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Abstract. We demonstrate that some recent results regarding the connection between the convex-
ity of the map t �→ f (t) and the sign of Δν

a f (t) , with 2 < ν < 3 , can be improved. In particular,
by utilizing a recent inequality due to Jia, Erbe, and Peterson, we are able to improve some of
the existing results in the literature. As part of this study we illustrate the improvements that our
results afford by providing several specific examples of their application.

1. Introduction

The discrete fractional calculus has recently received a great deal of attention.
Since the initial works of Atici and Eloe [2, 3, 4], a steadily increasing number of
researchers have begun investigating various questions in the area. Some of the most
intriguing open questions concern in what way the fractional difference affects and
is related to either the monotonicity or convexity of the maps on which it operates.
Especially this interest arises from the nonlocal nature of the fractional difference and
sum. In particular, recall that these are defined as follows; note that we first define the
so-called falling factorial map, denoted t �→ tν , as it plays a key role in the definition.
For further information about these and related fundamental definitions, the reader may
consult the textbook by Goodrich and Peterson [18].

DEFINITION 1. We define the falling factorial function, denoted t �→ tν , by

tν :=
Γ(t +1)

Γ(t +1−ν)
,

for any t and ν for which the right-hand side is defined. We also appeal to the con-
vention that if t +1−ν is a pole of the Gamma function and t +1 is not a pole, then
tν := 0.
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DEFINITION 2. The ν -th fractional sum, ν > 0, of a function f : Na → R ,
where a ∈ R is given, is

Δ−ν
a f (t) :=

1
Γ(ν)

t−ν

∑
s=a

(t− s−1)ν−1 f (s),

for t ∈ Na+ν . We also define the ν -th fractional difference of f , for ν > 0, by

Δν
a f (t) := ΔNΔν−N

a f (t),

where t ∈ Na−ν+N and N ∈ N1 is the unique number satisfying N−1 < ν � N .

Regarding the notation in Definitions 1–2 and throughout the remainder of this
note we use the following conventions.

REMARK 1. Given numbers n1 , n2 ∈R with n1 � n2 and n2−n1 ∈N0 , we define
by N

n2
n1 the set

N
n2
n1

:= {n1,n1 +1, . . . ,n2} .

Furthermore, given r1 ∈ R we put

Nr1 := {r1,r1 +1,r1 +2, . . .} .

The most important observation that we can make about Definition 2 is the nonlo-
cal nature of the operator Δ−ν

a , and, thus, of Δν
a . More specifically, whereas the map

t �→ Δ f (t) involves only f (t + 1) and f (t) and, thus, is a local construction, the map
t �→ Δν

a f (t) involves the entire collection of values { f (a), f (a+1), . . . , f (t + ν)} , for
t ∈ Na+N−ν , and thus is decidedly nonlocal in character. For this reason we sometimes
say that these fractional operators possess a “memory property” since they “remember”
all of the previous values that f has attained.

Among the most interesting consequences of the nonlocal structure of the frac-
tional difference is its relationship to the monotonicity and convexity of f . It is a
triviality that if Δ f (t) � 0 for t ∈ Na , then f is increasing on Na . It is similarly trivial
that if Δ2 f (t) > 0 for t ∈ Na , then f is convex on Na . But the relationship between
the sign of Δν

a f (t) and the monotonicity or convexity of f is much more subtle and
complicated. Some recent works by Atici and Uyanik [6], Dahal and Goodrich [9, 10],
Jia, Erbe, and Peterson [20, 21, 22], Baoguo, Erbe, Goodrich, and Peterson [7], and
Goodrich [16] have slowly begun to address these questions.

Of particular relevance to this note is the recent paper by Jia, Erbe, and Peterson
[21]. In that work, generalizing and improving upon a result of Goodrich [16], the
authors deduced results regarding the sign of Δν

a f (t) , in the case where 2 < ν < 3,
and the convexity and concavity of the map t �→ f (t) . In particular, they obtained the
following result.

THEOREM 1. Assume that the function f : Na → R satisfies Δν
a f (t) � 0 , for

each t ∈ N3+a−ν , where 2 < ν < 3 . If, in addition, it holds that f (a) � 0 , Δ f (a) � 0 ,
and Δ2 f (a) � 0 , then Δ2 f (t) � 0 , for t ∈ Na+1 .
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Their proof of Theorem 1 relied on the following very important lemma, which was
also discovered by Jia, Erbe, and Peterson [21]. Note that in [21], the statement of
Lemma 1 contains a very slight misprint – i.e., it should read Δν

a f (a+3−ν +k) , as we
have here, rather than Δν

a f (a+ k) as they have. An examination of the proof Lemma
1 as stated in [21] reveals this to be the case. Other than this typographical error, the
results of [21] are perfectly correct and valid.

LEMMA 1. Assume that f : Na → R satisfies Δν
a f (a+3−ν + k) � 0 , for each

k ∈ N0 , where 2 < ν < 3 . Define the map (t,a) �→ hν(t,a) by

hν(t,a) :=
(t−a)ν

Γ(ν +1)
. (1)

Then, for each k ∈ N0 ,

Δ2 f (a+ k+1) � −h−ν(a+3−ν + k,a) f (a)−h−ν+1(a+3−ν + k,a)Δ f (a)

−
k

∑
i=0

h−ν+1(a+3−ν + k,a+ i+1)Δ2 f (a+ i).

REMARK 2. The map (t,s) �→ hν(t,s) defined in (1) in Lemma 1 is known as the
“Taylor monomial of degree ν based at a” – see [18].

In particular, then, we notice that in Theorem 1 one has a somewhat unusual col-
lection of hypotheses – namely, that each of the following must hold.

f (a) � 0 Δ f (a) � 0 Δ2 f (a) � 0 Δν
a f (t) � 0, for each t ∈ N3+a−ν

This certainly stands in bold relief when compared to the integer-order setting. Thus,
it seems natural to wonder whether some of these conditions can be eliminated. Or, if
that is not possible in general, whether in special cases can we relax certain of these
conditions.

The main result of this note, Theorem 2, demonstrates that we may give a partial
affirmative answer to the preceding questions. In particular, by using Lemma 1 we can,
in some cases, eliminate some of the conditions used in Theorem 1. While we still
obtain results that are not as simple as in the integer-order setting, we, nonetheless, are
able to recover results that are simpler to apply and do not require some of conditions
in Theorem 1. For example, we are able, in certain circumstances, to

• eliminate the “initial nonpositivity” condition – i.e., that f (a) � 0; and

• eliminate the “initial convexity” condition – i.e., that Δ2 f (a) � 0.

And we will illustrate these facts explicitly with a variety of examples.
To conclude this section, let us end by mentioning briefly some of the current liter-

ature in discrete fractional calculus. In addition to the works already mentioned above
that relate to monotonicity and convexity, other works such as one by Holm have ad-
dressed operational properties of the fractional difference and sum (e.g., composing var-
ious fractional operators) [19]; chaos in discrete fractional dynamical systems has been
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considered by Wu and Baleanu [23]; Ferreira [11] has produced a version of Gronwall’s
inequality in the setting of discrete fractional calculus; Ferreira and Goodrich have in-
vestigated discrete fractional boundary and initial value problems [12, 13, 14, 15, 17];
exponential functions in discrete fractional calculus have been treated by Acar and Atici
[1]; an application to tumor growth modeling was provided by Atici and Şengül [5]; and
extensions of fractional calculus to other time scales have been investigated by Bastos,
Mozyrska, and Torres [8]. Thus, there have been and continue to exist a number of
different areas of investigation in discrete fractional calculus. Finally, for readers inter-
ested in more details regarding discrete fractional calculus, the recent text by Goodrich
and Peterson [18] may be consulted as a general reference.

2. Convexity and concavity results for fractional delta differences

We begin this section by stating and proving the primary result of the note. The
proof makes use of the fundamental inequality in Lemma 1. We then demonstrate
that several corollaries follow from Theorem 2. Throughout this section we provide
specific examples to illustrate the use and applicability of Theorem 2 and its associated
corollaries, and, moreover the way in which these results generalize Theorem 1, as
discussed in Section 1. Throughout this section we invoke the convention that, unless
otherwise stated, f is a map satisfying f : Na → R .

THEOREM 2. Fix ν ∈ (2,3) and suppose that Δν
a f (t) � 0 for each t ∈ N3+a−ν .

If for each k ∈ N−1 it holds that

1
−ν +1

f (a+2)+
ν +2+ k

(ν −1)(3+ k)
f (a+1)− ν

(3+ k)(4+ k)
f (a) � 0, (2)

then Δ2 f (t) � 0 for each t ∈ Na+1 .

Proof. We first establish that Δ2 f (a+1) � 0 holds. To see that this claim is true,
with the help of Lemma 1 and the definition of the Taylor monomial in (1) we write

Δ2 f (a+1) � −h−ν(a+3−ν,a) f (a)−h−ν+1(a+3−ν,a)Δ f (a)

−h−ν+1(a+3−ν,a+1)Δ2 f (a)

= − Γ(3−ν)
Γ(−ν +1)︸ ︷︷ ︸

<0

[
1

−ν +1
f (a+2)+

[
3−ν

2(−ν +1)
− 2

−ν +1

]
f (a+1)

+
[
3−ν

6
− 3−ν

2(−ν +1)
+

1
−ν +1

]
f (a)

]

= − Γ(3−ν)
Γ(−ν +1)

[
1

−ν +1
f (a+2)+

ν +1
2(ν −1)

f (a+1)− ν
6

f (a)
]

︸ ︷︷ ︸
�0

� 0,
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where the final inequality follows from an application of inequality (2) in case k = −1.
Having established the base case, we now use induction to complete the proof.

Therefore, assume that Δ2 f (a+ k) � 0 for each k ∈ N
k0+1
1 for some k0 � 0. We prove

that Δ2 f (a+ k0 +2) � 0. To this end, we write

Δ2 f (a+ k0 +2) � −h−ν (a+3−ν +(1+ k0) ,a) f (a)
−h−ν+1 (a+3−ν +(1+ k0) ,a)Δ f (a)

−
k0+1

∑
j=0

h−ν+1 (a+3−ν +(1+ k0) ,a+ j +1)Δ2 f (a+ j)

� −h−ν (a+3−ν +(1+ k0) ,a) f (a)
−h−ν+1 (a+3−ν +(1+ k0) ,a)Δ f (a)

−h−ν+1 (a+3−ν +(1+ k0) ,a+1)Δ2 f (a),

(3)

where we use the induction hypothesis together with the fact that

h−ν+1 (a+3−ν +(1+ k0) ,a+ j +1) � 0

for each 0 � j � k0 +1. Continuing, then, from estimate (3) we deduce that

Δ2 f (a+ k0 +2)

� −Γ(4−ν + k0)
Γ(−ν +1)

[
4−ν + k0

(4+ k0)!
f (a)

+
4−ν + k0

(−ν +1)(3+ k0)!
[ f (a+1)− f (a)]

+
1

(−ν +1)(2+ k0)!
[ f (a+2)−2 f (a+1)+ f (a)]

]

� − Γ(4−ν + k0)
Γ(−ν +1)(2+ k0)!

[
4−ν + k0

(3+ k0) (4+ k0)
f (a)

+
4−ν + k0

(−ν +1)(3+ k0)
[ f (a+1)− f (a)]

+
1

−ν +1
[ f (a+2)−2 f (a+1)+ f (a)]

]

= − Γ(4−ν + k0)
Γ(−ν +1)(2+ k0)!

[
1

−ν +1
f (a+2)+

(
ν +2+ k0

(ν −1)(3+ k0)

)
f (a+1)

+
(4−ν + k0)(−3−ν − k0)+ (4+ k0)(3+ k0)

(−ν +1)(3+ k0)(4+ k0)︸ ︷︷ ︸
= ν2−ν

(−ν+1)(3+k0)(4+k0)

f (a)

]
.

(4)
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Thus, from estimate (4) we obtain the inequality

Δ2 f (a+ k0 +2) � − Γ(4−ν + k0)
Γ(−ν +1)(2+ k0)!

[
1

−ν +1
f (a+2)

+
ν +2+ k0

(ν −1)(3+ k0)
f (a+1)

− ν
(3+ k0) (4+ k0)

f (a)

]

� 0,

(5)

where to obtain the final inequality in (5) we utilize hypothesis (2). Thus, by the ar-
bitrariness of k0 ∈ N−1 , we conclude that Δ2 f (t) � 0 for each t ∈ Na+1 , and this
completes the proof. �

We give an example to demonstrate that, as discussed in Section 1, an advantage
of Theorem 2 over the previously known results is that here we do not require that
Δ2 f (a) � 0 holds; in addition, we do not require that f (a) � 0 holds. Thus, in these
ways, Theorem 2 improves the known results in the literature.

EXAMPLE 1. Put f (a) = 0, f (a+ 1) = 1, and f (a+ 2) = 1.9 and fix ν = 5
2 ∈

(2,3) . Then we calculate

1
−ν +1

f (a+2)+
ν +1

2(ν −1)
f (a+1)− ν

6
f (a) = −2

3
·1.9+

7
6
·1− 5

12
·0 = − 1

10
< 0,

which shows that inequality (2) is satisfied in case k = −1; in fact, it can be shown
that (2) is satisfied for each k ∈ N−1 . In addition, it is a straightforward exercise to
argue that a function with initial values as above can satisfy Δ2.5

a f (t) � 0, for each
t ∈ Na+0.5 ; that is to say, we can define f (k) for k ∈ Na in such a way that the initial
values hold and that Δ2.5

a f (t) � 0, t ∈ Na+0.5 , also holds. For example, any map that
satisfies f (a + 3) � 2.875 and f (a + 4) � 3.9375 will also satisfy Δ2.5

a f (t) � 0 for
t ∈ N

a+1.5
a+0.5 . In any case, we nonetheless calculate

Δ2 f (a) = − 1
10

< 0,

which establishes that f is actually “initially concave”.
Similarly, if we put g(a) = 1, g(a+1) = 2.8, and g(a+2) = 4.5 as well as again

taking ν = 5
2 , then we see that Δ2g(a) = − 1

10 < 0. Yet at the same time we calculate

1
−ν +1

g(a+2)+
ν +1

2(ν −1)
g(a+1)− ν

6
g(a) =−2

3
·4.5+

7
6
·2.8− 5

12
·1 = − 3

20
< 0,

which shows that inequality (2) is satisfied in case k = −1, and, as can again be easily
shown, it holds for k ∈ N−1 . Once again, we can also easily argue that if g(a) = 1,
g(a+1) = 2.8, and g(a+2) = 4.5, then Δ2.5

a g(t) � 0 can hold for each t ∈ Na+0.5 .
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All in all, then, we see that condition (2) may be satisfied even if the map t �→ f (t)
is not convex “at” t = a . In particular, this means that Theorem 2 does not require that
the map t �→ f (t) be “initially convex”.

We next state a few corollaries that specialize condition (2) if one knows a priori
the sign of either f (a) , f (a+ 1) , or f (a+ 2) . In particular, these corollaries demon-
strate that if we know some information about the “initial” pointwise values of f , then
we can replace inequality (2) with more specific conditions that may prove to be easier
to use and apply in practice. As part of stating and proving these corollaries, we also
provide some examples to explicate their use and application.

COROLLARY 1. Fix ν ∈ (2,3) and suppose that Δν
a f (t) � 0 for each t ∈N3+a−ν .

In addition, assume that:

1. f (a) � 0 ; and

2. f (a+1) � 0 .

If it holds that

1
−ν +1

f (a+2)+
ν +1

2(ν −1)
f (a+1)− ν

6
f (a) � 0, (6)

then Δ2 f (t) � 0 for each t ∈ Na+1 .

Proof. For ν ∈ (2,3) fixed, consider the map Gν : [−1,+∞)→ R defined by

Gν (k) :=
ν +2+ k

(ν −1)(3+ k)
.

We easily calculate

dGν
dk

(k) =
1−ν

(ν −1)(3+ k)2 ,

which is nonpositive on its domain. Consequently, it holds that

sup
k∈N−1

ν +2+ k
(ν −1)(3+ k)

=
ν +1

2(ν −1)
, (7)

for each ν ∈ (2,3) . In addition, it evidently holds that

sup
k∈N−1

ν
(3+ k)(4+ k)

=
ν
6

,
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for each ν ∈ (2,3) . Putting the preceding calculations together with the fact that f (a+
1) � 0 and f (a) � 0 we estimate

1
−ν +1

f (a+2)+
ν +2+ k

(ν −1)(3+ k)
f (a+1)− ν

(3+ k)(4+ k)
f (a)

� 1
−ν +1

f (a+2)+ sup
k∈N−1

ν +2+ k
(ν −1)(3+ k)

f (a+1)︸ ︷︷ ︸
�0

+ sup
k∈N−1

ν
(3+ k)(4+ k)

(− f (a))︸ ︷︷ ︸
�0

� 1
−ν +1

f (a+2)+
ν +1

2(ν −1)
f (a+1)− ν

6
f (a)

� 0,

where the final inequality follows from assumption (6). Thus, the conclusion of Theo-
rem 2 may be invoked to deduce that Δ2 f (t) � 0 on Na+1 , as desired. �

EXAMPLE 2. In this example we demonstrate that Corollary 1 allows for the in-
equality Δ2 f (a) < 0 to hold in some cases. In particular, suppose that we put f (a) =
−0.1 and f (a+ 1) = 0.5. Let us, as in Example 1, take ν = 5

2 . Obviously, with this
choice for f (a) and f (a+1) , inequality (6) becomes

− 2
3

f (a+2)+
7
6
· 1
2
− 5

12
·− 1

10
� 0.

Rearranging and simplifying the above inequality results in the lower bound

f (a+2) � 15
16

.

In other words, in order for inequality (6) to be satisfied, it must be the case that f (a+
2) � 15

16 holds. But this clearly allows Δ2 f (a) < 0 in some cases. For example, if we
take f (a+2) = 1, then we calculate that Δ2 f (a) = − 1

10 < 0. Moreover, one can show
that the assumption f (a) =−0.1, f (a+1) = 0.5, and f (a+2) = 1 is compatible with
the assumption Δ2.5

a f (t) � 0 for each t ∈ Na+0.5 . Thus, all in all, we conclude that
Corollary 1 admits maps f that

• are not “initially convex” insofar as Δ2 f (a) < 0; and

• are not “initially nonnegative” insofar as f (a) < 0.

And so we again see that Theorem 2 generates results that are more general and widely
applicable than the existing results in the literature.

COROLLARY 2. Fix ν ∈ (2,3) and suppose that Δν
a f (t) � 0 for each t ∈N3+a−ν .

In addition, assume that:
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1. − 6
ν(ν −1)

Δ f (a+1) � f (a) � 0 ;

2. f (a+1) � 0 ; and

3. Δ f (a+1) � 0 .

Then it holds that Δ2 f (t) � 0 for each t ∈ Na+1 .

Proof. Using the fact that

inf
k∈N−1

ν +2+ k
(ν −1)(3+ k)

= lim
k→∞

ν +2+ k
(ν −1)(3+ k)

=
1

ν −1
,

we merely compute

1
−ν +1

f (a+2)+
ν +2+ k

(ν −1)(3+ k)
f (a+1)− ν

(3+ k)(4+ k)
f (a)

� 1
−ν +1

f (a+2)+
1

ν −1
f (a+1)− ν

6
f (a)

=
1

−ν +1
Δ f (a+1)− ν

6
f (a)

= − 1
ν −1

Δ f (a+1)− ν
6

f (a)

� 0,

which holds for each k ∈ N−1 , and then invoke Theorem 2. �

REMARK 3. Observe that since Δ f (a+1) � 0 and − 6
ν(ν−1) < 0, it follows that

[
− 6

ν(ν −1)
Δ f (a+1),0

]
�= ∅

so that condition (1) in Corollary 2 is not vacuous.

COROLLARY 3. Fix ν ∈ (2,3) and suppose that Δν
a f (t) � 0 for each t ∈N3+a−ν .

In addition, assume that:

1. f (a) � 0 ; and

2. f (a+1) � 0 .

If it holds that
1

−ν +1
f (a+2)+

ν +1
2(ν −1)

f (a+1) � 0, (8)

then Δ2 f (t) � 0 for each t ∈ Na+1 .
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Proof. For each k ∈ N−1 we write

1
−ν +1

f (a+2)+
ν +2+ k

(ν −1)(3+ k)
f (a+1)− ν

(3+ k)(4+ k)
f (a)

� 1
−ν +1

f (a+2)+
ν +1

2(ν −1)
f (a+1),

where we have utilized the calculation in (7). Then condition (8) implies inequality (2)
for each k ∈ N−1 , and so, an application of Theorem 2 yields the desired conclusion
and completes the proof. �

REMARK 4. The condition (8) appearing in Corollary 3 is equivalent to the in-
equality

f (a+2) � ν +1
2

f (a+1). (9)

Since ν > 2 we see that (9) implies that the hypotheses of Corollary 3 force Δ f (a+
1) > 0 to hold – namely, that

f (a+2) >
3
2

f (a+1).

However, as remarked earlier it, nonetheless, need not hold that Δ2 f (a) � 0.

EXAMPLE 3. Suppose that we set f (a) = 1, f (a+ 1) = 3, and f (a+ 2) = 4.9.
Moreover, put ν := 21

10 . Then one finds that f (a) , f (a+1) � 0 and, moreover, that

1
−ν +1

f (a+2)+
ν +1

2(ν −1)
f (a+1) = −10

11
· 49
10

+
31
22

·3 < 0,

so that condition (8) holds. If it then holds, in addition, that Δ2.1
a f (t) � 0 for each t ∈

Na+0.9 , then Corollary 3 may be invoked to deduce that Δ2 f (t) � 0, for each t ∈ Na+1 .
Observe, in particular, that

Δ2 f (a) = − 1
10

< 0.

Thus, we conclude that Corollary 3 does not require that f possess any “initial convex-
ity”. In addition, we see that Corollary 3 does not require that f possess any “initial
nonpositivity”.

REMARK 5. It is clearly possible to recast the results of this note in terms of
concavity instead of convexity – i.e., establishing conditions under which Δ2 f (t) <
0 or, more generally, Δ2 f (t) � 0. Since these are obvious generalizations (see the
techniques in, for example, [16] or [18]), we omit them.
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