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SOME CLASSES OF COMPLETELY MONOTONIC FUNCTIONS
RELATED TO ¢g-GAMMA AND ¢-DIGAMMA FUNCTIONS

AHMED SALEM

(Communicated by N. Elezovic)

Abstract. In the paper, some classes of completely monotonic functions involving the g-gamma
and g-digamma functions are derived. The monotonicity properties of these functions are ex-
ploited to establish a double inequality for the ratio of the g-gamma function and a double
inequality for the g-digamma function. Moreover, a class of inequalities for the g-polygamma
functions is presented.

1. Introduction

A real-valued function f, defined on an interval I, is called completely monotonic,
if f has derivatives of all orders and satisfies

(=1 (x) >0, neNg={0,1,2,---}; xel (1.1)

If the inequality (1.1) is strict for all x € [ and for all n > 1, then f is said to be
strictly completely monotonic. These functions have numerous applications in various
branches, like, for instance, numerical analysis and probability theory.

A positive function f is said to be logarithmically completely monotonic on an
interval [ if its logarithm log f satisfies

(=1)"logf(x)]" =0, neN; xel. (1.2)

If inequality (1.2) is strict for all x € I and for all n > 1, then f is said to be strictly
logarithmically completely monotonic.

The notion of logarithmically completely monotonic functions was recovered by
Feng Qi and Bai-Ni Guo [22]. It has been proved once again in [8, 12, 23] that the
class of logarithmically completely monotonic functions is a subclass of the completely
monotonic functions. For more information, see ([19], p. 134, Section 1.3) and the
references given therein.

Anderson et al. [4] proved that the function

So(x) =x""T(x) (1.3)
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is decreasing and logarithmically convex from (0,cc) onto (v/27,0) when o = 4 and
is increasing and logarithmically concave from (0,0) onto (1,e) when o = 1 where
I'(x) is the Euler-gamma function defined as

m@:/zkkﬂm7 x>0 (1.4)
0

The monotonicity and convexity of fy(x) were slightly extended by Alzer [3] as fol-
lows: The function f,(x) is decreasing on (0,c) if and only if o < % and increasing
on (0,) if and only if o > 1. The logarithmically complete monotonicity of fi(x) is
equivalent to the complete monotonicity of the function

y(x) —logx+ %

and its negative, which was proved in [21], where y(x) is the so-called digamma (or
psi) function defined as the logarithmic derivative of the gamma function (1.4). Also,
the function (1.3) has been studied in a number of references such as the newly pub-
lished papers [11, 13], the survey article [20] and closely-related references therein.
The main purpose of this paper is to extend the previous results to the g-gamma
function for ¢ > 0 by means of studying the monotonicity properties of the following

function
_ Lip(1-¢")
Fo(x;q) = [x]g e Toed Ty(x) (L5)

where I'y(x) is the g-gamma function and Liy(x) is the dilogarithm function. The
following section will be devoted to present the definition of the g-gamma function
and related functions and formulas.

2. The g-gamma function

The g-gamma function is defined for positive real numbers x and g # 1 as [17]

. o l_qn+l
_ —X
Fy(x) =(1—4q) ,111)1—7(1"”’ 0<g<l1 (2.1)
and (1)
Lot 22 T — g
Tyx)=(q—-1)'"" 2 Qm: g>1 (22)

From the previous definitions, for a positive x and g > 1, we get

T,0)=q & 'T,1(x). (2.3)

The close connection between the ordinary gamma function (1.4) and the g-gamma
function is given by the limit relations

nmqwznmngnmz/ﬁ*ﬁm. (2.4)
g—1- g—1t 0
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Many of the classical facts about the ordinary gamma function have been extended to
the g-gamma function (see [5, 16, 17, 18] and the references given therein). Numerous
papers appeared providing inequalities for the g-gamma function and its logarithmic
derivatives. Many properties of the g-gamma function and some developments in this
area are givenin [2, 6, 7, 10, 24,25, 26, 27, 28, 29, 31] and the references given therein.
The logarithmic derivative of the g-gamma function is the so-called g-digamma (g -psi)
function denoted by v,

Vale) = 5 1o8T () = £ 25)

From (2.1), we get for 0 < ¢ < 1 and for all real variable x > 0

o kx
q
¥y (x) = —log(1 —g) +logg Y, s (2.6)
k=1
and from (2.2) we obtain for ¢ > 1 and x > 0

V() = —log(g— 1) +logg [x—%— > ] . (2.7)
k=1

—kx
_ gk

Krattenthaler and Srivastava [15] proved that y,(x) tends to y/(x) when letting ¢ — 1.
Some properties and expansions associated with the g-digamma function have been
derived in [30]. Among these results, we need the recursive formula

q'logg
1—g* ’

yo(x+1) = yu(x) — qg>0; x>0. (2.8)
In the previous section, we mentioned another two concepts without definitions. The
first is the symbol [x], which is the basic number defined as

l—q*
= — 1. 2.9
Mq 1— q ’ q 7é ( )
The second is the dilogarithm function Li;(z) which is defined for complex argument
zas|[l]

Liz(z):—/oqogii_t)dt, Z & (1,00), (2.10)

An important recursive formula for the dilogarithm function that we need, can be de-
rived as

—1 1
Lip (z_) =—Li2(1—z)—§10g22. (2.11)
z

Also, we see that
m Lir(1—¢")

= —x. 2.12
g—1 logg . ( )
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3. The main results

In this section, we investigate the monotonicity and complete monotonicity prop-
erties for functions involving the g-gamma function and consequently, we establish
sharp double inequalities for the g-gamma and the g-polygamma functions.

LEMMA 3.1. Let 0 <y < 1. Then the function
1

1
=—+— 3.1
0= 15 o (3.1)

is decreasing on (0,1) and % < g(y) < 1.
Proof. Differentiation gives
oy Ylog?y = (1-y)?
ylog?y(1—y)?

which can be represented as

=

oy —y log"(1/y)

where A (n) =2"—n®>+n—2, n>2. Itis not difficult to see that A’ (n) =2"—2 >0
for all n > 2 where A is the forward shift operator. Since AA(2) = A(2) =0, then
A(n) >0 forall n>2 and so g(y) is decreasing on (0,1). Using I’Hopital’s rule gives
the bounds of g(y). O

THEOREM 3.2. Let x,q and o be real numbers such that x,q > 0. The function
Fo(x;q) as defined in (1.5) satisfies the following monotonicity properties:

1. The function Fy(x;q) is completely monotonic on (0,0) if and only if o < g(q)
when 0 < g < | and if and only if o < % when g > 1 where g(y) defined as in
(3.1).

2. The function Fg(x;q) is increasing and logarithmically concave on (0,o0) if and
onlyif o > 1 forall g > 0.

3. The function [Fy(x;q)]~" is completely monotonic on (0,) if and only if o > 1
forall g > 0.

Proof. Logarithmic differentiaion yields

d aqg*logg
7 108 Fu(x1q)} = yy(x) —loglx, — T (32)
When 0 < g < 1, the relation (2.6), Taylor series of logarithm function and binomial
theorem give

d o g% k

—{log Fy(x; = _— ,y), = 33
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where
flo,y) =logy+ (1 —y)—a(l—y)logy

It is clear that the function o — f(ct,y) is increasing on R for each fixed y € (0,1).
Also, we have

“ log"
f(0,y) =logy+1—y=—y W(n—l) <0
n=2 :

and (1)

o log"(1/y

f(L,y) =ylogy+1 —y=yZ2T >0
n—=

which lead to the function f(a,y) has just one zero depends on y at oc = g(y) where
g(y) is defined in (3.1). In view of the result obtained by Lemma 3.1 and the previous
notes, we have to take o < g(g) to ensure that f(o, y) <0 forall y=g*; k€N and
to take o > 1 to ensure that f(a,y) > 0 for all y = ¢¥; k € N. This reveals that

K 2log a7

7 g(d) >0,  a<g(g)

k
(—1)"llog Fu(x:)] " qu

which concludes that Fy(x;q) is logarithmically completely monotonic on (0,c) if
o < g(g) and 0 < g < 1. Since any (strictly) logarithmically completely monotonic
function is also (strictly) completely monotonic, then the function Fy(x;q) is com-
pletely monotonic on (0,c0) if ot < g(¢) and 0 < g < 1.

When g > 1, (2.3) gives

Li2<q7:1) (—1)(x—2)
Fa(xq) =" VIR0 g2 T ()
7Li2(l—q’¥)
— e D et T ()
=" Fy (g7 (3.4)
Here, we used the identity (2 11). It is easy to see that q"(""%)""*l is completely
monotonic on (0,) if o < 5 for q=> 1 Since Fg(x;q~") is completely monotonic
if o < g( ) for ¢ > 1 and g(qg™") = 1, then Fy(x;q7") is completely monotonic

if o < 4 5 for g > 1. Since the product of two completely monotonic functions i 1s also
completely monotonic, then Fy(x;¢) is completely monotonic on (0,0) if o < § for
q > 1 which concludes that Fy(x;q) is completely monotonic on (0,c0) if o < g(g)
when 0 < ¢ <1 andif o < § when ¢ > 1.

Next, we assume that F (x;¢q) is completely monotonic on (0,ee) for ¢ > 0. Then
we have forall x >0 and ¢ >0

aq"logq

<0
l1—g¢
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or equivalently

l-¢
< 7logq ———(yy(x) — log[x]g)
When 0 < g < 1, (2.6) gives
o 1-q L 1-q" &g (loggt +1-4Y
lim x) —loglx|,) = lim
ot xlqu(Wq( ) [ L{) fraront logq kgl k(l—qk)
1 1
= :}4‘@ =g(q)
When g > 1, (2.7) gives
lim =7 (1, () — loglal,) — lim | =9 4 3 4@~ Dllogg “+1-47%)
% glogq TS T2 T A kK1-q75)
1
2

These were proven the first statement.

In order to prove the second statement, we have g(y) > 0 when a > 1 and so
F(x;q) >0 if a > 1 for 0 < g < 1. This yields that Fy(x;q) is increasing on (0,c°)
for 0 < g < 1. By differentiating (3.3) yields the function Fy(x;q) is logarithmically
concave on (0,00) if o > 1 for 0 < g < 1. In fact, we have

4
dx

(D) = (@ (@D logg 20, g1 >
Therefore, by applying (3.3), the function Fy(x;¢) is increasing and logarithmically
concave on (0,c0) for ¢ > 1 if o > 1 and consequently the function Fy(x;q) is in-
creasing and logarithmically concave on (0,0) for ¢ >0 if ot > 1.

Conversely, let the function Fy(x;q) is increasing on (0,e) for ¢ > 0. Then we
have for all x > 0

F(x:q) oq'logg logq
Fa(x; ) _V/Q(x)_lo [L{ 1_ >0
or equivalently
(1) gl ). (33)

Using the recursive formula (2.8) and L"Hospital’s rule would yield

. q'

lim 1 =1

lim qxlogq(llfq( x) —log[x],)

which reveals that o > 1 for g > 0. The proof of second statement is completed.
Similarly, by using (3.3), (3.4) and (3.5), we can easily prove the third state-

ment. [
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COROLLARY 3.3. Forall g > 0, the double inequality

_1
[b]gfleLiz(lfqbl)ofgf]iz(lfq”) - Fq(b) - [b]l,; 2 eLiz(lfqbl)O;]iz(lﬂl“) (3.6)
a—1 T _1 :
la]g q(a) [“]Z 2

is valid for all real numbers a and b where b > a > 0.

Proof. From the monotonicity of the functions F 1 (x;q) and F)(x;q), we conclude
that
Fi(a:q) > Fy(biq),  b>a>0
and
Fi(a;q) < Fi(bsq), b>a>0
which give (3.6). This ends the proof. [

REMARK 3.4. When letting ¢ — 1 to (3.6), we obtain the double inequality
pb-1 r(b) b2
7leu7b< ( ) < ' a—b
a“ INCORNPES
which was established at the first time by J. D. Kecki¢ and P. M. Vasi¢ [14] for b>a > 1
and extended to b > a > 0 by C.-P. Chen and F. Qi [9].

COROLLARY 3.5. Forall g > 0, the inequality

T (x) > x5 exp (Liizg g—qq"))

(3.7)

(3.8)

holds for all x > 0.

Proof. Using the recursive formula I';(x+ 1) = [x],I"y(x) and the definition (1.5)
yields lim,_¢ F}(x;q) = 1. From the increasing monotone of the function F (x;q), the
inequality (3.8) is obtained easily. [

COROLLARY 3.6. The function

aq*logg

1—g*
is completely monotonic on (0,e0) for 0 < q <1 ifand only if a < g(q) and for g > 1
if and only if o < % where g(q) defined as in (3.1); and the function —G,/(x;q) is
completely monotonic on (0,%) if and only if o < g(§) for ¢ > 0 where § = q if
0<g<land §=q " if g=> 1. Also, the function

Ga(xq) = loglxy — yy(x) + (3.9)

Bq*logg
Hg (x;q) = yy(x) — log[x]y — T (3.10)
is completely monotonic on (0,0) for ¢ > 0 if and only if B > 1.
Proof. The proof comes immediately from the proof of Theorem 3.2 and noting
that G, (x;q~ ') = Gl(x;q) forall g > 1. O
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COROLLARY 3.7. Suppose that x is positive real number. Then the two-sided
inequalities

Pa'loeq < yy(x )<10g[x}q+7aqxlogq

> o (3.11)

log[x]q +

a<glg) if 0<g<l,
hold true for all B > 1 and 1 with the best possible con-
o< 5 if g>1
a=g(q) if 0<q<l,
stants B =1 and 1 where g(q) is defined as in (3.1). More-
o== if g>1
over, the two-sided inequalities

1 (124 i)+ 178 (122) i)

< (1)) ()

r+1
< (2L epaer+ e (2L) et Ga2)

hold forall B > 1, o0 < g(§) and r € N for all g > 0 with the best possible constants
B =1 and o = g(§) for for ¢ > 0.

Proof. From the complete monotonicity of the functions in Corollary 3.6, we get
—Hi(x:9) <0 < Gyg)(x:9) if 0< g <1and —H\(x;9) <0< G| (x;q) if g > 1 which
are equivalent to (3.11). Also, we have

(x:9) <0< (—1)H(x;9)", reN

which is equivalent to (3.12) with using the relation

lo lo il
ﬁ["f_f]f]:(l_gjx) CPr(q),  neN

which was proved by Moak ([16] Theorem 1), where P is a polynomial of degree k
satisfying

P(2) = (=D (&) + (ke + DP(),  R(2) =1, P(1)=(k+1)!

forall ke N. O
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