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A NOTE ON CONVEXITY, CONCAVITY, AND GROWTH CONDITIONS IN

DISCRETE FRACTIONAL CALCULUS WITH DELTA DIFFERENCE

CHRISTOPHER S. GOODRICH

Abstract. We demonstrate that some recent results regarding the connection between the convex-
ity of the map t �→ f (t) and the sign of Δν

a f (t) , with 2 < ν < 3 , can be improved. In particular,
by utilizing a recent inequality due to Jia, Erbe, and Peterson, we are able to improve some of
the existing results in the literature. As part of this study we illustrate the improvements that our
results afford by providing several specific examples of their application.
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