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MULTIDIMENSIONAL EXTENSIONS OF PÓLYA–KNOPP–TYPE

INEQUALITIES OVER SPHERICAL CONES

CHANG-PAO CHEN, JIN-WEN LAN AND DAH-CHIN LUOR

(Communicated by L. E. Persson)

Abstract. In this paper, we introduce a new type of limit process to evaluate the modular-type
operator norm of an integral operator. This leads us to get multidimensional extensions of Pólya-
Knopp-type inequalities with general measures. Our results not only extend Levin-Cochran-Lee-
type inequalities from n = 1 to general n , but also improve the estimates given there. Moreover,
they generalize Carleson’s result, which is involved in the proof of Carleman’s inequality. Be-
sides these, the Pólya-Knopp-type inequalities for the cases of Laplace transform and generalized
Riemann-Liouville operators are derived. For the lower bounds, a parallel theory to the above is
also established.

1. Introduction

Let E be a spherical cone in R
n , that is, E =∪s>0 sA for some Borel measurable

subset A of the unit sphere Σn−1 . For instance, E = R
n \{0} for A = Σn−1 . In [3], the

smallest constant C in (1.1) was investigated:

{∫
E

(
Φ◦K f (x)

)q

dμ
}1/q

� C

{∫
E

(
Φ◦ f (x)

)p

dν
}1/p

(1.1)

for all f ∈DK∩Lp
Φ(dν) , where p,q �= 0, μ , ν are two σ -finite Borel measures on E ,

Φ ∈CV+(I) , Φ◦ f (x) = Φ( f (x)) , and K f (x) is one of the following two forms:

K f (x) :=
∫

S̃x

k(x,t) f (t)dσ(t) (x ∈ E) (1.2)

and

K̃ f (x) :=
∫

E\Sx

k(x,t) f (t)dσ(t) (x ∈ E). (1.2∗)

Mathematics subject classification (2010): 47A30, 26D10, 26D15.
Keywords and phrases: Operator norm, integral operator, multidimensional modular inequalities,

Hardy-Knopp-type inequalities, Pólya-Knopp-type inequalities.
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Here DK is the space of those f such that K f (x) is well-defined for μ a.e. x ∈ E and
Lp

Φ(dν) is the set of all real-valued Borel measurable f with

‖ f‖Φ,p,ν :=
{∫

E

(
Φ◦ f (x)

)p

dν
}1/p

< ∞. (1.3)

Note that the integral in (1.3) is realized as supx∈E |Φ◦ f (x)| for the case p = ∞ , the
class CV+(I) denotes the set of all nonnegative convex functions defined on an open
interval I in R , S̃x =∪0<s�‖x‖ sA, Sx = S̃x \‖x‖A , k(x, t) � 0 is locally integrable over
E×E , and σ is a σ -finite Borel measure on E .

For Φ(s) = |s| , Lp
Φ(dν) and ‖ f‖Φ,p,ν reduce to the classical Banach space Lp(dν)

and the usual Lp -norm ‖ f‖p,ν , respectively. We write ‖ f‖Lp(E,ν) for ‖ f‖p,ν in the
case that the integral region E is emphasized. Let ‖K‖DK∩Lp

Φ(dν) 	→Lq
Φ(dμ) (in brief,

‖K‖∗ ) denote the smallest constant C in (1.1) . Clearly,

‖K‖∗ = sup
f

‖Φ◦K f‖q,μ

‖Φ◦ f‖p,ν
,

where the supremum is taken over all f ∈ DK ∩ Lp
Φ(dν) with ‖Φ ◦ f‖p,ν �= 0. The

investigation of the value ‖K‖∗ goes back to the work of Hardy. In [11, Theorem 327],
it was proved that ‖K‖∗ = p/(p−1) for the case:

1 < p = q < ∞, n = 1, Φ(s) = |s|, k(x,t) = 1/|B(‖x‖)|, dσ = dt,

A = Σn−1,E = R
n \ {0},dμ = dν = dx,

where B(r) is the closed ball centered at the origin with radius r . This result was
extended from n = 1 to general n by Christ and Grafakos (see [4, Theorem 1]). Re-
cently, it was further extended to the general form of (1.1) . In [3], the present authors
established the following Muckenhoupt-type estimate for ‖K‖∗ :

‖K‖∗ � Ap,q :=
(

q
p∗

+
q
η

)1/q(
1+

p∗

η

)η∗/(p∗q∗)
AM(p,q), (1.4)

where 1� p,q� ∞ , η = max(p,q) , (·)∗ is the conjugate exponent of (·) , and AM(p,q)
is a generalized Muckenhoupt constant defined by the factorization k(x, t) = g(t)ψ(x, t)
(see Section 2 for details). In the same paper, we also derived the following inequality:

‖K̃‖∗ � Ãp,q :=
(

q
p∗

+
q
η

)1/q(
1+

p∗

η

)η∗/(p∗q∗)
ÃM(p,q), (1.4∗)

where ÃM(p,q) is the corresponding generalized Muckenhoupt constant. We remark
that the inequality (1.4) gives us an n -dimensional weighted extension of Levinson’s
modular inequality (cf. [16]) and both of (1.4) and (1.4∗) demonstrate the n -dimen-
sional modular forms of [1, 12]. Moreover, these two inequalities generalize the re-
sult of Muckenhoupt-Bradley-Maz’ja, and so on, and the estimates given in (1.4) and
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(1.4∗) improve the corresponding ones given in [9, 12, 22] and [19, Theorem 5.3]. Be-
sides these, some examples show that we can use different choices of g(t) and ψ(x,t)
in the decomposition k(x,t) = g(t)ψ(x,t) to decrease the upper bound estimate in (1.4)
to a better value for ‖K‖∗ and the estimates in (1.4) can be better than p∗APS and AW

defined in [20, 23] (cf. [3] for details).
In this paper, we focus on finding out the extensions of the following Pólya-Knopp

inequality:

∫ ∞

0
exp

(
1
x

∫ x

0
log f (t)dt

)
dx � e

∫ ∞

0
f (x)dx ( f � 0).

The desired generalizations will be set up in the form (1.1) with Φε ∈CV+(I) for some
ε > 0 or its reduced forms from some replacements, e.g., Φ(s) −→ es and f (t) −→
log | f (t)| . In addition, the constants involved here will be derived from a limit process
acting on a family of Ap,q ,which are not a direct result from the choice of Ap,q in
(1.4) . More precisely, C will be obtained from the evaluation of the right side of (1.5)
or (1.5∗) ;

‖K‖∗ � inf
ε∈F+

Φ

{
(Ap/ε,q/ε)

1/ε
}

(1.5)

and

‖K̃‖∗ � inf
ε∈F+

Φ

{
(Ãp/ε,q/ε)

1/ε
}

, (1.5∗)

where 0 < p,q < ∞ and F+
Φ = {ε > 0 : Φε ∈ CV+(I)} . Note that (1.5) and (1.5∗)

will be established for general k(x,t) (cf. Section 3). These two inequalities provide
us with a new type of limit process to get different types of Pólya-Knopp inequalities.
In Section 4, we consider the special case: k(x,t) = 1/Λ(x) (respectively, k(x,t) =
1/Λ̃(x)) with Φε ∈CV+(I) (respectively, (1/Φ)ε ∈CV+(I)) for small ε > 0, where

Λ(x) =
∫

S̃x

dσ and Λ̃(x) =
∫

E\Sx

dσ . (1.6)

As a consequence, we derive, in Section 5, two general forms of the Levin-Cochran-
Lee-type inequalities, which correspond to dσ(t) = ‖t‖s−1dt . Our results give n -
dimensional extensions of [6, Theorem 9], [8, Theorem 1], [10], [13, Theorems 3.3
& 4.3], [14, p.51, Example 1.22], [17, Corollary 6], and [23, Proposition 7.5]. More-
over, the best constants involved here improve the known ones appearing in [10], [13,
Inequality (4.8)], [14, p.51, Example 1.22], and [23, Inequality (7.37)]. We point
out that Carleson’s result [2] is a special case. In Section 6, we consider dσ(t) =
e−γ‖t‖‖t‖1−ndt . This case is related to the Laplace transform. For such a case, the re-
sults in Section 4 lead us to the Pólya-Knopp-type inequality associated with Stepanov’s
and Heinig’s results.

We remark that the inequality (1.5) not only extends the result of P. Jain et al.
from n = 1 and k(x,t) = 1/|S̃x| to n � 1 and general k(x,t) , but also improves the
known upper bound estimate for the best constant (cf. Section 3). Moreover, the limit
process associated with (1.5) also works well for other cases with k(x,t) �= 1/Λ(x)
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and k(x, t) �= 1/Λ̃(x) , for example, the case of the Riemann-Liouville operator, which
corresponds to k(x, t) = γ(‖x‖− ‖t‖)γ−1/(|A|‖x‖γ) and dσ = ‖t‖1−ndt , where γ >
0. Applying (1.5) to this case, we get the Pólya-Knopp-type inequality of Riemann-
Liouville operator (see Section 7).

Let L∗(K) be the number defined by the formula:

L∗(K) = inf
f

‖Φ◦K f‖q,μ

‖Φ◦ f‖p,ν
,

where the infimum is taken over all f � 0 with ‖Φ ◦ f‖p,ν �= 0. This number was
investigated by Prokhorov [21] for the following case:

−∞ < p,q < 0, n = 1, Φ(s) = |s|, k(x,t) = v(t), dσ = χ(a,b)(t)dt,

dμ = u(x)χ(a,b)(x)dx, dν = χ(a,b)(x)dx.

Clearly, L∗(K) � ‖K‖∗ . In Section 3 to Section 7, we shall prove that a parallel theory
to ‖K‖∗ is also true for L∗(K) . For instance, the following inequality holds for −∞ <
p,q < 0:

L∗(K) � sup
ε∈F−

Φ

{
(Ap/ε,q/ε)

1/ε
}

. (1.7)

Here F−
Φ = {ε < 0 : Φε ∈CV+(I)}. Similarly, we have

L∗(K̃) � sup
ε∈F−

Φ

{
(Ãp/ε,q/ε)

1/ε
}

. (1.7∗)

We shall give details in the corresponding sections from Section 3 to Section 7.
Throughout this paper, in no ambiguity, f will be assumed to obey f ∈ DK (re-

spectively, f ∈D
K̃

) when (1.2) (respectively, (1.2∗)) is involved. The symbol |A| will
denote the surface area of the set A given at the beginning.

2. Preliminary

Let k(x, t) = g(t)ψ(x,t) , where g : E 	→ (0,∞) and ψ : E ×E 	→ [0,∞) . Suppose
that dνa/dσ > 0 for σ a. e. on E , where νa is the absolutely continuous part of the
measure ν with respect to σ . For 1 � p,q < ∞ , set

Ap,q(x) =
∥∥∥∥ g(·)

dνa/dσ

∥∥∥∥
η∗/q∗

Lp∗ (S̃x,ν)
×

∥∥∥∥
(

sup
t∈S̃x

ψ(·, t)
)∥∥∥∥

Lq(E\Sx,μ)
, (2.1)

Ãp,q(x) =
∥∥∥∥ g(·)

dνa/dσ

∥∥∥∥
η∗/q∗

Lp∗ (E\Sx,ν)
×

∥∥∥∥
(

sup
t∈E\Sx

ψ(·,t)
)∥∥∥∥

Lq(S̃x,μ)
, (2.2)

and
AM(p,q) = ‖Ap,q(·)‖r,ω , ÃM(p,q) = ‖Ãp,q(·)‖r,ω ,



MULTIDIMENSIONAL EXTENSIONS OF PÓLYA-KNOPP-TYPE INEQUALITIES 785

dω(t) =
(

g(t)
dνa/dσ

)p∗

dν(t), (2.3)

where 1/r = 1/q−1/η and η = max(p,q) . We remark that

η∗

p∗q∗
=

{
1/p∗ if η = q,
1/q∗ if η = p.

Moreover, for p∗ = ∞ , AM(p,q) = supx∈E |Ap,q(x)| and ÃM(p,q) = supx∈E |Ãp,q(x)| .
In [3, Theorems 3.3 & 3.5], the following result was established.

THEOREM 2.1. Let 1 � p,q < ∞ , Φ ∈ CV+(I) , and k(x,t) = g(t)ψ(x,t) . Sup-
pose that (2.4) and (2.5) are satisfied, where∫

S̃x

k(x,t)dσ(t) = 1 (x ∈ E) (2.4)

and ∫
S̃x\Sx

dω = 0 for all x ∈ E. (2.5)

If AM(p,q) < ∞ , then (1.4) is true. Moreover, the condition (2.5) is not necessary for
the case 1 � p � q < ∞ . For Φ(s) = |s| , the condition (2.4) can be removed.

For the complementary integral operator K̃ , the present authors also derived the
following dual result of Theorem 2.1 (see [3, Theorems 3.4 & 3.5]).

THEOREM 2.2. Let p,q,Φ,k(x,t),g(t) and ψ(x,t) be defined as Theorem 2.1.
Suppose that (2.5) and (2.6) are satisfied, where∫

E\Sx

k(x,t)dσ(t) = 1 (x ∈ E). (2.6)

If ÃM(p,q) < ∞ , then (1.4∗) is true. Moreover, the condition (2.5) is not necessary
for the case 1 � p � q < ∞ . For Φ(s) = |s| , the condition (2.6) can be removed.

Clearly, Theorems 2.1 and 2.2 enable us to choose Ap,q or Ãp,q for the value of
C so that (1.1) holds. This plays an important role in developing the theory of Pólya-
Knopp-type inequalities. We shall see this point later.

3. Main results

Let 0 � Ap,q � ∞ be the constant obeying the following property:(∫
E

∣∣∣∣K f (x)
∣∣∣∣
q

dμ
)1/q

� Ap,q

(∫
E
| f (x)|pdν

)1/p

( f � 0), (3.1)

where p,q �= 0 and K f (x) is of type (1.2) or (1.2∗) . When (1.2∗) occurs, we shall
write K̃ f (x) and Ãp,q in the places of K f (x) and Ap,q , respectively. Throughout this
section, we assume that dνa/dσ > 0 for σ a. e. on E and then Ap,q exists. Moreover,
the following general form of Pólya-Knopp inequality holds.



786 C.-P. CHEN, J.-W. LAN AND D.-C. LUOR

THEOREM 3.1. Let K f (x) be of type (1.2) . Suppose that (2.4) is satisfied. Then
(1.5) holds for 0 < p,q < ∞ and (1.7) is true for −∞ < p,q < 0 .

Proof. Let 0 < p,q < ∞ and ε ∈ F+
Φ . We have Φε ∈ CV+(I) . The extended

Jensen’s integral inequality (cf. [3, Lemma 2.5]) and (2.4) together ensure that Φε ◦
K f (x) � K(Φε ◦ f )(x) for all f � 0. We have q/ε > 0. By the definition of Ap/ε,q/ε ,
we obtain

‖Φε ◦K f‖q/ε,μ � ‖K(Φε ◦ f )‖q/ε,μ � Ap/ε,q/ε‖Φε ◦ f‖p/ε,ν .

This can be rewritten in the following form:

‖Φ◦K f‖ε
q,μ � Ap/ε,q/ε‖Φ◦ f‖ε

p,ν ( f � 0). (3.2)

Take the (1/ε) power for both sides of (3.2) and then (1.5) follows. As for the case
that −∞ < p,q < 0 and ε ∈ F−

Φ , we find that the argument given before (3.2) still
works well. This shows that (3.2) is true. Take the (1/ε) power for both sides of
(3.2) . Since 1/ε < 0, we have to reverse the inequality sign, and then (1.7) follows.
The proof is complete. �

For K̃ f (x) , let 0 � Ãp,q � ∞ be the constant subject to (3.3) , where

(∫
E

∣∣∣∣K̃ f (x)
∣∣∣∣
q

dμ
)1/q

� Ãp,q

(∫
E
| f (x)|pdν

)1/p

( f � 0). (3.3)

To replace (2.4) by (2.6) , the proof of Theorem 3.1 leads us to the following result.

THEOREM 3.2. Let K̃ f (x) be of type (1.2∗) . Suppose that (2.6) is satisfied.
Then (1.5∗) holds for 0 < p,q < ∞ and (1.7∗) is true for −∞ < p,q < 0 .

We make three remarks on Theorems 3.1 and 3.2. First, (1.5) says that ‖K‖∗ is
bounded above by the infimum of a family of (Ap/ε,q/ε)1/ε . This gives us the following
limit process:

‖K‖∗ � inf
ε∈F+

Φ

(Ap/ε,q/ε)
1/ε � liminf

ε→0+

{
(Ap/ε,q/ε)

1/ε
}

, (3.4)

whenever (0,ε0) ⊂ F+
Φ for some ε0 > 0. To evaluate the right side of (3.4) by a

particular choice of Ap,q , e.g. the one given in (1.4) , we shall get an upper bound for
‖K‖∗ . Under the change f (t) −→ log | f (t)| , (3.4) will be transformed into a general
form of the Pólya-Knopp inequality for K f (x) . We have

liminf
ε→0+

{
(Ap/ε,q/ε)

1/ε
}

= q1/qe1/η liminf
ε→0+

{
ε−1/q

(
AM(p/ε,q/ε)

)1/ε}
,

where η = max(p,q) . To compare this value with [13, Eqs. (3.4) & (4.3)] (see also
[23, Theorem 2.2]), we see that (3.4) not only extends the result of P. Jain et al. from
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n = 1 and k(x, t) = 1/|S̃x| to n � 1 and general k(x,t) , but also improves the known
estimate for the best constant. For the case K̃ f (x) , (1.5∗) ensures that

‖K̃‖∗ � inf
ε∈F+

Φ

(Ãp/ε,q/ε)
1/ε � liminf

ε→0+

{
(Ãp/ε,q/ε)

1/ε
}

, (3.4∗)

whenever (0,ε0) ⊂ F+
Φ for some ε0 > 0. This will lead us to a general form of the

Pólya-Knopp inequality for K̃ f (x) . A detailed discussion for special cases will be
given in Section 4 to Section 7.

The second remark is that the limit process associated with (3.4) differs from
the well-known scheme by means of the formula (GK f )(x) = limε→0+[K( f ε )]1/ε(x)
(cf. e.g. [23, Section 7]). The essential part of this process is to evaluate the value:

liminfε→0+

{
(Ap/ε,q/ε)1/ε

}
, whenever (0,ε0) ⊂ F+

Φ for some ε0 > 0. Clearly, such a

limit is completely determined by those Ap/ε,q/ε with ε sufficiently small. With the
help of Theorem 2.1, we shall choose ε0 so that the following conditions hold for all
0 < ε � ε0 :

Φε ∈CV+(I), p/ε � 1, q/ε � 1, and AM(p/ε,q/ε) < ∞.

Under this choice, the number Ap/ε,q/ε in (3.4) can be evaluated by (1.4) with p/ε
and q/ε in the places of p and q . For Ãp/ε,q/ε in (3.4∗) , we shall take into a similar
consideration. The details are given in Section 4 to Section 7.

Third, the infimum in (1.5) or (1.5∗) may not take place as ε −→ 0+ . Section 7
will give such an example (see the paragraph after Corollary 7.1).

At the end of this section, we consider the characterization of Φ(x) . Let Φ(x) > 0
on I . We know that (Φε )

′′
= εΦε−2((ε −1)(Φ′)2 + ΦΦ′′

) , so Φε ∈CV+(I) , if (3.5)
holds for ε > 0 or (3.5∗) is true for ε < 0:

Φ(x)Φ
′′
(x) � (Φ′(x))2 for all x ∈ I, (3.5)

Φ(x)Φ
′′
(x) � (Φ′(x))2 for all x ∈ I. (3.5∗)

It is easy to see that Φ(x) = ex satisfies (3.5) and (3.5∗) . Thus, Theorems 3.1 and 3.2
work well at least for the case Φ(x) = ex .

4. The case k(x,t) = 1/Λ(x) or 1/Λ̃(x)

Theorems 3.1 and 3.2 have many applications. In this section, we deal with the
case k(x, t) = 1/Λ(x) or 1/Λ̃(x) , where Λ(x) or Λ̃(x) are defined by (1.6) , and then
consider their applications in the next sections. Set

Λ(∞) =
∫

E
dσ and Λ̃(0) =

∫
E

dσ .

Theorem 3.1 gives the following consequence.
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COROLLARY 4.1. Let θ ∈ R , 0 < Λ(x) < ∞ , and w : E 	→ (0,∞) . Suppose that
σ(S̃x \ Sx) = 0 for all x and (4.1) is satisfied, where

w(x2)
w(x1)

�
(

Λ(x2)
Λ(x1)

)θ
(‖x1‖ � ‖x2‖). (4.1)

(i) If 0 < p,q < ∞ ,
α +1

q
� β +1

p
, Φε ∈CV+(I) for all sufficiently small ε > 0 ,

and Λ(∞)(α+1)/q−(β+1)/p < ∞ , then for all f : E 	→ I ,

(∫
E

{
Φ

(
1

Λ(x)

∫
S̃x

f (t)dσ(t)
)}q

Λ(x)αw(x)q/p dσ(x)
)1/q

� Cp,qΛ(∞)(α+1)/q−(β+1)/p
{∫

E
(Φ◦ f (x))pΛ(x)β w(x)dσ(x)

}1/p

, (4.2)

where

Cp,q =

⎧⎪⎨
⎪⎩

e(β+θ)/p+1/q (p � q);

e(β+θ+1)/p

(
p−q

(α+1)p−(β+1)q

)1/q−1/p

(q < p).
(4.3)

(ii) If −∞ < p,q < 0 ,
α +1

q
� β +1

p
, (1/Φ)ε ∈ CV+(I) for all sufficiently small

ε > 0 , and Λ(∞)(α+1)/q−(β+1)/p > 0 , then (4.2) holds with a reversed sign of
inequality and the corresponding constant Cp,q is obtained from (4.3) by making
the changes: p � q −→ q � p and q < p −→ p < q.

(iii) The condition σ(S̃x \ Sx) = 0 can be removed from (i) (respectively, (ii)) for
the case p � q (respectively, q � p) .

Proof. This is the special case g(t) = 1 and ψ(x,t) = 1/Λ(x) of Theorem 3.1. Set
dμ(x) = Λ(x)αw(x)q/pdσ(x) and dν(x) = Λ(x)β w(x)dσ(x) . Consider (i) . Choose
ε0 > 0 so small that for 0 < ε < ε0 ,

Φε ∈CV+(I), pε � 1, qε � 1, and θ < pε

(
1− α +1

qε

)
, (4.4)

where pε = p/ε and qε = q/ε . We claim that AM(pε ,qε) < ∞ for such ε . Let Aε(x)
denote the number Ap,q(x) defined by (2.1) with pε and qε instead of p and q , re-
spectively. For p � q , we have

Aε(x) =
(∫

S̃x

Λ(t)β (1−p∗ε)w(t)1−p∗ε dσ(t)
)1/p∗ε

×
(∫

E\Sx

Λ(s)α−qε w(s)qε /pε dσ(s)
)1/qε

. (4.5)
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The conditions
α +1

qε
� β +1

pε
and θ < pε

(
1− α+1

qε

)
together imply (θ + β )(1−

p∗ε)+1 > 0. By (4.1) ,∫
S̃x

Λ(t)β (1−p∗ε)w(t)1−p∗ε dσ(t) � Λ(x)β (1−p∗ε)+1w(x)1−p∗ε

(θ + β )(1− p∗ε)+1
(4.6)

(cf. the proof of [3, Corollary 4.1]). On the other hand, α −qε +1+qεθ/pε < 0, and
so by (4.1) again, we obtain∫

E\Sx

Λ(s)α−qε w(s)qε /pε dσ(s) � Λ(x)α−qε+1w(x)qε /pε

qε −α −1− (qεθ/pε)
. (4.7)

Putting (4.5)− (4.7) together yields

AM(pε ,qε) = sup
x∈E

|Aε(x)| �
(

1
(θ + β )(1− p∗ε)+1

)1/p∗ε ( 1
qε −α −1− (qεθ/pε)

)1/qε

×Λ(∞)(α+1)/qε−(β+1)/pε < ∞.

With the help of Theorems 2.1 and 3.1, we infer that

‖K‖∗ � (Ap/ε,q/ε)
1/ε =

(
qε

p∗ε
+1

)1/(εqε )(
1+

p∗ε
qε

)1/(ε p∗ε)(
AM(pε ,qε)

)1/ε

�

(
1− ε

p + ε
q

)1/ε−1/p+1/q

Λ(∞)(α+1)/q−(β+1)/p

(
1− ε(β+1)

p − εθ
p

)1/ε−1/p(
1− ε(α+1)

q − εθ
p

)1/q

−→ e(β+θ)/p+1/qΛ(∞)(α+1)/q−(β+1)/p as ε → 0+. (4.8)

Hence, (4.2) holds for p � q . Next, consider q < p . We have AM(pε ,qε)= ‖Aε(x)‖rε ,ωε ,
where 1/rε = 1/qε −1/pε , dωε(x) = Λ(x)β (1−p∗ε)w(x)1−p∗ε dσ(x) , and

Aε(x) =
(∫

S̃x

Λ(t)β (1−p∗ε)w(t)1−p∗ε dσ(t)
)1/q∗ε (∫

E\Sx

Λ(s)α−qε w(s)qε /pε dσ(s)
)1/qε

.

By (4.6) and (4.7) , we obtain

Aε(x) �
(

1
(θ + β )(1− p∗ε)+1

)1/q∗ε ( 1
qε −α −1− (qεθ/pε)

)1/qε

×Λ(x)β (1−p∗ε)/q∗ε+α/qε w(x)(1−p∗ε )/q∗ε+1/pε ,

which implies

AM(pε ,qε) �
(

1
(θ + β )(1− p∗ε)+1

)1/q∗ε ( 1
qε −α −1− (qεθ/pε)

)1/qε

×
(∫

E
Λ(x)β (1−p∗ε)(rε/q∗ε+1)+αrε/qε w(x)(1−p∗ε)(rε/q∗ε+1)+rε/pε dσ(x)

)1/rε

.

(4.9)
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We have β (1− p∗ε)(rε/q∗ε +1)+αrε/qε = (α pε −βqε)/(pε −qε) and (1− p∗ε)(rε/q∗ε +

1)+ rε/pε = 0. Hence, the integral in (4.9) becomes
∫

E
Λ(x)(α pε−βqε)/(pε−qε )dσ(x).

After evaluating the last integral, we conclude that

AM(pε ,qε) �
(

1
(θ + β )(1− p∗ε)+1

)1/q∗ε ( 1
qε −α −1− (qεθ/pε)

)1/qε

×
(

pε −qε
(α +1)pε − (β +1)qε

)1/qε−1/pε

Λ(∞)(α+1)/qε−(β+1)/pε < ∞.

With the help of Theorems 2.1 and 3.1, a similar argument to (4.8) will lead us to (4.2)
for the case q < p . For case (ii) , it follows from Theorem 3.1 that

L∗(K) � limsup
ε−→0+

{
Ap/(−ε),q/(−ε)

}1/(−ε)

= limsup
ε−→0+

{
A(−p)/ε,(−q)/ε

}−1/ε
. (4.10)

We have 0 < −p,−q < ∞ and
α +1
−q

� β +1
−p

. Replace p,q by −p,−q , respec-

tively. Then the above argument also enables us to get an upper bound estimate for
(A−p/ε,−q/ε)1/ε directly by using the one for (Ap/ε,q/ε)1/ε . Plugging this into (4.10) ,
we get (ii) . As for (iii) , it follows from Theorem 2.1. This completes the proof. �

Corollary 4.1 generalizes many well-known inequalities, such as Levin-Cochran-
Lee-type inequalities and Carleson’s result. We shall discuss them in Section 5.

Like Corollary 4.1, we have the following consequence of Theorem 3.2.

COROLLARY 4.2. Let θ ∈ R , 0 < Λ̃(x) < ∞ , and w : E 	→ (0,∞) . Suppose that
σ(S̃x \ Sx) = 0 for all x and (4.11) is satisfied, where

w(x2)
w(x1)

�
(

Λ̃(x2)
Λ̃(x1)

)θ
(‖x1‖ � ‖x2‖). (4.11)

(i) If 0 < p,q < ∞ ,
α +1

q
� β +1

p
, Φε ∈CV+(I) for all sufficiently small ε > 0 ,

and Λ̃(0)(α+1)/q−(β+1)/p < ∞ , then for all f : E 	→ I ,(∫
E

{
Φ

(
1

Λ̃(x)

∫
E\Sx

f (t)dσ(t)
)}q

Λ̃(x)αw(x)q/p dσ(x)
)1/q

� Cp,qΛ̃(0)(α+1)/q−(β+1)/p
{∫

E
(Φ◦ f (x))pΛ̃(x)β w(x)dσ(x)

}1/p

, (4.12)

where Cp,q is defined by (4.3) .

(ii) If −∞ < p,q < 0 ,
α +1

q
� β +1

p
, (1/Φ)ε ∈ CV+(I) for all sufficiently small

ε > 0 , and Λ̃(0)(α+1)/q−(β+1)/p > 0 , then (4.12) holds with a reversed sign of
inequality and the corresponding constant Cp,q is obtained from (4.3) by making
the changes: p � q −→ q � p and q < p −→ p < q.
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(iii) The condition σ(S̃x \ Sx) = 0 can be removed from (i) (respectively, (ii)) for
the case p � q (respectively, q � p) .

Proof. This corollary can be derived by modifying the proof of Corollary 4.1 with
the change Aε(x) −→ Ãε(x) . For instance, (4.5) for p � q is changed to

Ãε(x) =
(∫

E\Sx

Λ̃(t)β (1−p∗ε)w(t)1−p∗ε dσ(t)
)1/p∗ε (∫

S̃x

Λ̃(s)α−qε w(s)qε/pε dσ(s)
)1/qε

.

We leave the details to the readers. �
The applications of Corollary 4.2 to particular cases will be given in next sections.

5. Levin-Cochran-Lee-type inequalities

This type of inequalities correspond to the case dσ(t) = ‖t‖s−1dt of Corollaries
4.1 and 4.2 (cf. [8]). They are extensions of the classical Pólya-Knopp inequality. In
the following, we shall further extend them to the cases:

dσ(t) = ‖t‖s−1χS̃b
(t)dt (b ∈ E ∪{∞})

or
dσ(t) = ‖t‖s−1χE\Sb

(t)dt (b ∈ E ∪{0}),
where S̃∞ = E and S0 = /0 . As a consequence of Corollary 4.1, we get the following
extension of the Levin-Cochran-Lee inequality.

COROLLARY 5.1. Let s > 1−n, θ ∈ R, b ∈ E ∪{∞} , w : S̃b 	→ (0,∞) , and

w(x2)
w(x1)

�
(‖x2‖
‖x1‖

)θ
(‖x1‖ � ‖x2‖). (5.1)

(i) If 0 < p,q < ∞ ,
α +1

q
� β +1

p
, and Φε ∈ CV+(I) for all sufficiently small

ε > 0 , then for all f : S̃b 	→ I ,

(∫
S̃b

{
Φ

(
s+n−1

‖x‖s+n−1|A|
∫

S̃x

‖t‖s−1 f (t)dt

)}q

‖x‖α+1−nw(x)q/p dx

)1/q

� Cp,qe
β+θ+1

(s+n−1)p ‖b‖(α+1)/q−(β+1)/p
{∫

S̃b

(Φ◦ f (x))p‖x‖β+1−nw(x)dx

}1/p

,

(5.2)

where

Cp,q =

{
( s+n−1

e|A| )1/p−1/q (p � q);

( |A|(p−q)
(α+1)p−(β+1)q)

1/q−1/p (q < p).
(5.3)
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(ii) If −∞ < p,q < 0 ,
α +1

q
� β +1

p
, and (1/Φ)ε ∈ CV+(I) for all sufficiently

small ε > 0 , then (5.2) holds with a reversed sign of inequality and the cor-
responding constant Cp,q is obtained from (5.3) by making the changes: p �
q −→ q � p and q < p −→ p < q.

Proof. Consider (i) . The case b = ∞ of (5.2) can be obtained from the case
‖b‖ < ∞ by considering the limits of both sides of (5.2) with bm in place of b , where
bm ∈ E and ‖bm‖ ↑ ‖b‖ as m ↑ ∞ . Hence, we can assume b∈ E . In this case, ‖b‖< ∞ .
We shall apply Corollary 4.1(i) to dσ(t) = ‖t‖s−1χS̃b

(t)dt and the triple (θ ∗,α∗,β ∗) ,
where θ ∗ = θ/(s+n−1) , α∗ = (α +1)/(s+n−1)−1, and β ∗ = (β +1)/(s+n−
1)−1. For this case, σ(S̃x \Sx) = 0 for all x . We have

α∗ +1
q

� β ∗ +1
p

⇐⇒ α +1
q

�
β +1

p
. Moreover,

Λ(x) =
{ ‖x‖s+n−1|A|/(s+n−1) for x ∈ S̃b,
‖b‖s+n−1|A|/(s+n−1) for x ∈ E \ S̃b.

Define w∗ : E 	→ (0,∞) by the formulas: w∗(x) = w(x) for x ∈ S̃b and w∗(x) =
w(x‖b‖/‖x‖) for x ∈ E \ S̃b . By (5.1) , we find that (4.1) holds, whenever (w,Λ,θ )
is replaced by (w∗,Λ,θ ∗) . Inserting the exact values of Λ(x),α∗,β ∗ , and θ ∗ into the
places of Λ(x),α,β , and θ in (4.2) and (4.3) , we get (5.2) , and so (i) follows. For
(ii) , it can be proved in the same way by using Corollary 4.1(ii) . �

As indicated in Section 3, the first (respectively, second) part of Corollary 5.1 can
apply to those Φ obeying (3.5) (respectively, (3.5∗)). In particular, the case Φ(x) =
ex , w(x) = 1,θ = 0 and f (t) −→ log | f (t)| of (5.2) gives the form:

(∫
S̃b

{
exp

(
s+n−1

‖x‖s+n−1|A|
∫

S̃x

‖t‖s−1 log | f (t)|dt

)}q

‖x‖α+1−n dx

)1/q

� Cp,qe
β+1

(s+n−1)p ‖b‖(α+1)/q−(β+1)/p
{∫

S̃b

| f (x)|p‖x‖β+1−ndx

}1/p

, (5.4)

where s > 1− n , 0 < p,q < ∞ , (α + 1)/q � (β + 1)/p , and Cp,q is given by (5.3) .
Obviously, the case n = 1 of (5.4) generalizes [8, Theorem 1], [13, Theorems 3.3 &
4.3], and [14, p. 51, Example 1.22]. We can say more. We have e1−x � 1/x for x � 1,
so e1/q−1/p � (p/q)1/q for p � q . This indicates that (5.4) improves the corresponding
constant in [14, p. 51, Example 1.22]. We know that e(β+1)/p < eβ/p+1/q for q <
p . Hence, the estimate given in (5.4) is also better than the one appearing in [13,
Inequality (4.8)].

For n � 1, (5.4) also generalizes [6, Inequality (23)], [10, Proposition 3.6] and
[23, Proposition 7.5]. Indeed, it improves the upper bounds given there. We illustrate
these below. We have |S̃x| = ‖x‖n|A|/n . This enables us to transform the case s =
n(ε − 1) + 1, α = n(λ + 1)− 1, and β = n(δ + 1)− 1 of (5.4) into the following
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form: (∫
S̃b

{
exp

(
ε

|S̃x|ε
∫

S̃x

|S̃t |ε−1 log | f (t)|dt

)}q

|S̃x|λ dx

)1/q

� Cp,qe
(δ+1)/(ε p)|S̃b|(λ+1)/q−(δ+1)/p

{∫
S̃b

| f (x)|p|S̃x|δ dx

}1/p

, (5.5)

where ε > 0, 0 < p,q < ∞ , (λ +1)/q � (δ +1)/p , and

Cp,q =

{
(ε/e)1/p−1/q (p � q);
( p−q

(λ+1)p−(δ+1)q)
1/q−1/p (q < p).

(5.6)

Hence, Eq. (5.5) generalizes [10, Proposition 3.6] and [23, Proposition 7.5]. Moreover,
e1/q−1/p � (p/q)1/q for p � q , and consequently, (5.5) improves the upper bound for
the best constant given there.

As indicated in [3, Section 5], for p = q = 1, (5.4) can be improved in the fol-
lowing way:

∫
S̃b

exp

(
s+n−1

‖x‖s+n−1|A|
∫

S̃x

‖t‖s−1 log | f (t)|dt

)
‖x‖γ−1 dx

� s+n−1
s

eγ/(s+n−1)
{∫

S̃b

‖x‖γ−1| f (x)|
{

1−
(‖x‖
‖b‖

)s}
dx, (5.7)

where γ ∈ R . This gives an n -dimensional extension of [5, Theorem 3(i)] and [7,
Corollary 2(i)].

We go back to (5.2) . Consider the particular case:

Φ(x) = ex, b = ∞, n = s = 1, f (t) −→− f (t),

0 < p = q < ∞, α = β .

For such a case, (5.2) takes the form:

∫ ∞

0
exp

(−p
x

∫ x

0
f (t)dt

)
xαw(x)dx � eα+θ+1

∫ ∞

0
e−p f (x)xαw(x)dx,

where α ∈ R and θ satisfies (5.1) . We know that

F(x) = F(x)−F(0) =
∫ x

0
F ′(t)dt (x > 0)

for all convex function F on (0,∞) with lim
x→0+

F(x) = F(0) = 0 (cf. [24, Theorem

7.43]). By using this fact, the above inequality can be rewritten in the form:∫ ∞

0
e−pF(x)/xxαw(x)dx � eα+θ+1

∫ ∞

0
e−pF′(x)xαw(x)dx.

This is an extension of Carleson’s result [2].
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Consider the case dσ(t) = ‖t‖s−1χE\Sb
(t)dt , where b ∈ E ∪{0}. We have

Λ̃(x) =
{ ‖b‖s+n−1|A|/(−s−n+1) for x ∈ Sb,
‖x‖s+n−1|A|/(−s−n+1) for x ∈ E \ Sb,

where s < 1− n . By modifying the proof of Corollary 5.1, we can easily obtain the
following consequence of Corollary 4.2.

COROLLARY 5.2. Let s < 1−n, θ ∈ R, b ∈ E ∪{0} , w : E \ Sb 	→ (0,∞) , and

w(x2)
w(x1)

�
(‖x2‖
‖x1‖

)θ
(‖x1‖ � ‖x2‖). (5.8)

(i) If 0 < p,q < ∞ ,
α +1

q
� β +1

p
, and Φε ∈ CV+(I) for all sufficiently small

ε > 0 , then for all f : E \ Sb 	→ I ,

(∫
E\Sb

{
Φ

( −s−n+1
‖x‖s+n−1|A|

∫
E\Sx

‖t‖s−1 f (t)dt

)}q

‖x‖α+1−nw(x)q/p dx

)1/q

� Cp,qe
β+θ+1

(s+n−1)p ‖b‖(α+1)/q−(β+1)/p
{∫

E\Sb

(Φ◦ f (x))p‖x‖β+1−nw(x)dx

}1/p

,

(5.9)

where

Cp,q =

{
(−s−n+1

e|A| )1/p−1/q (p � q);

( |A|(p−q)
(β+1)q−(α+1)p)

1/q−1/p (q < p).
(5.10)

(ii) If −∞ < p,q < 0 ,
α +1

q
� β +1

p
, and (1/Φ)ε ∈ CV+(I) for all sufficiently

small ε > 0 , then (5.9) holds with a reversed sign of inequality and the cor-
responding constant Cp,q is obtained from (5.10) by making the changes: p �
q −→ q � p and q < p −→ p < q.

We indicate before that any Φ obeying (3.5) satisfies Φε ∈CV+(I) for all ε > 0.
Therefore, the first part of Corollary 5.2 can apply to such Φ . Similarly, the second
part of the same corollary also works well for those Φ with the property (3.5∗) . In
particular, Corollary 5.2 can apply to the case that Φ(x) = ex , w(x) = 1,θ = 0 and
f (t) −→ log | f (t)| . By (5.9) ,

(∫
E\Sb

{
exp

( −s−n+1
‖x‖s+n−1|A|

∫
E\Sx

‖t‖s−1 log | f (t)|dt

)}q

‖x‖α+1−n dx

)1/q

� Cp,qe
β+1

(s+n−1)p ‖b‖(α+1)/q−(β+1)/p
{∫

E\Sb

| f (x)|p‖x‖β+1−ndx

}1/p

, (5.11)



MULTIDIMENSIONAL EXTENSIONS OF PÓLYA-KNOPP-TYPE INEQUALITIES 795

where s < 1−n , 0 < p,q < ∞ , (α +1)/q � (β +1)/p , and Cp,q is given by (5.10) .
Obviously, the inequality in [17, Corollary 6] is the case n = 1, p = q = 1, α =
β = γ , and b = 0 of (5.11) . Consider the change of variables: s = n(ε − 1) + 1,
α = n(λ +1)−1, and β = n(δ +1)−1. We can rewrite (5.11) in the following form:(∫

E\Sb

{
exp

( −ε
|S̃x|ε

∫
E\Sx

|S̃t |ε−1 log | f (t)|dt

)}q

|S̃x|λ dx

)1/q

� Cp,qe
(δ+1)/(ε p)|S̃b|(λ+1)/q−(δ+1)/p

{∫
E\Sb

| f (x)|p|S̃x|δ dx

}1/p

, (5.12)

where ε < 0, 0 < p,q < ∞ , (λ +1)/q � (δ +1)/p , and

Cp,q =

{
(−ε/e)1/p−1/q (p � q);
( p−q

(δ+1)q−(λ+1)p)
1/q−1/p (q < p).

(5.13)

Clearly, Eq. (5.12) generalizes [10, Proposition 4.4] and improves the upper bound of
the best constant. Moreover, the case p = q = 1, A = Σn−1 , b = 0, and λ = δ = γ −1
of (5.12) reduces to [6, Inequality (24)]. As indicated in [3, Section 5], for p = q = 1,
(5.11) can be improved in the following way:∫

E\Sb

exp

( −s−n+1
‖x‖s+n−1|A|

∫
E\Sx

‖t‖s−1 log | f (t)|dt

)
‖x‖γ−1 dx

� s+n−1
s

eγ/(s+n−1)
{∫

E\Sb

‖x‖γ−1| f (x)|
{

1−
(‖x‖
‖b‖

)s}
dx. (5.14)

This gives an n -dimensional extension of [5, Theorem 3(ii)] and [7, Corollary 2(ii)].

6. Pólya-Knopp forms of Stepanov’s and Heinig’s results

In [15, p. 26], V. V. Stepanov proved the case n = 1 and p = q of the following
inequality: (∫

E

∣∣∣∣
∫

E\Sx

eγ(‖x‖−‖t‖)‖t‖1−n f (t)dt

∣∣∣∣
q

‖x‖1−ndx

)1/q

�
(

(1/p∗ +1/q)|A|
γ

)1/p∗+1/q(∫
E
| f (x)|p‖x‖1−ndx

)1/p

, (6.1)

where γ > 0. This result is connected to the Laplace transform. It has been extended
by the present authors to 1 � p � q < ∞ and the n -dimensional case (cf. [3]). For
1 � q < p < ∞ , we also gave in [3] an n -dimensional extension of Heinig’s result (cf.
[12, Corollary 2.3(b)]). In the following, we shall further establish their Pólya-Knopp
form. This result follows from the case dσ = e−γ‖t‖‖t‖1−ndt of Corollary 4.2.

COROLLARY 6.1. Let γ > 0 , θ ∈ R , and w : E 	→ (0,∞) . Assume that (6.2) is
satisfied:

w(x2)
w(x1)

� e−γ(‖x2‖−‖x1‖)θ (‖x1‖ � ‖x2‖). (6.2)
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(i) If 0 < p,q < ∞ , α/q � β/p, and Φε ∈CV+(I) for all sufficiently small ε > 0 ,
then for all f : E 	→ I ,(∫

E

{
Φ

(
γ
|A|

∫
E\Sx

eγ(‖x‖−‖t‖) f (t)‖t‖1−ndt

)}q

eα‖x‖w(x)q/p ‖x‖1−ndx

)1/q

� Cp,q|A|1/q−1/p
{∫

E
(Φ◦ f (x))peβ‖x‖w(x)‖x‖1−ndx

}1/p

, (6.3)

where

Cp,q =

{
e(γθ−γ−β )/(γ p)+1/qγ1/p−1/q (p � q);
e(γθ−β )/(γ p)( p−q

βq−α p)
1/q−1/p (q < p).

(6.4)

(ii) If −∞ < p,q < 0 , α/q � β/p, and (1/Φ)ε ∈CV+(I) for all sufficiently small
ε > 0 , then (6.3) holds with a reversed sign of inequality and the corresponding
constant Cp,q is obtained from (6.4) by making the changes: p � q −→ q � p
and q < p −→ p < q.

Proof. Let dσ(t) = e−γ‖t‖‖t‖1−ndt . Then Λ̃(x) = |A|e−γ‖x‖/γ , and consequently,

(6.2) =⇒ (4.10) . Let λ = −1−α/γ and δ = −1− β/γ . We know that
λ +1

q
�

δ +1
p

⇐⇒ α/q � β/p . Hence, after replacing the indices α and β in Corollary 4.2

by λ and δ , respectively, (i) follows from Corollary 4.2(i) . Similarly, we can get (ii)
from Corollary 4.2(ii) . �

Take Φ(x) = ex and f (t) −→ log | f (t)| . Then (6.3) reduces to the form(∫
E

{
exp

(
γ
|A|

∫
E\Sx

eγ(‖x‖−‖t‖) log | f (t)|‖t‖1−ndt

)}q

eα‖x‖w(x)q/p ‖x‖1−ndx

)1/q

� Cp,q|A|1/q−1/p
{∫

E
| f (x)|peβ‖x‖w(x)‖x‖1−ndx

}1/p

. (6.5)

This inequality corresponds to the following case of [23, Inequality (7.6)]:

Sx −→ E \ Sx, k(x,t) = e−γ‖t‖‖t‖1−n,

u(x) = eα‖x‖w(x)q/p ‖x‖1−n, v(x) = eβ‖x‖w(x)‖x‖1−n.

Clearly, it is hard to derive such a result by using the scheme given there.

7. Pólya-Knopp form for Riemann-Liouville operators

The operator under consideration is the so-called generalized Riemann-Liouville
operator K , which is of the form (1.2) obeying the conditions:

k(x, t) = γ(‖x‖−‖t‖)γ−1/(|A|‖x‖γ) and dσ = ‖t‖1−ndt.
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This operator reduces to the classical one for n = 1. In [1, 3, 12, 18], the best con-
stant for this operator has been investigated. However, its Pólya-Knopp form is still
unknown.

The purpose of this section is to derive such a result. Clearly, the desired result
can not be obtained directly from Corollary 4.1(i) , because the kernel k(x, t) is not of
the form 1/Λ(x) . In the following, we point out that the theory developed in Section 3
still works well for this case.

COROLLARY 7.1. Let γ � 1 , θ ∈ R , b∈ E∪{∞} , and w : S̃b 	→ (0,∞) . Suppose

that (5.1) is satisfied. If 0 < p,q < ∞ ,
α +1

q
� β +1

p
, and Φε ∈ CV+(I) for all

sufficiently small ε > 0 , then for all f : S̃b 	→ I ,

(∫
S̃b

{
Φ

(
γ

|A|‖x‖γ

∫
S̃x

(‖x‖−‖t‖)γ−1 f (t)‖t‖1−ndt

)}q

‖x‖α+1−nw(x)q/pdx

)1/q

� Cp,q‖b‖(α+1)/q−(β+1)/p
(∫

S̃b

(Φ◦ f (x))p‖x‖β+1−nw(x)dx

)1/p

, (7.1)

where

Cp,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1
e|A| )

1/p−1/q

(
inf0<ε<s

γ1/ε
(
1− ε

p + ε
q

)1/q−1/p

(
1− ε(β+1)

p − εθ
p

)1/ε−1/p(
1− ε(α+1)

q − εθ
p

)1/q

)
(p � q);

( |A|(p−q)
(α+1)p−(β+1)q

)1/q−1/p
(

inf0<ε<s
γ1/ε(

1− ε(β+1)
p − εθ

p

)1/ε−1/q(
1− ε(α+1)

q − εθ
p

)1/q

)

(q < p)

and s is the largest positive constant subject to the conditions:

0 < s � min{p,q} and
θ
p

+
α +1

q
� 1

s
. (7.2)

Proof. We have S̃∞ =∪mS̃bm , where bm ∈ E and ‖bm‖ ↑∞ as m ↑ ∞ . After taking
limits for both sides of (7.1) , we can assume b �= ∞ . In this case, b∈ E . This corollary
corresponds to the following case of Theorem 3.1(i) :

k(x, t) = γ(‖x‖−‖t‖)γ−1/(|A|‖x‖γ), g(t) = 1, ψ(x,t) = k(x,t),

dμ = χS̃b
(x)‖x‖α+1−n(w∗(x))q/pdx,

dν = χS̃b
(x)‖x‖β+1−nw∗(x)dx, dσ = χS̃b

‖t‖1−ndt,

where w∗(x) = w(x) for x ∈ S̃b , w∗(x) = w(x‖b‖/‖x‖) for x ∈ E \ S̃b . By using the
spherical coordinates, (2.4) is satisfied. Clearly, dνa/dσ = ‖x‖βw∗(x) > 0 on E ,
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and (2.5) holds. From Φε2 = (Φε1)ε2/ε1 , we know that the hypothesis on Φ implies
Φε ∈ CV+(I) for all ε > 0. Let pε = p/ε and qε = q/ε . By the definition of s (cf.
(7.2)), the following hold for all 0 < ε < s :

Φε ∈CV+(I), pε � 1, qε � 1, and θ < pε

(
1− α +1

qε

)
.

Let Aε(x) denote the number defined by (2.1) with pε and qε instead of p and q ,
respectively. By definition, we have Aε(x) = 0 for all x ∈ E \ S̃b . As for x ∈ S̃b , we
divide the argument into two cases: p � q and q < p . First, consider the case p � q . It
is clear that γ � 1 implies supt∈S̃x

ψ(z,t) = γ/(|A|‖z‖) for all z ∈ E \ Sx , which leads
us to

Aε(x) =
γ
|A|

(∫
S̃x

‖t‖β (1−p∗ε)+1−nw(t)1−p∗ε dt

)1/p∗ε

×
(∫

S̃b\Sx

‖z‖α−qε+1−nw(z)qε/pε dz

)1/qε

(x ∈ S̃b). (7.3)

Like (4.5)− (4.7) , we can obtain

AM(pε ,qε) = sup
x∈S̃b

|Aε(x)| � γ|A|1/qε−1/pε

(
1

(β + θ )(1− p∗ε)+1

)1/p∗ε

×
(

1
qε −α −1− (qεθ/pε)

)1/qε

‖b‖(α+1)/qε−(β+1)/pε < ∞.

With the help of Theorems 2.1 and 3.1, we infer that

‖K‖∗ � inf
0<ε<s

A1/ε
p/ε,q/ε � |A|1/q−1/p‖b‖(α+1)/q−(β+1)/p

× inf
0<ε<s

γ1/ε
(

1− ε
p + ε

q

)1/ε−1/p+1/q

(
1− ε(β+1)

p − εθ
p

)1/ε−1/p(
1− ε(α+1)

q − εθ
p

)1/q
. (7.4)

We have assumed that p � q . By an elementary calculation, the function ε 	→
(

1−
ε
p

+
ε
q

)1/ε
is decreasing on 0 < ε < s . For such ε ,

(
1− ε

p
+

ε
q

)1/ε
� lim

τ→0+

(
1− τ

p
+

τ
q

)1/τ
= e1/q−1/p.

Plugging this into (7.4) , we get ‖K‖∗ � Cp,q‖b‖(α+1)/q−(β+1)/p . By the definition of
‖K‖∗ , (7.1) follows. Next, consider the case 0 < q < p < ∞ . We have AM(pε ,qε) =
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‖Aε(x)‖rε ,ωε , where 1/rε = 1/qε −1/pε and dωε(x) = ‖x‖β (1−p∗ε)w(x)1−p∗ε dσ(x) on
S̃b . Moreover, Aε(x) = 0 for all x ∈ E \ S̃b . For x ∈ S̃b , (7.3) will be replaced by

Aε(x) =
γ
|A|

(∫
S̃x

‖t‖β (1−p∗ε)+1−nw(t)1−p∗ε dt

)1/q∗ε

×
(∫

S̃b\Sx

‖z‖α−qε+1−nw(z)qε /pε dz

)1/qε

.

By (5.1) ,

Aε(x) � γ
(

1
(θ + β )(1− p∗ε)+1

)1/q∗ε ( 1
qε −α −1− (qεθ/pε)

)1/qε

×‖x‖β (1−p∗ε)/q∗ε+α/qε w(x)(1−p∗ε )/q∗ε+1/pε (x ∈ S̃b).

Following the argument given after (4.9) , we can easily prove

AM(pε ,qε) �γ
(

1
(θ + β )(1− p∗ε)+1

)1/q∗ε ( 1
qε −α −1− (qεθ/pε)

)1/qε

×
( |A|(pε −qε)

(α +1)pε − (β +1)qε

)1/qε−1/pε

‖b‖(α+1)/qε−(β+1)/pε < ∞.

With the help of Theorems 2.1 and 3.1, we infer that

‖K‖∗ � inf
0<ε<s

A1/ε
p/ε,q/ε � Cp,q‖b‖(α+1)/q−(β+1)/p.

This leads us to (7.1) . The proof is complete. �

We remark that the case p � q of Corollary 7.1 gives an example for which the
infimum in (1.5) does not occur as ε → 0+ . This follows from the observation:

γ1/ε
(
1− ε

p + ε
q

)1/q−1/p

(
1− ε(β+1)

p − εθ
p

)1/ε−1/p(
1− ε(α+1)

q − εθ
p

)1/q
≈ γ1/εe(β+1+θ)/p

−→ ∞ as ε → 0+.

Up to now, the exact place for such ε is still unknown.
Next, consider the corresponding result of Corollary 7.1 to the case (1.7) . We

assume that −∞ < p,q < 0,
α +1

q
� β +1

p
, and (1/Φ)ε ∈CV+(I) for all sufficiently

small ε > 0. Then (1/Φ)ε ∈CV+(I) for all ε > 0 and Theorem 3.1 ensures

L∗(K) � sup
ε>0

{
Ap/(−ε),q/(−ε)

}1/(−ε)

= sup
ε>0

{
A(−p)/ε,(−q)/ε

}−1/ε
. (7.5)
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Clearly, the term {· · ·}−1/ε in (7.5) is same as

{
Ap/ε,q/ε

}−1/ε
with the replacements:

p −→−p and q −→−q. This allows us to estimate (7.5) by using the corresponding
values given in the proof of Corollary 7.1. After a suitable calculation, the reverse
inequality of (7.1) holds, where

Cp,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1
e|A| )

1/p−1/q

(
sup0<ε<s

γ−1/ε
(
1+ ε

p− ε
q

)1/q−1/p

(
1+ ε(β+1)

p + εθ
p

)−1/ε−1/p(
1+ ε(α+1)

q + εθ
p

)1/q

)
(q � p);

( |A|(p−q)
(α+1)p−(β+1)q

)1/q−1/p
(

sup0<ε<s
γ−1/ε(

1+ ε(β+1)
p + εθ

p

)−1/ε−1/q(
1+ ε(α+1)

q + εθ
p

)1/q

)

(p < q)

and s is the largest positive constant subject to the conditions:

0 < s � min{−p,−q} and
θ
−p

+
α +1
−q

� 1
s
. (7.6)

For 0 < γ < 1, we shall show that (7.1) still holds, but the constant Cp,q becomes
more complicated. It involves the number Bp,q(∗,∗) = B((γ − 1)q + 1,q−α − 1−
qθ/p) , where B(λ ,ρ) denotes the Beta function defined by

B(λ ,ρ) =
∫ 1

0
tλ−1(1− t)ρ−1dt =

Γ(λ )Γ(ρ)
Γ(λ + ρ)

(λ > 0,ρ > 0).

COROLLARY 7.2. Let 0 < γ < 1 , θ ∈ R , b ∈ E ∪ {∞} , and w : S̃b 	→ (0,∞) .

Suppose that (5.1) is satisfied. If 0 < p,q < ∞ ,
α +1

q
� β +1

p
,

1
1− γ

> max

{
q
p
,
qθ
p

+ α +1

}
, (7.7)

and Φε ∈CV+(I) for all sufficiently small ε > 0 , then (7.1) holds for all f : S̃b 	→ I ,
where

Cp,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1
e|A| )

1/p−1/qq1/q

(
infq(1−γ)<ε<s

γ1/ε
(
1− ε

p+ ε
q

)1/q−1/p
ε−1/qB

1/q
p/ε,q/ε(∗,∗)(

1− ε(β+1)
p − εθ

p

)1/ε−1/p

)

(p � q);( |A|(p−q)
(α+1)p−(β+1)q

)1/q−1/p
q1/q

(
infq(1−γ)<ε<s

γ1/ε ε−1/qB
1/q
p/ε,q/ε(∗,∗)(

1− ε(β+1)
p − εθ

p

)1/ε−1/q

)

(q < p)

and s is the largest positive constant subject to (7.2) .
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Proof. Let pε = p/ε and qε = q/ε . We first remark that (7.7) implies the fol-
lowing two inequalities:

(1− γ)q < p and
1

(1− γ)q
>

θ
p

+
α +1

q
.

To compare them with the definition of s , we infer that (1− γ)q < s . Next, for (1−
γ)q < ε < s , we have

(γ −1)qε +1 > 0 and qε −α −1− qε θ
pε

> q

(
1
s
− α +1

q
− θ

p

)
> 0.

This implies that Bpε ,qε (∗,∗) is finite for this range of ε .
Now, we come back to the proof of this corollary. We modify the proof of Corol-

lary 7.1 in the following way. From 0 < γ < 1, we get

sup
t∈S̃x

ψ(z,t) =
γ
|A|

(
1− ‖x‖

‖z‖
)γ−1 1

‖z‖ (x ∈ S̃b;z ∈ E \ Sx),

and so by (5.1) , the following estimate holds for the case 0 < p � q < ∞ :

Aε(x) =
γ
|A|

(∫
S̃x

‖t‖β (1−p∗ε)+1−nw(t)1−p∗ε dt

)1/p∗ε

×
(∫

S̃b\Sx

(
1− ‖x‖

‖z‖
)(γ−1)qε

‖z‖α−qε+1−nw(z)qε /pε dz

)1/qε

� γ|A|1/qε−1/pε‖x‖(α+1)/qε−(β+1)/pε

(
1

(β + θ )(1− p∗ε)+1

)1/p∗ε
B

1/qε
pε ,qε (∗,∗).

This leads us to

AM(pε ,qε) = sup
x∈S̃b

|Aε(x)| � γ|A|1/qε−1/pε

(
1

(β + θ )(1− p∗ε)+1

)1/p∗ε

×B
1/qε
pε ,qε (∗,∗)‖b‖(α+1)/qε−(β+1)/pε < ∞.

With the help of Theorems 2.1 and 3.1, we conclude that

‖K‖∗ � inf
0<ε<s

A1/ε
p/ε,q/ε � Cp,q‖b‖(α+1)/q−(β+1)/p (p � q).

For 0 < q < p < ∞ , Aε(x) is modified in the following way:

Aε(x) =
γ
|A|

(∫
S̃x

‖t‖β (1−p∗ε)+1−nw(t)1−p∗ε dt

)1/q∗ε

×
(∫

S̃b\Sx

(
1− ‖x‖

‖z‖
)(γ−1)qε

‖z‖α−qε+1−nw(z)qε /pε dz

)1/qε

� γ‖x‖β (1−p∗ε)/q∗ε+α/qε w(x)(1−p∗ε )/q∗ε+1/pε

(
1

(β + θ )(1− p∗ε)+1

)1/q∗ε
B

1/qε
pε ,qε (∗,∗),
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where x ∈ S̃b . By a similar argument to (4.9) , we infer that

AM(pε ,qε) � γB
1/qε
pε ,qε (∗,∗)

(
1

(β + θ )(1− p∗ε)+1

)1/q∗ε

×
(∫

S̃b

‖x‖(α pε−βqε)/(pε−qε )+1−ndx

)1/rε

= γB
1/qε
pε ,qε (∗,∗)

(
1

(β + θ )(1− p∗ε)+1

)1/q∗ε
|A|1/rε‖b‖(α+1)/qε−(β+1)/pε

×
(

pε −qε
(α +1)pε − (β +1)qε

)1/rε

,

and so
‖K‖∗ � inf

0<ε<s
A1/ε

p/ε,q/ε � Cp,q‖b‖(α+1)/q−(β+1)/p (q < p).

This completes the proof. �
Like the case γ � 1, consider the changes: p −→ −p and q −→ −q . We can

prove that the reverse inequality of (7.1) holds for the case 0 < γ < 1, provided −∞ <

p,q < 0,
α +1

q
� β +1

p
, (7.7) holds, and (1/Φ)ε ∈CV+(I) for all sufficiently small

ε > 0. Here,

Cp,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

e|A|
)1/p−1/q

(−q)1/q

(
supq(γ−1)<ε<s

γ−1/ε
(
1+ ε

p− ε
q

)1/q−1/p
ε−1/qB

1/q
−p/ε,−q/ε(∗,∗)(

1+ ε(β+1)
p + εθ

p

)−1/ε−1/p

)

(q � p);( |A|(p−q)
(α+1)p−(β+1)q

)1/q−1/p
(−q)1/q

(
supq(γ−1)<ε<s

γ−1/ε ε−1/qB
1/q
−p/ε,−q/ε(∗,∗)(

1+ ε(β+1)
p + εθ

p

)−1/ε−1/q

)

(p < q)

and s is the largest positive constant subject to the condition (7.6) .
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[7] A. ČIŽMEŠIJA, J. PEČARIĆ, L.-E. PERSSON, On strengthened Hardy and Pólya-Knopp’s inequali-
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