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SOME CLASSES OF COMPLETELY MONOTONIC FUNCTIONS

RELATED TO q–GAMMA AND q–DIGAMMA FUNCTIONS
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(Communicated by N. Elezović)

Abstract. In the paper, some classes of completely monotonic functions involving the q -gamma
and q -digamma functions are derived. The monotonicity properties of these functions are ex-
ploited to establish a double inequality for the ratio of the q -gamma function and a double
inequality for the q -digamma function. Moreover, a class of inequalities for the q -polygamma
functions is presented.

1. Introduction

A real-valued function f , defined on an interval I , is called completely monotonic,
if f has derivatives of all orders and satisfies

(−1)n f (n)(x) � 0, n ∈ N0 = {0,1,2, · · ·}; x ∈ I. (1.1)

If the inequality (1.1) is strict for all x ∈ I and for all n � 1, then f is said to be
strictly completely monotonic. These functions have numerous applications in various
branches, like, for instance, numerical analysis and probability theory.

A positive function f is said to be logarithmically completely monotonic on an
interval I if its logarithm log f satisfies

(−1)n[log f (x)](n) � 0, n ∈ N; x ∈ I. (1.2)

If inequality (1.2) is strict for all x ∈ I and for all n � 1, then f is said to be strictly
logarithmically completely monotonic.

The notion of logarithmically completely monotonic functions was recovered by
Feng Qi and Bai-Ni Guo [22]. It has been proved once again in [8, 12, 23] that the
class of logarithmically completely monotonic functions is a subclass of the completely
monotonic functions. For more information, see ([19], p. 134, Section 1.3) and the
references given therein.

Anderson et al. [4] proved that the function

fα (x) = xα−xexΓ(x) (1.3)
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is decreasing and logarithmically convex from (0,∞) onto (
√

2π,∞) when α = 1
2 and

is increasing and logarithmically concave from (0,∞) onto (1,∞) when α = 1 where
Γ(x) is the Euler-gamma function defined as

Γ(x) =
∫ ∞

0
tx−1e−tdt, x > 0 (1.4)

The monotonicity and convexity of fα (x) were slightly extended by Alzer [3] as fol-
lows: The function fa(x) is decreasing on (0,∞) if and only if α � 1

2 and increasing
on (0,∞) if and only if α � 1. The logarithmically complete monotonicity of fα (x) is
equivalent to the complete monotonicity of the function

ψ(x)− logx+
α
x

and its negative, which was proved in [21], where ψ(x) is the so-called digamma (or
psi) function defined as the logarithmic derivative of the gamma function (1.4). Also,
the function (1.3) has been studied in a number of references such as the newly pub-
lished papers [11, 13], the survey article [20] and closely-related references therein.

The main purpose of this paper is to extend the previous results to the q -gamma
function for q > 0 by means of studying the monotonicity properties of the following
function

Fα(x;q) = [x]α−x
q e−

Li2(1−qx)
logq Γq(x) (1.5)

where Γq(x) is the q -gamma function and Li2(x) is the dilogarithm function. The
following section will be devoted to present the definition of the q -gamma function
and related functions and formulas.

2. The q -gamma function

The q -gamma function is defined for positive real numbers x and q �= 1 as [17]

Γq(x) = (1−q)1−x
∞

∏
n=0

1−qn+1

1−qn+x , 0 < q < 1 (2.1)

and

Γq(x) = (q−1)1−xq
x(x−1)

2

∞

∏
n=0

1−q−(n+1)

1−q−(n+x) , q > 1 (2.2)

From the previous definitions, for a positive x and q � 1, we get

Γq(x) = q
(x−1)(x−2)

2 Γq−1(x). (2.3)

The close connection between the ordinary gamma function (1.4) and the q -gamma
function is given by the limit relations

lim
q→1−

Γq(x) = lim
q→1+

Γq(x) = Γ(x) =
∫ ∞

0
tx−1e−t dt. (2.4)
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Many of the classical facts about the ordinary gamma function have been extended to
the q -gamma function (see [5, 16, 17, 18] and the references given therein). Numerous
papers appeared providing inequalities for the q -gamma function and its logarithmic
derivatives. Many properties of the q -gamma function and some developments in this
area are given in [2, 6, 7, 10, 24, 25, 26, 27, 28, 29, 31] and the references given therein.
The logarithmic derivative of the q -gamma function is the so-called q -digamma (q -psi)
function denoted by ψq

ψq(z) =
d
dz

(logΓq(z)) =
Γ′

q(z)
Γq(z)

. (2.5)

From (2.1), we get for 0 < q < 1 and for all real variable x > 0

ψq(x) = − log(1−q)+ logq
∞

∑
k=1

qkx

1−qk . (2.6)

and from (2.2) we obtain for q > 1 and x > 0

ψq(x) = − log(q−1)+ logq

[
x− 1

2
−

∞

∑
k=1

q−kx

1−q−k

]
. (2.7)

Krattenthaler and Srivastava [15] proved that ψq(x) tends to ψ(x) when letting q→ 1.
Some properties and expansions associated with the q -digamma function have been
derived in [30]. Among these results, we need the recursive formula

ψq(x+1) = ψq(x)− qx logq
1−qx , q > 0; x > 0. (2.8)

In the previous section, we mentioned another two concepts without definitions. The
first is the symbol [x]q which is the basic number defined as

[x]q =
1−qx

1−q
, q �= 1. (2.9)

The second is the dilogarithm function Li2(z) which is defined for complex argument
z as [1]

Li2(z) = −
∫ z

0

log(1− t)
t

dt, z �∈ (1,∞), (2.10)

An important recursive formula for the dilogarithm function that we need, can be de-
rived as

Li2

(
z−1

z

)
= −Li2(1− z)− 1

2
log2 z. (2.11)

Also, we see that

lim
q→1

Li2(1−qx)
logq

= −x. (2.12)
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3. The main results

In this section, we investigate the monotonicity and complete monotonicity prop-
erties for functions involving the q -gamma function and consequently, we establish
sharp double inequalities for the q -gamma and the q -polygamma functions.

LEMMA 3.1. Let 0 < y < 1 . Then the function

g(y) =
1

1− y
+

1
logy

(3.1)

is decreasing on (0,1) and 1
2 < g(y) < 1 .

Proof. Differentiation gives

g′(y) =
y log2 y− (1− y)2

y log2 y(1− y)2

which can be represented as

g′(y) =
−y

log2 y(1− y)2

∞

∑
n=2

logn(1/y)
n!

λ (n)

where λ (n) = 2n−n2 +n−2, n � 2. It is not difficult to see that Δ2λ (n) = 2n−2 > 0
for all n � 2 where Δ is the forward shift operator. Since Δλ (2) = λ (2) = 0, then
λ (n) > 0 for all n � 2 and so g(y) is decreasing on (0,1) . Using l’Hôpital’s rule gives
the bounds of g(y) . �

THEOREM 3.2. Let x,q and α be real numbers such that x,q > 0 . The function
Fα(x;q) as defined in (1.5) satisfies the following monotonicity properties:

1. The function Fα(x;q) is completely monotonic on (0,∞) if and only if α � g(q)
when 0 < q < 1 and if and only if α � 1

2 when q � 1 where g(y) defined as in
(3.1).

2. The function Fα(x;q) is increasing and logarithmically concave on (0,∞) if and
only if α � 1 for all q > 0 .

3. The function [Fα(x;q)]−1 is completely monotonic on (0,∞) if and only if α � 1
for all q > 0 .

Proof. Logarithmic differentiaion yields

d
dx

{logFα(x;q)} = ψq(x)− log[x]q− αqx logq
1−qx (3.2)

When 0 < q < 1, the relation (2.6), Taylor series of logarithm function and binomial
theorem give

d
dx

{logFα(x;q)} =
∞

∑
k=1

qxk

k(1−qk)
f (α,y), y = qk (3.3)
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where
f (α,y) = logy+(1− y)−α(1− y) logy

It is clear that the function α �→ f (α,y) is increasing on R for each fixed y ∈ (0,1) .
Also, we have

f (0,y) = logy+1− y = −y
∞

∑
n=2

logn(1/y)
n!

(n−1) < 0

and

f (1,y) = y logy+1− y = y
∞

∑
n=2

logn(1/y)
n!

> 0

which lead to the function f (α,y) has just one zero depends on y at α = g(y) where
g(y) is defined in (3.1). In view of the result obtained by Lemma 3.1 and the previous
notes, we have to take α � g(q) to ensure that f (α,y) < 0 for all y = qk; k ∈ N and
to take α � 1 to ensure that f (α,y) > 0 for all y = qk; k ∈ N . This reveals that

(−1)n[logFα(x;q)](n) = −
∞

∑
k=1

qxkkn−2 logn−1(q−1)
k(1−qk)

g(qk) > 0, α � g(q)

which concludes that Fα(x;q) is logarithmically completely monotonic on (0,∞) if
α � g(q) and 0 < q < 1. Since any (strictly) logarithmically completely monotonic
function is also (strictly) completely monotonic, then the function Fα(x;q) is com-
pletely monotonic on (0,∞) if α � g(q) and 0 < q < 1.

When q � 1, (2.3) gives

Fα(x;q) = q(x−1)(α−x)[x]α−x
q−1 e−

Li2

(
q−x−1
q−x

)
logq q

(x−1)(x−2)
2 Γq−1(x)

= qx(α− 1
2 )−α+1[x]α−x

q−1 e
− Li2(1−q−x)

logq−1 Γq−1(x)

= qx(α− 1
2 )−α+1Fα(x;q−1) (3.4)

Here, we used the identity (2.11). It is easy to see that qx(α− 1
2 )−α+1 is completely

monotonic on (0,∞) if α � 1
2 for q � 1. Since Fα(x;q−1) is completely monotonic

if α � g(q−1) for q � 1 and g(q−1) � 1
2 , then Fα(x;q−1) is completely monotonic

if α � 1
2 for q � 1. Since the product of two completely monotonic functions is also

completely monotonic, then Fα(x;q) is completely monotonic on (0,∞) if α � 1
2 for

q � 1 which concludes that Fα(x;q) is completely monotonic on (0,∞) if α � g(q)
when 0 < q < 1 and if α � 1

2 when q � 1.
Next, we assume that Fα(x;q) is completely monotonic on (0,∞) for q > 0. Then

we have for all x > 0 and q > 0

F ′
α(x;q)

Fα(x;q)
= ψq(x)− log[x]q− αqx logq

1−qx < 0
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or equivalently

α <
1−qx

qx logq
(ψq(x)− log[x]q)

When 0 < q < 1, (2.6) gives

lim
x→∞

1−qx

qx logq
(ψq(x)− log[x]q) = lim

x→∞

1−qx

logq

∞

∑
k=1

qx(k−1)(logqk +1−qk)
k(1−qk)

=
1

1−q
+

1
logq

= g(q)

When q � 1, (2.7) gives

lim
x→∞

1−qx

qx logq
(ψq(x)− log[x]q) = lim

x→∞

[
1−q−x

2
+

∞

∑
k=1

q−xk(q−x−1)(logq−k +1−q−k)
k(1−q−k)

]

=
1
2

These were proven the first statement.
In order to prove the second statement, we have g(y) > 0 when α � 1 and so

F ′
α(x;q) > 0 if α � 1 for 0 < q < 1. This yields that Fα(x;q) is increasing on (0,∞)

for 0 < q < 1. By differentiating (3.3) yields the function Fα(x;q) is logarithmically
concave on (0,∞) if α � 1 for 0 < q < 1. In fact, we have

d
dx

(qx(α− 1
2 )−α+1) = (α − 1

2
)(qx(α− 1

2 )−α+1) logq � 0, q � 1; α � 1
2

Therefore, by applying (3.3), the function Fα(x;q) is increasing and logarithmically
concave on (0,∞) for q � 1 if α � 1 and consequently the function Fα(x;q) is in-
creasing and logarithmically concave on (0,∞) for q > 0 if α � 1.

Conversely, let the function Fα(x;q) is increasing on (0,∞) for q > 0. Then we
have for all x > 0

F ′
α(x;q)

Fα(x;q)
= ψq(x)− log[x]q− αqx logq

1−qx > 0

or equivalently

α >
1−qx

qx logq
(ψq(x)− log[x]q). (3.5)

Using the recursive formula (2.8) and L’Hospital’s rule would yield

lim
x→0

1−qx

qx logq
(ψq(x)− log[x]q) = 1

which reveals that α � 1 for q > 0. The proof of second statement is completed.
Similarly, by using (3.3), (3.4) and (3.5), we can easily prove the third state-

ment. �
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COROLLARY 3.3. For all q > 0 , the double inequality

[b]b−1
q

[a]a−1
q

e
Li2(1−qb)−Li2(1−qa)

logq <
Γq(b)
Γq(a)

<
[b]

b− 1
2

q

[a]a−
1
2

q

e
Li2(1−qb)−Li2(1−qa)

logq (3.6)

is valid for all real numbers a and b where b > a > 0 .

Proof. From the monotonicity of the functions F1
2
(x;q) and F1(x;q) , we conclude

that
F1

2
(a;q) > F1

2
(b;q), b > a > 0

and
F1(a;q) < F1(b;q), b > a > 0

which give (3.6). This ends the proof. �

REMARK 3.4. When letting q → 1 to (3.6), we obtain the double inequality

bb−1

aa−1 ea−b <
Γ(b)
Γ(a)

<
bb− 1

2

aa− 1
2

ea−b (3.7)

which was established at the first time by J. D. Kečkić and P. M. Vasić [14] for b > a � 1
and extended to b > a > 0 by C.-P. Chen and F. Qi [9].

COROLLARY 3.5. For all q > 0 , the inequality

Γq(x) > [x]x−1
q exp

(
Li2(1−qx)

logq

)
(3.8)

holds for all x > 0 .

Proof. Using the recursive formula Γq(x+1) = [x]qΓq(x) and the definition (1.5)
yields limx→0 F1(x;q) = 1. From the increasing monotone of the function F1(x;q) , the
inequality (3.8) is obtained easily. �

COROLLARY 3.6. The function

Gα(x;q) = log[x]q−ψq(x)+
αqx logq
1−qx (3.9)

is completely monotonic on (0,∞) for 0 < q < 1 if and only if α � g(q) and for q � 1
if and only if α � 1

2 where g(q) defined as in (3.1); and the function −G′
α(x;q) is

completely monotonic on (0,∞) if and only if α � g(q̂) for q > 0 where q̂ = q if
0 < q < 1 and q̂ = q−1 if q � 1 . Also, the function

Hβ (x;q) = ψq(x)− log[x]q − βqx logq
1−qx (3.10)

is completely monotonic on (0,∞) for q > 0 if and only if β � 1 .

Proof. The proof comes immediately from the proof of Theorem 3.2 and noting
that G′

α(x;q−1) = G′
α(x;q) for all q � 1. �
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COROLLARY 3.7. Suppose that x is positive real number. Then the two-sided
inequalities

log[x]q +
βqx logq
1−qx < ψq(x) < log[x]q +

αqx logq
1−qx (3.11)

hold true for all β � 1 and

⎧⎨
⎩

α < g(q) if 0 < q < 1,

α <
1
2

if q > 1
with the best possible con-

stants β = 1 and

⎧⎨
⎩

α = g(q) if 0 < q < 1,

α =
1
2

if q > 1
where g(q) is defined as in (3.1). More-

over, the two-sided inequalities

(−1)r+1
(

logq
1−qx

)r

qxPr−2(qx)+ (−1)rβ
(

logq
1−qx

)r+1

qxPr−1(qx)

<(−1)rψ(r)
q (x)

<(−1)r+1
(

logq
1−qx

)r

qxPr−2(qx)+ (−1)rα
(

logq
1−qx

)r+1

qxPr−1(qx) (3.12)

hold for all β � 1 , α � g(q̂) and r ∈ N for all q > 0 with the best possible constants
β = 1 and α = g(q̂) for for q > 0 .

Proof. From the complete monotonicity of the functions in Corollary 3.6, we get
−H1(x;q) < 0 < Gg(q)(x;q) if 0 < q < 1 and −H1(x;q) < 0 < G 1

2
(x;q) if q � 1 which

are equivalent to (3.11). Also, we have

(−1)r+1G(r)
g(q̂)(x;q) < 0 < (−1)rH1(x;q)(r), r ∈ N

which is equivalent to (3.12) with using the relation

dn

dxn

[
qx logq
1−qx

]
=

(
logq
1−qx

)n+1

qxPn−1(qx), n ∈ N

which was proved by Moak ([16] Theorem 1), where Pk is a polynomial of degree k
satisfying

Pk(z) = (z− z2)P′
k−1(z)+ (kz+1)Pk−1(z), P0(z) = 1, Pk(1) = (k+1)!

for all k ∈ N . �
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