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ON JORDAN’S, REDHEFFER’S AND WILKER’S INEQUALITY

BARKAT ALI BHAYO AND JÓZSEF SÁNDOR

(Communicated by I. Pinelis)

Abstract. In this paper, the authors offer new Jordan, Redheffer and Wilker type inequalities,
along with refinements and converses. Connections with Euler’s gamma function are pointed
out, too.

1. Introduction

In the recent years, the refinements of the inequalities of trigonometric functions
such as Adamović-Mitrinović, Cusa-Huygens, Jordan inequality, Redheffer inequality,
Becker-Stark inequality, Wilker inequality, Huygens inequality, and Kober inequality
have been studied extremely by numerous authors, e.g., see [4, 5, 10, 18, 19, 23, 24,
25, 26, 32, 33, 34, 35, 36] and the references therein. Motivated by these rapid studies,
in this paper we make a contribution to the subject by refining the Cusa-Huygens, Jor-
dan and Redheffer inequality, and establish a Wilker type inequality. In all cases, we
give the upper and lower bound of sin(x)/x in terms of simple functions. Meanwhile,
we give some Redheffer type inequalities for trigonometric functions, which refine the
existing results in the literature.

For the representation of trigonometric functions in terms of gamma function, we
define for x,y > 0 the classical gamma function Γ , the digamma function ψ and the
beta function B(·, ·) by

Γ(x) =
∫ ∞

0
e−ttx−1 dt, ψ(x) =

Γ′(x)
Γ(x)

, B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

,

respectively. We denote the trigamma function ψ ′ by K , and defined as,

K(x) =
∞

∑
n=0

1
(x+n)2 , K′(x) = −2

∞

∑
n=0

1
(x+n)3 . (1.1)

We refer to reader to see [39, 40, 41, 43] for more properties and relations of K . The
functions Γ and ψ satisfy the recurrence relation

Γ(1+ z) = zΓ(z), ψ(1+ z) = zψ(z). (1.2)
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The following relation

ψ(1+ z)−ψ(z) =
1
z

(1.3)

follows from (1.2). Differentiating both sides of (1.3), one has

K(1+ z)−K(z) = − 1
z2 . (1.4)

The following Euler’s reflection formula [1, 6.1.17]

Γ(t)Γ(1− t) =
π

sin(πt)
, 0 < t < 1, (1.5)

can be written as

x
sin(x)

= Γ
(
1+

x
π

)
Γ
(
1− x

π

)
= B

(
1+

x
π

,1− x
π

)
, 0 < x < π . (1.6)

The logarithmic differentiation to both sides of (1.5) gives the following reflection for-
mula,

ψ(1− t)−ψ(t) =
π

tan(πt)
. (1.7)

Replacing t by t +1/2 in (1.5), we get

x
cos(x)

=
x
π

Γ
(

1
2

+
x
π

)
Γ
(

1
2
− x

π

)
, 0 < x <

π
2

. (1.8)

Next we recall the Adamović-Mitrinović [21, p.238] and Cusa-Huygens [36] in-
qualities

(cosx)1/3 <
sinx
x

<
cosx+2

3
, 0 < |x| < π

2
, (1.9)

For the refinement of (1.9), see [18, 23, 25, 35, 36, 51].
Our first main result refines the inequalities in (1.9) as follows:

THEOREM 1. For x ∈ (0,π) , the following inequalities hold,

2− (x/π)3 + cos(x)
3

<
sin(x)

x
<

2− (x/π)4 + cos(x)
3

. (1.10)

In [46], Wilker asked a question to find the largest constant c such that the in-
equality

a(x) > cb(x), 0 < |x| < π
2

, (1.11)

holds true, where

a(x) =
(

sin(x)
x

)2

+
tan(x)

x
−2, and b(x) = x3 tan(x).
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The inequality (1.11) is known as the Wilker inequality in the literature. Anglesio [44]
proved that the ratio a(x)/b(x) is decreasing in x ∈ (0,π/2) , and he answered the
question by showing the following two sided inequality,

2+
8
45

x3 tan(x) <

(
sin(x)

x

)2

+
tan(x)

x
< 2+

16
π4 x3 tan(x), (1.12)

with the best possible constants 8/45 and 16/π4 . For the new proofs and refinement
of (1.12), see [13, 28, 50, 49, 52, 55]. Thereafter the following Wilker type inequalities,

3+
3
20

x3 tan(x) < 2
sin(x)

x
+

tan(x)
x

< 3+
16
π4 x3 tan(x), 0 < x <

π
2

,

2+
2
45

x3 sin(x) <

(
x

sin(x)

)2

+
x

tan(x)
< 2+

(
2
π
− 16

π3

)
x3 sin(x), 0 < x <

π
2

,

(
sinh(x)

x

)2

+
tanh(x)

x
> 2+

8
45

x3 tanh(x), x > 0,

(
x

sinh(x)

)2

+
x

tanh(x)
< 2+

2
45

x3 sinh(x), x > 0,

were established by Chen-Sándor [11], Wang [50], Zhu [56], and Sun-Zhu [57], respec-
tively.

We establish an other Wilker type inequality by giving the following result.

THEOREM 2. For x ∈ (0,π) , we have

3+
( x

π

)4 x
sin(x)

< 2
x

sin(x)
+

x
tan(x)

< 3+
( x

π

)3 x
sin(x)

.

The following inequality

2
x

sin(x)
+

x
tan(x)

> 2, 0 < |x| < π
2

, (1.13)

has been recently established by Wu and Srivastava [48], which is sometime known as
the second Wilker inequality [25]. Inequality (1.13) can be written as,

sin(x)
x

<
1
2

(
x

sin(x)
+ cos(x)

)
, 0 < |x| < π

2
.

It was shown in [25] that this inequality is weaker than the Cusa-Huygens inequality
(1.9), as follows:

sin(x)
x

<
2+ cos(x)

3
<

1
2

(
x

sin(x)
+ cos(x)

)
, 0 < |x| < π

2
,

here second inequality is equivalent to

3
x

sin(x)
+ cos(x) > 4, 0 < |x| < π

2
. (1.14)
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Recently, Mortici [22] refined this inequality (1.14) as follows:

3
x

sin(x)
+ cos(x) > 4+

1
10

x4 +
1

210
x6, 0 < |x| < π

2
. (1.15)

We establish the following sharp result as a counterpart of (1.15).

THEOREM 3. For x ∈ (0,π) , we have

2− x4

π4 < 3
sin(x)

x
− cos(x) < 2− x3

π3 .

The well-know Jordan’s inequality [21] states,

π
2

� sin(x)
x

, 0 < x � π
2

,

equality with x = π/2.
In [12], Debnath and Zhao refined the Jordan’s inequality as below,

dzl(x) =
2
π

+
1

12π
(π2−4x2) � sin(x)

x
, (1.16)

DZl(x) =
2
π

+
1

π3 (π2−4x2) � sin(x)
x

, (1.17)

for x ∈ (0,π/2) , equality in both inequalities with x = π/2.
The following inequality

Ol(x) =
2
π

+
1

π3 (π2−4x2)+
4(π −3)

π3

(
x− π

2

)2
� sin(x)

x
, (1.18)

for x ∈ (0,π/2) is due to Özban [27], equality with x = π/2.
In [54], Zhu proved that

sin(x)
x

� 2
π

+
(π −2)

(
π2−4x2

)
π3 = Zu(x), (1.19)

for x ∈ (0,π/2) .
For the following inequalities

Jl(x) =
2
π

+
π4−16x4

2π5 <
sin(x)

x
<

2
π

+
(π −2)

(
π4−16x4

)
π5 = Ju(x), (1.20)

x ∈ (0,π/2) , see [14].
In [18, Theorem 1.3], Klén et al. proved that

1− x2

6
<

sin(x)
x

< 1− 2x2

3π2 , (1.21)
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for x ∈ (−π/2,π/2) . The following inequality refines the second inequality in (1.21),

sin(x)
x

� 1− x2/π2√
1+3(x/π)4

, (1.22)

for x ∈ (0,π) , see [19].
Our first main result reads as follows:

THEOREM 4. For x ∈ (0,π/2) , we have

Cl(x) <
sin(x)

x
< Cu(x),

where

Cl(x) =
(

1− x2

π2

)π2/6

and Cu(x) =
(

1− x2

π2

)3/2

.

The right side of the following theorem can not be compared with the correspond-
ing side of Theorem 4, and the second inequality is weaker than the above result.

THEOREM 5. For x ∈ (0,π) , we have

Dl(x) <
sin(x)

x
< Du(x),

where

Dl(x) = 1−
( x

π

)2(
2− x

π

)
and Du(x) = 1− 1

2

( x
π

)2
(

3−
( x

π

)2
)

.

It is not difficult to see that Theorem 5 refines the inequalities (1.21) and (1.22). Ob-
viously, one can see that dzl(x) < DZl(x) < Ol(x) , Jl(x) < DZl(x) , and Zu(x) < Ju(x)
for x∈ (0,π/2) . Now it is natural to compare our result with (1.18) and (1.19). For this
purpose we give the following inequalities by using the Mathematica Software R© [31],

Ol(x) < Cl(x), x ∈ (0,1.19540),
Ol(x) < Dl(x), x ∈ (0,0.92409),
Cu(x) < Zu(x), x ∈ (0,1.09447),
Du(x) < Zu(x), x ∈ (0,0.95784).

We see that our result refines (1.18) and (1.19) in the given interval of x .
The following result is the consequence of Theorem 5.

THEOREM 6. For y ∈ (0,1) , we have

1. B(x,y) <
1
xy

x+ y
1+ xy

, 0 < x < 1 ,



828 B. A. BHAYO AND J. SÁNDOR

2.
1
xy

x+ y
1+ xy

< B(x,y), 1 < x < ∞ .

It is worth to mention that the part (1) of Theorem 6 recently appeared in [16]. The
proof of the claim is based on [16, Lemma 2.5], and the proof of the lemma is invalid.

The following Redheffer inequality [30]

π2− x2

π2 + x2 � sinx
x

, 0 < x � π , (1.23)

was proved by Williams [47]. Chen et al. [10] obtained the three Redheffer-type in-
equalities for cosx, coshx and (sinhx)/x . Sun and Zhu [19, 45] proved the Redheffer-
type two-sided inequalities for trigonometric and hyperbolic functions. The inequalities
appeared in [19] were refined in [54], and read as follows:

(
π2− x2

√
π4 +3x4

)π2/6

<
sin(x)

x
<

(
π2− x2

√
π4 +3x4

)
, 0 < x < π , (1.24)

(
π2−4x2

√
π4 +48x4

)π2/6

< cos(x) <

(
π2−4x2

√
π4 +48x4

)3/4

, 0 < x <
π
2

. (1.25)

(√
π4 +48x4

π2−4x2

)1/2

<
tan(x)

x
<

(√
π4 +48x4

π2−4x2

)π2/6

, 0 < x <
π
2

. (1.26)

One can see easily that the first inequality in Theorem 5 refines the (1.23). Our follow-
ing theorem refines (1.24), as well as Cusa-Huygens inequality, and also gives a new
upper bound for the right side of (1.9).

THEOREM 7. For x ∈ (0,π/2) one has

sin(x)
x

<
π2− x2

π2 + αx2 <
2+ cos(x)

3
<

π2− x2

π2 + βx2 , (1.27)

with best possible constants α = π2/6−1≈ 0.644934 and β = 1/2 .

THEOREM 8. The function

g(t) =
log((1+ t2)/(1− t2))

log(1/cos(πt/2))

is strictly decreasing from (0,1) on (α,β ) . In particular, for x ∈ (0,π)

cos(x/2)α <
π2− x2

π2 + x2 < cos(x/2)β ,

with the best possible constants α = 16/π2 ≈ 1.62114 and β = 1 .
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In the following theorem we refine the inequalities given in (1.25).

THEOREM 9. The following function

h(t) =
1−4t2

t2 cos(πt)
− 1

t2

is strictly increasing from (0,1/2) onto ((π2 − 8)/2,16/π − 4) . In particular, for
x ∈ (0,π/2)

π2−4x2

π2 + αx2 < cos(x) <
π2−4x2

π2 + βx2 ,

with the best possible constants α = 16/π − 4 ≈ 1.09296 and β = (π2 − 8)/2 ≈
0.934802 .

The paper is organized into three sections as follows. Section 1, contains the
introduction and the statements of our main results. In Section 2, we give some lemmas,
which will be used in our proofs. Section 3 is consists of the proofs of the main results
and some corollaries.

2. Preliminaries

The following result is sometime called the Monotone l’Hôpital rule, which is due
to Anderson et al. [4].

LEMMA 1. For −∞ < a < b < ∞ , let f ,g : [a,b] → R be continuous on [a,b] ,
and be differentiable on (a,b) . Let g′(x) �= 0 on (a,b) . If f ′(x)/g′(x) is increasing
(decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

LEMMA 2. For a ∈ (0,1) and x > 0 , the following inequality holds,

1−a
x+a

< ψ(1+ x)−ψ(x+a).

Proof. It is well-known that the function f (x) = xψ(x) , x > 0 is strictly convex
[43, Theorem 6]. This implies that,

f (ar+(1−a)s) < a f (r)+ (1−a) f (s), r,s > 0, a ∈ (0,1).

Setting r = 1+ x and s = x in the above inequality, we get

(a+ x)ψ(a+ x) < (a+ax)ψ(1+ x)+ (1−a)xψ(x)),

now the proof follows easily if we replace ψ(x) = ψ(1+ x)−1/x . �
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LEMMA 3. For x ∈ (1,∞) and y ∈ (0,1) , we have

Γ(1+ x)Γ(1+ y)
Γ(1+ x+ y)

>
1

1+ xy
.

Proof. Let

fy(x) = log(Γ(1+ x))+ log(Γ(1+ y))− log(Γ(1+ x+ y))+ log((1+ xy)),

for x ∈ (1,∞) and y∈ (0,1) , clearly fy(1) = 0. Differentiating f with respect to x and
using the formula (1.3), we get

f ′y(x) =
y

1+ xy
+ ψ(1+ x)−ψ(1+ x+ y)

=
y

1+ xy
− 1

x+ y
+ ψ(1+ x)−ψ(x+ y)

>
y

1+ xy
− 1

x+ y
+

1− y
x+ y

=
y(1− y)(x−1)
(x+ y)(1+ xy)

> 0,

by Lemma 2. Thus, f is strictly increasing, and fy(x) > fy(1) = 0, this implies the
proof of part (1). For the proof of part (2), see [16, (3.2)]. �

REMARK 1. It is easy to see that the convexity of the function x �→ log(xΓ(x)), x >
0, implies the following inequality,

1
xy

(
x+ y

2

)2

<
Γ(x)Γ(y)

Γ((x+ y)/2)2 . (2.1)

Replacing x by 1− x/π and y by 1− x/π in (2.1), and applying (1.5), we get

sin(x)
x

<
π2− x2

π2 , 0 < x < π . (2.2)

This improves the following inequality

sin(x)
x

�
(

π2− x2

π2 + x2

)1/2

, 0 < x � π ,

which was proved in [42].

3. Proof of the main results

In this section we will give the proofs of the main results highlighted in the first
section, as well as some corollaries are being established.

Proof of Theorem 1. The proof of the first inequality is trivial. For the proof of the
second and the third inequality, we define

f (x) =
2+ cos(x)−3sin(x)/x

x4 ,
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for x∈ (0,π) . We will prove that f is strictly decreasing from (0,π) onto (1/π4,1/60) .
One has,

x6 f (x) = −x2 sin(x)−7xcos(x)+15sin(x)−8x = f1(x),

f ′1(x) = 5xsin(x)+8cos(x)− x2 cos(x)−8,

f ′′2 (x) = −3sin(x)+3xcos(x)+ x2 sin(x), f ′′′1 (x) = x(xcos(x)− sin(x)) < 0.

Thus f ′′1 (x) < f ′′1 (0) = 0, f ′1(x) < f ′1(0) = 0, and f1(x) < f1(0) = 0. The limiting
values can be achieved by l’Hôpital rule. �

Similarly, for the proof of the first inequality we will prove that the function

g(x) =
2+ cos(x)−3sin(x)/x

x3

is strictly increasing from (0,π) onto (0,1/π3) . One has

x5g′(x) = −(x2)sin(x)−6xcos(x)+12sin(x)−6x = h(x),
h′(x) = 4xsin(x)− x2 cos(x)+6cos(x)−6,

h′′(x) = 2xcos(x)+ x2 sin(x)−2sin(x), h′′′(x) = x2 cos(x).

Thus h′′′(x) is positive in x ∈ (0,π/2) and negative in x ∈ (π/2,π) . Since h′′(π/2) =
π2/4−2 > 0 and h′′(π) =−2π < 0, and h′′(x) is strictly increasing (resp. decreasing)
in x ∈ (0,π/2) (resp. x ∈ (π/2,π)). There exists a unique x0 in (π/2,π) such that
h′′(x0) = 0. Thus h′′(x) > 0, x ∈ (0,x0) and h′′(x) < 0, x ∈ (x0,π) . This implies that
h′(x) is strictly increasing in x ∈ (0,x0) and strictly decreasing in x ∈ (x0,π) . As
h′(0) = 0, one has h′(x0) > 0. By h′(π)= π2−12< 0, we get that there exists a unique
x1 in (x0,π) such that h′(x1) = 0. We get that h(x) is strictly increasing in (0,x1) , and
decreasing in (x1,π) , with h(0) = 0 and h(π) = 0. Thus h(x) > h(0) = 0, x ∈ (0,x1)
and h(x) > h(π) = 0, x∈ (x1,π) . Hence, in all cases, one has h(x) > 0. This completes
the proof of the second inequality.

It follows from the proof of the second inequality of Theorem 1 that f < 1/60 and
f1 < 0. This implies the following result.

COROLLARY 1. For x ∈ (0,π) , we have

1. M1 =
2− x4/60+ cos(x)

3
<

sin(x)
x

<
8+7cos(x)

15− x2 = M2,

2. 2
x

sin(x)
+

x
tan(x)

< 3+
x4

60
x

sin(x)
,

3. (8/7)
x

sin(x)
+

x
tan(x)

>
15− x2

7
.
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Recently, the following inequalities appeared in [51],

Yl = cos

(
x√
x

)a

<
sin(x)

x
< cos

(
x√
x

)5/3

= Yu (3.1)

for x ∈ (0,π/2) with a = log(2/π)/ log(cos(
√

5π/10)) ≈ 1.67141. By using Mathe-
matica Software R© [31], one can see that

Yl < M1, x ∈ (0,1.06580) and Yu−M2 ∈ (0,−0.0009), x ∈ (0,π/2).

Proof of Theorem 2 & 3. The proof of both theorems follow immediately from
Theorem 1. �

Proof of Theorem 4. Let us consider the application

f (x) = log

(
x

sin(x)

)
− c log(1/(1− x2/π2)),

for x ∈ (0,π/2) . A simple computation gives

xsin(x)(π2− x2) f ′(x) = (sinx− xcosx)(π2− x2)−2cx2 sin(x) = g(x).

One has

g′(x)/x = (π2−2−4c)sin(x)+ (2−2c)xcos(x)− x2 sin(x) = h(x).

Finally,
h′(x) = (π2−6c)cos(x)− (4−2c)xsin(x)− x2 cos(x).

Now, if we select c = π2/6, then, as π2−6c = 0 and 4−2c = 4−π2/3 > 0, we get
h′(x) < 0, so this finally leads to f (x) < 0. Hence, the first inequality follows.

For the proof of the second inequality, let c = 3/2, then one has

g′(x)/x = (π2−8)sin(x)− xcos(x)− (x2)sin(x) = h(x).

Since h(π/2) < 0, h(π/4) > 0, there exists an x′ in (π/4,π/2) such that h(x′) = 0.
We’ll show that x′ is unique. One has h(x)/sin(x) = π2 − 8− s(x) , where s(x) =
x2 + x/ tan(x) . Now,

s′(x)sin(x)2 = 2xsin(x)2 + cos(x)sin(x)− x = p(x).

Here p′(x) = 4xsin(x)cos(x) > 0, which shows that p(x) > p(0) = 0, so s′(x) > 0,
finally: s(x) is a strictly increasing function. Thus the equation s(x) = π2 − 8 has a
single root (which is x′ ), so h(x) > 0 for x ∈ (0,x′) and h(x) < 0 for x ∈ (x′,π/2) .
Thus g is increasing, resp. decreasing in the above intervals, and g(0) = g(π/2) = 0,
so g(x) > 0 for x ∈ (0,π/2) . This completes the proof of the second inequality. �
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COROLLARY 2. For x ∈ (0,π/2) one has

π2− x2−π2x2/3
π2− x2 <

x
tan(x)

<
π2−4x2

π2− x2 .

Proof. After simplification the derivative of the function

fc(x) = log

(
x

sin(x)

)
− c log(1/(1− x2/π2)),

can be written as

f ′c(x) =
1
x
−2cxπ2− x2− 1

tan(x)
.

By the proof of Theorem 4, f ′π2/6(x) < 0 and f ′3/2(x) > 0. Clearly, fπ2/6 = 0 = f3/2 .
Now the proof of the inequalities is obvious. �

The second inequality in Corollary 2 improves the first inequality in (1.26).

Proof of Theorem 5. For t ∈ (0,1) , let

f (t) =
πt
(
t3 +1

)− sin(πt)
πt3

, g(t) =
πt(2+ t4)−2sin(πt)

πt3
.

By Theorem 1, we get

f ′(x) =
3πt3 + π

(
t3 +1

)−π cos(πt)
πt3

− 3
(
πt
(
t3 +1

)− sin(πt)
)

πt4

=
3
t3

(
sin(πt)

πt
− 2− t3 + cos(πt)

3

)
> 0,

and

g′(x) = 2t− 2
t2

(
cos(πt)

t
− sin(πt)

πt2

)
+

4
t3

(
sin(πt)

πt
−1

)

=
2
t3

(
sin(πt)

πt
− 2− t4 + cos(πt)

3

)
< 0.

Thus, the functions f and g are strictly increasing and decreasing in t ∈ (0,1) , respec-
tively. Hence, the proof follows easily if we use the inequalities,

f (t) < lim
t→1

= 2, g(t) > lim
t→1

g(t) = 3,

and replace t by x/π . �

Proof of Theorem 6. Utilizing (1.5), the first inequality in Theorem 5 is equivalent
to

1+ x/π− x/π
Γ(1+ x/π)Γ(1− x/π)

>
(1− x/π)

(
1+ x/π − (x/π)2

)
Γ(1+ x/π − x/π)

.
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Replacing x by x/π and y by 1− x/π we get (1). Similarly, the second inequality in
Theorem 5 can be written as,

1+ x/π +1− x/π
(1− (x/π)2)(2+(x/π)2)

<
Γ(1+ x/π)Γ(1− x/π)

Γ(1+ x/π − x/π)
.

If we replace x by 1 + x/π and y by 1− x/π then we get the proof of part (2) for
1 < x < 2. The rest of proof follows from Lemma 3. �

Proof of Theorem 7. Let f (t) = f1(t)/ f2(t), t ∈ (0,1/2) , where

f1(t) = 1−3t2− cos(πt) and f2(t) = t2(2+ cos(πt)).

A simple calculation gives

f ′1(t) = −6t−π sin(πt) < 0, and f ′2(t) = t(4+2cos(πt)−πt sin(πt)) > 0.

Thus, f is the product of two positive strictly decreasing functions, this implies that f
is strictly decreasing in t ∈ (0,1/2) . Applying l’Hôpital rule, we get limt→1/2 f (t) =
1/2 < f (t) < α = limt→0 f (t) = π2/6−1. Here the first inequality implies

3(1− t2)
2+ cos(πt)

−1 < αt2,

which is equivalent to
2+ cos(πt)

3
>

1− t2

1+ αt2
.

Letting πt = x∈ (0,π/2) , we get the second inequality of (1.27), and the third inequal-
ity of (1.27) follows similarly. For the proof of the first inequality, see [2, (2.5)]. �

COROLLARY 3. For x ∈ (0,1) , we have

4
π

t
1− t2

< tan
(πt

2

)
<

π
2

t
1− t2

. (3.2)

Proof. Let f (t) = t/(tan(πt/2)(1− t2)), t ∈ (0,1/2) . We get

f ′(t) =
(1+ t2)sin(πt)−πt(1− t2)

2(1− t2)2 sin(πt/2)2 ,

which is positive by (1.23). By l’Hôpital rule, we get limt→0 f (t) = 2/π < f (t) <
π/4 = limt→1/2 f (t) . This completes the proof. �

For 0 < t < 1, letting x = (πt)/2 in (3.2), we get

8
π2−4x2 <

tan(x)
x

<
π2

π2−4x2 , (3.3)
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which is so-called Becker-Stark inequality [8]. Thus, Corollary 3 gives a simple proof
of Becker-Stark inequality. It is easy to see that the second inequality in Corollary 2
improves the first inequality in (3.3).

Proof of Theorem 8. Write g(t) = g1(t)/g2(t), 0 < t < 1, where

g1(t) = log

(
1+ t2

1− t2

)
, g2(t) = log

(
1

cos(πt/2)

)
.

We get,
g′1(t)
g′2(t)

=
8
π

t
(1− t4) tan(πt/2)

=
8
π

g3(t).

One has,

g′3(t) =
sin(πt)(1+3t4)−πt(1− t4)

2sin(πt/2)2(1− t4)2 ,

which is negative by (1.24). Clearly g1(0) = 0 = g2(0), thus g is strictly decreasing by
Lemma 1. Using l’Hôpital rule, we get limt→0 g(t) = 16/π2 > g(t) > 1 = limt→1 g(t) .
Replacing πt by x , we get the desired inequalities. �

COROLLARY 4. For x ∈ (0,π) , one has

(
π2− x2

π2 + x2

)4/(3β )

< cos
( x

2

)4/3
<

sin(x)
x

<

(
π2− x2

π2 + x2

)4/(3α)

,

where α and β are as in Theorem 8.

Proof. The proof of the first inequality follows from Theorem 8, and the second
inequality is also well known [25]. The third inequality is just (1.24). �

THEOREM 10. For x ∈ (0,π/2) , we have

2
π

+
π −2

π
cos(x) <

sin(x)
x

, (3.4)

(
1+ cos

2

)2/3

<
sin(x)

x
<

2 ·22/3

π

(
1+ cos

2

)2/3

<
4
π

1+ cos(x)
2

. (3.5)

Proof. The inequality (3.4) may be rewritten as

f (x) = π sin(x)− (π −2)xcos(x)−2x > 0,

for x ∈ (0,π/2) . Clearly, f (0) = f (π/2) = 0. On the other hand,

f (x) = 2(cos(x)−1)+ (π −2)xsin(x) = −4sin(x/2)2 +2(π −2)xsin(x/2)cos(x/2).
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This implies that

f ′(x)/(4sin(x/2)cos(x/2)) = (π −2)/2− tan(x/2) = g(x)

for x > 0. As tan(x/2) is strictly increasing, there is a unique x′ in (0,π/2) such
that g(x′) = 0. Also, g(x) > 0 for x ∈ (0,x′) and g(x) < 0 for x ∈ (x′,π/2) ; i.e. x′
is a maximum point of f (x) . This gives f (x) > f (0) = 0 for x ∈ (0,x′) and f (x) >
f (π/2) = 0 for x ∈ (x′,π/2) . This completes the proof of (3.4).

For the proof of (3.5), let

j(x) = log

(
x

sin(x)
− 2

3
2

1+ cos(x)

)
,

x ∈ (0,π/2) . One has

j′(x) =
1− xcot(x)

x
− 2

3
sin(x)

1+ cos(x)

=
1
x
− cot(x)− 2

3
1− cos(x)

sin(x)
= j1(x),

which is negative, because the inequality j1(x) < 0 can be written as sin(x)/x < (2+
cos(x))/3, which is so-called Cusa-Huygens inequality [21]. Thus, j(x) is strictly
decreasing, and

lim
x−>0

j(x) = 0 > j(x) > log(π)− (5/3) log(2) = lim
x→π/2

j(π/2)≈−0.010515.

By these inequalities we get

cos(x/2)4/3 <
sin(x)

x
< exp((5/3) log(2)− log(π))cos(x/2)4/3.

The proof of the first and second inequality is completed, and the proof of the third
inequality is trivial. �

The inequality (3.4) improves the following one

1−2
π−2

π2 x <
sin(x)

x
, 0 < x < π , (3.6)

which was proved in [37] as an application of the concavity of sin(x)/x . Indeed, the
inequality

1−2
π−2

π2 x <
2
π

+
π −2

π
cos(x),

is equivalent to

cos(x) > 1− 2
π

x, 0 < x <
π
2

, (3.7)

which is Kober’s inequality, see [21, 32].
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Proof of Theorem 9. For x ∈ (0,π/2) , let

f (x) =
x

sin(x)
x(π − x)
(2x−π)2 −

4x2

(2x−π)2 .

We get,

f ′(x) = − 16π2 cos(x)
(2x−π)3 sin(x)2 g(x),

where

g(x) = tan(x)− sin(x)2

cos(x)
− x.

One has,

g′(x) =
sin(x)2

cos(x)
(sin(x)2 − sin(x)−2) < 0,

as 0 < sin(x) < 1, and g(x) = 0. Thus, g < 0, and in result f ′(x) < 0, this implies that
f is strictly decreasing. By l’Hôpital rule we get

lim
x→π/2

f (x) =
π2−8

2
< f (x) < lim

x→0
f (x) =

16
π

−4,

this implies the proof. �

Replacing x by π/2− x in the inequalities of Theorem 9, we get the following
corollary as a result.

COROLLARY 5. For x ∈ (0,π/2) , we have

16(π − x)
4π2 + α(2x−π)2 <

sin(x)
x

<
16(π − x)

4π2 + β (2x−π)2 ,

where α and β are as in Theorem 9.
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[27] A. Y. ÖZBAN, A new refined form of Jordan’s inequality and its applications, Appl. Math. Lett., 19
(2006), 155–160.

[28] I. PINELIS, L’Hospital Rules for Monotonicity and the Wilker-Anglesio Inequality, Amer. Math.
Monthly 111 (10) (2004), 905–909.

[29] F. QI, Extensions and sharpenings of Jordan’s and Kober’s inequality, Journal of Mathematics for
Technology (in Chinese), 4 (1996), 98–101.

[30] R. REDHEFFER, Problem 5642, Amer. Math. Monthly 76 (1969), 422.
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