with positive eigenvalues, let λ (A) = (λ1(A), . . . ,λn(A)) denote the
vector of eigenvalues of A such that λ1(A) � . . . � λn(A) . For A,B ∈ M+

n the denota-
tion λ (A) ≺log λ (B) means

k

∑
i=1

λi(A) �
k

∑
i=1

λi(B), k = 1,2, . . . ,n−1, and
n

∑
i=1

λi(A) =
n

∑
i=1

λi(B).
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Bourin and Uchiyama [4] proved that for positive semidefinite matrices Ai (i =
1, · · · ,m) , for every non-negative convex function f on [0,∞) with f (0) = 0 and for
any unitarily invariant norm ||| · ||| on Mn

||| f (A1)+ f (A2)+ · · · f (Am)||| � ||| f (A1 +A2 + · · ·+Am)|||. (1.1)

This is a noncommutative version of the well-known inequality for nonnegative concave
function f on [0,∞)

f (a+b) � f (a)+ f (b), a,b � 0.

In [5] Bourin asked a related question: Given A,B � 0 and p,q > 0, is it true that

‖|Ap+q +Bp+q‖| � ‖|(Ap +Bp)(Aq +Bq)‖|?

Bourin also wondered whether the following stronger inequality

|||Ap+q +Bp+q||| � |||(Ap +Bp)1/2(Aq +Bq)(Ap +Bp)1/2|||

holds true. Hayajneh and Kittaneh [6] gave an affirmatively answer for the trace norm
|| · ||1 and the Hilbert-Schmidt norm || · ||2 . Recently, Audenaert [2] proved that for any
positive semidefinite matrices Ai,Bi (i = 1, · · · ,m) such that AiBi = BiAi and for any
unitarily invariant norm ‖| · ‖| on Mn ,

‖|
m

∑
i=1

AiBi‖| � ‖|(
m

∑
i=1

A1/2
i B1/2

i )2‖| � ‖|(
m

∑
i=1

Ai)(
m

∑
i=1

Bi)‖| . (1.2)

In particular, this result confirms a conjecture of Hayajneh and Kittaneh in [6] and
answers the mentioned above question of Bourin. Very recently Lin [7] gave another
proof of inequality (1.2). In the next section, based on a result of Bourin and Uchiyama
in [4] we prove an inequality for t -geometric means that immediately implies (1.2).

2. Main result

Denote by s(A) = (s1(A), . . . ,sn(A)) the vector of singular values of A ∈ Mn in
descending order. The following proposition is a generalized version of [8, Proposition
2.2].

PROPOSITION 2.1. Let A,B ∈ M+
n , r � 1, t ∈ [0,1] and s > 0. Then for all

unitarily invariant norms ‖| · ‖| on Mn ,

‖|(A�tB)r‖| � ‖|
(
Brts/2A(1−t)rsBrts/2

)1/s ‖| � ‖|
(
A(1−t)rsBrts

)1/s‖| . (2.1)

Proof. Since A�tB ∈ M+
n for all t ∈ [0,1] ,

s(A�tB) = λ (A�tB) ≺log λ
(
Bts/2A(1−t)sBts/2

)1/s
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for all t ∈ [0,1] and s > 0. By Weyl’s theorem [3] on the singular values and the eigen-

values of a matrix, λ
(
Bts/2A(1−t)sBts/2

)1/s ≺log s
(
Bts/2A(1−t)sBts/2

)1/s
. Then apply

Ky Fan Dominance Theorem to have ‖|A�tB‖| � ‖|
(
Bts/2A(1−t)sBts/2

)1/s ‖| . Then we

have

‖|(A�tB)r‖| � ‖|
(
Bts/2A(1−t)sBts/2

)r/s ‖| � ‖|
(
Brts/2A(1−t)rsBrts/2

)1/s ‖| . (2.2)

The first inequality in (2.2) follows from the convexity and monotonicity of the function
f (t) = tr , the second inequality in (2.2) follows from the Araki-Lieb-Thirring inequal-
ity.

The second inequality of (2.1) follows from

s
(
Brts/2A(1−t)rsBrts/2

)1/s
= λ

(
Brts/2A(1−t)rsBrts/2

)1/s
= λ

(
A(1−t)rsBrts

)1/s

≺log s
(
A(1−t)rsBrts

)1/s

and Ky Fan Dominance Theorem. �

Our main theorem states as follows.

THEOREM 2.2. Let Ai,Bi ∈ M+
n (i = 1, . . . ,m) , r � 1 , t ∈ [0,1] and s > 0 . Then

for any unitarily invariant norm ‖| · ‖| on Mn
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(2.3)

Proof. Since the function xr is convex and monotone increasing, by the mentioned
above inequality (1.1) and the concavity of the t -geometric means, we have
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On account of Proposition 2.1
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Combining (2.4) and (2.5), we get (2.3). �
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REMARK 2.3. For the commuting matrices Ak and Bk , we have (Ak�tBk)r =
A(1−t)r

k Brt
k . Applying Theorem 2.2 for r = 2, s = 1, t = 1/2, we obtain (1.2).
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mous referee for his comments which improve this paper.
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