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Abstract. Let Ω ∈ Lq(Sn−1) be a homogeneous function of degree zero with q > 1 and have
a mean value zero on Sn−1 . In this paper, we study the boundedness of the singular integral
operators with rough kernels TΩ and their commutators [b,TΩ ] on generalized weighted Morrey
spaces Mp,ϕ (w) . We find the sufficient conditions on the pair (ϕ1,ϕ2) with q′ � p < ∞ , p �= 1

and w ∈ Ap/q′ or 1 < p < q and w1−p′ ∈ Ap′/q′ which ensures the boundedness of the operators
TΩ from one generalized weighted Morrey space Mp,ϕ1 (w) to another Mp,ϕ2 (w) for 1 < p < ∞ .
We find the sufficient conditions on the pair (ϕ1,ϕ2) with b∈BMO(Rn) and q′ � p < ∞ , p �= 1 ,
w ∈ Ap/q′ or 1 < p < q , w1−p′ ∈ Ap′/q′ which ensures the boundedness of the operators [b,TΩ ]
from Mp,ϕ1 (w) to Mp,ϕ2 (w) for 1 < p < ∞ . In all cases the conditions for the boundedness of
the operators TΩ , [b,TΩ ] are given in terms of Zygmund-type integral inequalities on (ϕ1,ϕ2)
and w , which do not assume any assumption on monotonicity of ϕ1(x,r), ϕ2(x,r) in r .

1. Introduction

It is well-known that the commutator is an important integral operator and it plays
a key role in harmonic analysis. In 1965, Calderon [3, 4] studied a kind of commutators,
appearing in Cauchy integral problems of Lip-line. Let K be a Calderón-Zygmund sin-
gular integral operator and b ∈ BMO(Rn) . A well known result of Coifman, Rochberg
and Weiss [7] states that the commutator operator [b,K] f = K(b f )−bK f is bounded
on Lp(Rn) for 1 < p < ∞ . The commutator of Calderón-Zygmund operators plays
an important role in studying the regularity of solutions of elliptic partial differential
equations of second order (see, for example, [5, 6, 8, 10, 11]).

The classical Morrey spaces were originally introduced by Morrey in [27] to study
the local behavior of solutions to second order elliptic partial differential equations.
For the properties and applications of classical Morrey spaces, we refer the readers to
[10, 11, 14, 27]. Mizuhara [26] introduced generalized Morrey spaces. Later, Guliyev
[14] defined the generalized Morrey spaces Mp,ϕ with normalized norm. Recently,
Komori and Shirai [23] considered the weighted Morrey spaces Lp,κ(w) and studied
the boundedness of some classical operators such as the Hardy-Littlewood maximal
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operator, the Calderón-Zygmund operator on these spaces. Guliyev [15] gave a concept
of generalized weighted Morrey space Mp,ϕ(w) which could be viewed as extension of
both generalized Morrey space Mp,ϕ and weighted Morrey space Lp,κ(w) . In [15]
Guliyev also studied the boundedness of the classical operators and its commutators in
these spaces Mp,ϕ(w) , see also Guliyev et al. [19, 20, 22].

Watson [30] and independently by Duoandikoetxea [9] established weighted Lp

boundedness for the singular integral operators with rough kernels and their commuta-
tors.

Let Sn−1 = {x ∈ R
n : |x| = 1} the unit sphere of R

n (n � 2) equipped with the
normalized Lebesgue measure dσ = dσ(x′) .

Suppose that Ω satisfies the following conditions.
(i) Ω is a homogeneous function of degree zero on R

n . That is,

Ω(tx) = Ω(x) (1.1)

for all t > 0 and x ∈ R
n .

(ii) Ω has mean zero on Sn−1 . That is,

∫
Sn−1

Ω(x′)dσ(x′) = 0, (1.2)

where x′ = x/|x| for any x �= 0.
The singular integral operator with homogeneous kernel TΩ is defined by

TΩ( f )(x) = p.v.
∫

Rn

Ω(x− y)
|x− y|n f (y)dy, (1.3)

where Ω is homogeneous of degree zero.
Suppose that TΩ is a singular integral operator defined by (1.3). Let Ω be a ho-

mogeneous of degree zero on R
n . Let TΩ,ε is the truncated operator of TΩ defined

by

TΩ,ε( f )(x) =
∫
{y∈Rn:|x−y|�ε}

Ω(x− y)
|x− y|n f (y)dy, ε > 0. (1.4)

Then the operator of T ∗
Ω defined by

T ∗
Ω( f )(x) = sup

ε>0

∣∣∣TΩ,ε ( f )(x)
∣∣∣ (1.5)

is called the maximal singular integral operator. Therefore, it will be an interesting thing
to study the property of T ∗

Ω . The main purpose of this paper is to show that singular
integral operators with rough kernels TΩ are bounded from one generalized weighted
Morrey space Mp,ϕ1(w) to another Mp,ϕ2(w) , 1 < p < ∞ .

The commutator of the singular integral operators with rough kernels TΩ is defined
by

[b,TΩ]( f )(x) = p.v.
∫

Rn
[b(x)−b(y)]

Ω(x− y)
|x− y|n f (y)dy. (1.6)
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Let f ∈ Lloc
1 (Rn) . The maximal operator with rough kernel MΩ is defined by

MΩ f (x) = sup
t>0

|B(x,t)|−1
∫

B(x,t)
|Ω(x− y)| | f (y)|dy.

It is obvious that when Ω ≡ 1, MΩ is the Hardy-Littlewood maximal operator M .
For b ∈ Lloc

1 (Rn) the commutator of the maximal operator MΩ,b is defined by

MΩ,b f (x) = sup
t>0

|B(x,t)|−1
∫

B(x,t)
|b(x)−b(y)| |Ω(x− y)| | f (y)|dy. (1.7)

We find the sufficient conditions on the pair (ϕ1,ϕ2) with b∈ BMO(Rn) and q′ �
p < ∞ , p �= 1, w ∈ Ap/q′ or 1 < p < q , w1−p′ ∈ Ap′/q′ which ensures the boundedness
of the commutator operators [b,TΩ] from Mp,ϕ1(w) to Mp,ϕ2(w) for 1 < p < ∞ . Note
that, in [17] was studied the boundedness of the singular integral operators with rough
kernels TΩ and its commutators [b,TΩ] on generalized Morrey spaces Mp,ϕ .

2. Preliminaries

Next we will give the weighted boundedness of singular integral operator TΩ with
rough kernel and the corresponding maximal operator T ∗

Ω . In the proof of the weighted
boundedness of the Calderon-Zygmund singular integral operator, used the technique
of good-λ inequality. For singular integral operators with homogeneous kernel, in the
proof of their weighted boundedness essentially still use this inequality. Since the ker-
nel of singular integral operator with rough kernel does not have any smoothness on the
unit sphere, the good-λ inequality is not applicable. In order to deal with this prob-
lem, Duoandikoetxea and Rubio de Francia synthetically used the Fourier transform
estimate, weighted Littlewood-Paley theory and Stein-Weiss interpolation method with
change of measure, then obtained the weighted boundedness of TΩ and T ∗

Ω . In their
proof, the weighted boundedness of the maximal operator TΩ with rough kernel (for its
definition, see (1.7)) is needed, while the latter itself is of great significance.

THEOREM 1. ([9]) Suppose that Ω satisfies the conditions (1.1) and Ω∈Lq(Sn−1) ,
1 < q � ∞ . Then for every q′ � p < ∞ , p �= 1 and w ∈ Ap/q′ or 1 < p � q, p �= ∞ and

w1−p′ ∈ Ap′/q′ , there is a constant C independent of f such that

‖MΩ( f )‖Lp,w � C‖ f‖Lp,w .

THEOREM 2. ([2]) Suppose that Ω satisfies the conditions (1.1) and Ω∈Lq(Sn−1) ,
1 < q � ∞ . Let also b ∈ BMO(Rn) . Then for every q′ � p < ∞ , p �= 1 and w ∈ Ap/q′

or 1 < p � q, p �= ∞ and w1−p′ ∈ Ap′/q′ , there is a constant C independent of f such
that

‖MΩ,b( f )‖Lp,w � C‖ f‖Lp,w .
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THEOREM 3. ([9, 30]) Suppose that Ω satisfies the conditions (1.1), (1.2) and
Ω ∈ Lq(Sn−1) , 1 < q � ∞ . Then for every q′ � p < ∞ , p �= 1 and w ∈ Ap/q′ or

1 < p � q, p �= ∞ and w1−p′ ∈ Ap′/q′ , there is a constant C independent of f such that

‖TΩ( f )‖Lp,w � C‖ f‖Lp,w .

THEOREM 4. ([9, 30]) Suppose that Ω satisfies the conditions (1.1), (1.2) and
Ω ∈ Lq(Sn−1) , 1 < q � ∞ . Let also b ∈ BMO(Rn) . Then for every q′ � p < ∞ ,
p �= 1 and w ∈ Ap/q′ or 1 < p � q, p �= ∞ and w1−p′ ∈ Ap′/q′ , there is a constant C
independent of f such that ∥∥[b,TΩ]( f )

∥∥
Lp,w

� C‖ f‖Lp,w .

We will use the following statements on the boundedness of the weighted Hardy
operators

Hwg(r) :=
∫ ∞

r
g(t)w(t)dt, 0 < t < ∞

and
H∗

wg(r) :=
∫ ∞

r

(
1+ ln

t
r

)
g(t)w(t)dt, 0 < t < ∞,

where w is a fixed function non-negative and measurable on (0,∞) .
The following theorem was proved in [17, 18].

THEOREM 5. ([17, 18]) Let v1 , v2 and w be positive almost everywhere and
measurable functions on (0,∞) . The inequality

ess sup
t>0

v2(t)Hwg(t) � Cess sup
t>0

v1(t)g(t) (2.1)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := ess sup
t>0

v2(t)
∫ ∞

t

w(s)ds
ess sup
s<τ<∞

v1(τ)
< ∞.

Moreover, the value C = B is the best constant for (2.1).

The following theorem was proved in [15].

THEOREM 6. ([15]) Let v1 , v2 and w be positive almost everywhere and mea-
surable functions on (0,∞) . The inequality

ess sup
r>0

v2(r)H∗
wg(r) � Cess sup

r>0
v1(r)g(r) (2.2)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := sup
r>0

v2(r)
∫ ∞

r

(
1+ ln

t
r

) w(t)dt
supt<s<∞ v1(s)

< ∞. (2.3)

Moreover, the value C = B is the best constant for (2.1).
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REMARK 1. In (2.1)–(2.3) it is assumed that 0 ·∞ = 0.

By A � D we mean that A � CD with some positive constant C independent of
appropriate quantities. If A � D and D � A , we write A ≈ D and say that A and D are
equivalent.

3. Generalized weighted Morrey spaces

The classical Morrey spaces Mp,λ were originally introduced by Morrey in [27]
to study the local behavior of solutions to second order elliptic partial differential equa-
tions. For the properties and applications of classical Morrey spaces, we refer the read-
ers to [12, 24].

We denote by Mp,λ ≡ Mp,λ (Rn) the Morrey space, the space of all functions f ∈
Lloc

p (Rn) with finite quasinorm

‖ f‖Mp,λ
= sup

x∈Rn, r>0
r−

λ
p ‖ f‖Lp(B(x,r)),

where 1 � p < ∞ and 0 � λ � n .
Note that Mp,0 = Lp(Rn) and Mp,n = L∞(Rn) . If λ < 0 or λ > n , then Mp,λ = Θ ,

where Θ is the set of all functions equivalent to 0 on R
n .

We recall that a weight function w is in the Muckenhoupt class Ap [28], 1 < p <
∞ , if

[w]Ap : = sup
B

[w]Ap(B)

= sup
B

(
1
|B|

∫
B
w(x)dx

)(
1
|B|

∫
B
w(x)1−p′dx

)p−1

, (3.1)

where the sup is taken with respect to all the balls B and 1
p + 1

p′ = 1. Note that, for all
balls B using Hölder’s inequality, we have that

[w]1/p
Ap(B) = |B|−1‖w‖1/p

L1(B)‖w−1/p‖Lp′ (B) � 1. (3.2)

For p = 1, the class A1 is defined by the condition Mw(x) � Cw(x) with [w]A1 =
sup
x∈Rn

Mw(x)
w(x) , and for p = ∞ A∞ =

⋃
1�p<∞ Ap and [w]A∞ = inf

1�p<∞
[w]Ap .

REMARK 2. It is known that

w1−p′ ∈ Ap′/q′ ⇒ [w1−p′ ]q
′/p′

Ap′/q′ (B) = |B|−1‖w1−p′‖q′/p′
L1(B)‖wq′/p‖L(p′/q′)′ (B).

Moreover, we can write w1−p′ ∈ Ap′/q′ ⇒w1−p′ ∈ Ap′ because of w1−p′ ∈ Ap′/q′ ⊂
Ap′ . Therefore, we get

w1−p′ ∈ Ap′/q′ ⇒ w1−p′ ∈ Ap′

⇒ [w1−p′ ]1/p′
Ap′ (B) = |B|−1‖w1−p′‖1/p′

L1(B) ‖w1/p‖Lp(B). (3.3)

But the opposite is not true.
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REMARK 3. Let’s write w1−p′ ∈ Ap′/q′ and used the definitions Ap classes we get
the following

w1−p′ ∈ Ap′/q′ ⇒ [w1−p′ ]
q(p−1)
p(q−1)
Ap′/q′

= |B|−1‖w1−p′‖
q(p−1)
p(q−1)
L1(B) ‖wq′/p‖L(p′/q′)′ (B)

⇒ [w1−p′ ]1/p′
Ap′/q′

= |B|− q−1
q ‖w1−p′‖1/p′

L1(B)‖w‖
1/p
L q

q−p (B)
, (3.4)

where the following equalities are provided.

1− p′ = − p′

p
,

q′

p
=

q
p(q−1)

,
q′

p′
=

q(p−1)
p(q−1)

,

(
q
p

)′
=

q
q− p

,

(
p′

q′

)′
=

p(q−1)
q− p

.

Then from eq. (3.3) and eq. (3.4) we have

w1−p′ ∈ Ap′/q′ ⇒ [w1−p′ ]1/p′
Ap′/q′

= |B| 1
q [w1−p′ ]1/p′

Ap′ (B) ‖w1/p‖−1
Lp(B) ‖w‖

1/p
L q

q−p (B)
. (3.5)

DEFINITION 1. ([14]) Let ϕ(x,r) be a positive measurable function on R
n ×

(0,∞) and 1 � p < ∞ . We denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space,
the space of all functions f ∈ Lloc

p (Rn) with finite quasinorm

‖ f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x,r)−1 |B(x,r)|− 1
p ‖ f‖Lp(B(x,r)).

Also by WMp,ϕ ≡ WMp,ϕ(Rn) we denote the weak generalized Morrey space of all
functions f ∈WLloc

p (Rn) for which

‖ f‖WMp,ϕ = sup
x∈Rn,r>0

ϕ(x,r)−1 |B(x,r)|− 1
p ‖ f‖WLp(B(x,r)) < ∞,

where WLp(B(x,r)) denotes the weak Lp -space consisting of all measurable functions
f for which

‖ f‖WLp(B(x,r)) ≡ ‖ f χ
B(x,r)‖WLp(Rn) < ∞.

Also the spaces Lloc
p (Rn) and WLloc

p (Rn) endowed with the natural topology are de-
fined as the sets of all functions f such that f χB ∈ Lp(Rn) and f χB ∈WLp(Rn) for all
balls B ⊂ R

n , respectively.

According to this definition, we recover the space Mp,λ under the choice ϕ(x,r) =

r
λ−n

p :
Mp,λ = Mp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p

,

WMp,λ = WMp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p

.

We define the generalized weighed Morrey spaces as follows.
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DEFINITION 2. ([15]) Let 1 � p < ∞ , ϕ be a positive measurable function on
R

n×(0,∞) and w be non-negativemeasurable function on R
n . We denote by Mp,ϕ(w)

the generalized weighted Morrey space, the space of all functions f ∈ Lloc
p,w(Rn) with

finite norm

‖ f‖Mp,ϕ (w) = sup
x∈Rn,r>0

ϕ(x,r)−1 w(B(x,r))−
1
p ‖ f‖Lp,w(B(x,r)),

where Lp,w(B(x,r)) denotes the weighted Lp -space of measurable functions f for
which

‖ f‖Lp,w(B(x,r)) ≡ ‖ f χ
B(x,r)‖Lp,w(Rn) =

(∫
B(x,r)

| f (y)|pw(y)dy

) 1
p

.

Furthermore, by WMp,ϕ(w) we denote the weak generalized weighted Morrey
space of all functions f ∈WLloc

p,w(Rn) for which

‖ f‖WMp,ϕ (w) = sup
x∈Rn,r>0

ϕ(x,r)−1 w(B(x,r))−
1
p ‖ f‖WLp,w(B(x,r)) < ∞,

where WLp,w(B(x,r)) denotes the weak Lp,w -space of measurable functions f for
which

‖ f‖WLp,w(B(x,r)) ≡ ‖ f χ
B(x,r)‖WLp,w(Rn) = sup

t>0
t

(∫
{y∈B(x,r): | f (y)|>t}

w(y)dy

) 1
p

.

REMARK 4.
(1) If w ≡ 1, then Mp,ϕ(1) = Mp,ϕ is the generalized Morrey space.

(2) If ϕ(x,r) ≡ w(B(x,r))
κ−1

p , then Mp,ϕ(w) = Lp,κ(w) is the weighted Morrey
space.

(3) If ϕ(x,r) ≡ v(B(x,r))
κ
p w(B(x,r))−

1
p , then Mp,ϕ(w) = Lp,κ(v,w) is the two

weighted Morrey space.

(4) If w ≡ 1 and ϕ(x,r) = r
λ−n

p with 0 < λ < n , then Mp,ϕ(w) = Lp,λ (Rn) is
the classical Morrey space and WMp,ϕ(w) = WLp,λ (Rn) is the weak Morrey space.

(5) If ϕ(x,r)≡w(B(x,r))−
1
p , then Mp,ϕ(w)= Lp,w(Rn) is the weighted Lebesgue

space.

Suppose that TΩ represents a linear or a sublinear operator, such that that for any
f ∈ L1(Rn) with compact support and x /∈ supp f

|TΩ f (x)| � c0

∫
Rn

|Ω(x− y)|
|x− y|n | f (y)|dy, (3.6)

where c0 is independent of f and x .
For a function b , suppose that the commutator operator TΩ,b represents a linear or

a sublinear operator, such that for any f ∈ L1(Rn) with compact support and x /∈ supp f

|TΩ,b f (x)| � c0

∫
Rn

|b(x)−b(y)| |Ω(x− y)|
|x− y|n | f (y)|dy, (3.7)
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where c0 is independent of f and x .
We point out that the condition (3.6) in the case Ω ≡ 1 was first introduced by

Soria and Weiss in [29]. The condition (3.6) are satisfied by many interesting operators
in harmonic analysis, such as the Calderón-Zygmund operators, Carleson’s maximal
operator, Hardy–Littlewood maximal operator, C. Fefferman’s singular multipliers, R.
Fefferman’s singular integrals, Ricci-Stein’s oscillatory singular integrals, the Bochner–
Riesz means and so on (see [25], [29] for details).

The following statement, was proved in [22], see also [15, 19].

THEOREM 7. Let 1 � p < ∞ , w ∈ Ap and (ϕ1,ϕ2) satisfy the condition

∫ ∞

r

ess inf
t<τ<∞

ϕ1(x,τ)w(B(x,τ))
1
p

w(B(x,t))
1
p

dt
t

� Cϕ2(x,r), (3.8)

where C does not depend on x and r . Let T ≡ T1 be a sublinear operator satisfy-
ing condition (3.6) with Ω ≡ 1 bounded on Lp,w(Rn) for p > 1 , and bounded from
L1,w(Rn) to WL1,w(Rn) . Then the operator T is bounded from Mp,ϕ1(w) to Mp,ϕ2(w)
for p > 1 and from M1,ϕ1(w) to WM1,ϕ2(w) .

The following statement, was proved in [19], see also [15].

THEOREM 8. Let 1 < p < ∞ , w ∈ Ap , b ∈ BMO(Rn) and (ϕ1,ϕ2) satisfy the
condition

∫ ∞

r

(
1+ ln

t
r

) ess inf
t<τ<∞

ϕ1(x,τ)w(B(x,τ))
1
p

w(B(x,t))
1
p

dt
t

� Cϕ2(x,r), (3.9)

where C does not depend on x and r . Let Tb ≡ T1,b be a sublinear commutator opera-
tor satisfying condition (3.7) with Ω ≡ 1 bounded on Lp,w(Rn) . Then the operator Tb

is bounded from Mp,ϕ1(w) to Mp,ϕ2(w) .

Note that, in the case w = 1 Theorem 7 was proved in [16] and for the operators
M and K in [1].

4. Singular integral operator with rough kernels TΩ in the spaces Mp,ϕ(w)

In the following lemma we get local estimate (see, for example, [13, 14] in the
case w = 1 and [15] in the case w ∈ Ap ) for the operator TΩ .

LEMMA 1. Suppose that Ω be satisfies the conditions (1.1), (1.2) and Ω∈Lq(Sn−1) ,
1 < q � ∞ .

If q′ � p < ∞ , p �= 1 and w ∈ Ap/q′ , then the inequality

‖TΩ( f )‖Lp,w(B(x0,r)) � w(B(x0,r))
1
p

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) w(B(x0,t))

− 1
p

dt
t
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holds for any ball B(x0,r) , and for all f ∈ Lloc
p,w(Rn) .

If 1 < p � q, p �= ∞ and w1−p′ ∈ Ap′/q′ , then the inequality

‖TΩ( f )‖Lp,w(B(x0,r)) � ‖w‖1/p
L q

q−p (B(x0 ,r))

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) ‖w‖

−1/p
L q

q−p (B(x0 ,t))

dt
t

holds for any ball B(x0,r) , and for all f ∈ Lloc
p,w(Rn) .

Proof. Let Ω be satisfies the conditions (1.1), (1.2) and Ω∈ Lq(Sn−1) , 1 < q � ∞ .
Note that

‖Ω(x−·)‖Lq(B(x0,t)) =
(∫

B(x−x0,t)
|Ω(y)|qdy

) 1
q

�
(∫

B(0,t+|x−x0|)
|Ω(y)|qdy

) 1
q

(4.1)

=
(∫ t+|x−x0|

0
rn−1dr

∫
Sn−1

|Ω(y′)|qdσ(y′)
) 1

q

= c0 ‖Ω‖Lq(Sn−1) |B(0,t + |x− x0|)|
1
q ,

where c0 = (nvn)
−1/q and vn = |B(0,1)| .

For arbitrary x0 ∈ R
n, set B = B(x0,r) for the ball centered at x0 and of radius r ,

2B = B(x0,2r). We represent f as

f = f1 + f2, f1(y) = f (y)χ2B(y), f2(y) = f (y)χ�(2B)
(y), r > 0 (4.2)

and have
‖TΩ( f )‖Lp,w(B) � ‖TΩ( f1)‖Lp,w(B) +‖TΩ( f2)‖Lp,w(B).

Since f1 ∈ Lp,w(Rn) , TΩ ( f1) ∈ Lp,w(Rn) and from the boundedness of TΩ in
Lp,w(Rn) for w ∈ Ap/q′ and q′ � p < ∞ , p �= 1 (see Theorem 3) it follows that

‖TΩ ( f1)‖Lp,w(B) � ‖TΩ ( f1)‖Lp,w(Rn)

� ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′
‖ f1‖Lp,w(Rn)

≈ ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′
‖ f‖Lp,w(2B).

It’s clear that x ∈ B , y ∈ �
(2B) implies 1

2 |x0 − y| � |x− y| � 3
2 |x0 − y| . Then by

the Minkowski inequality and conditions on Ω , we get

TΩ( f2(x)) �
∫

�(2B)

|Ω(x− y)|| f (y)|
|x0 − y|n dy.
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By Fubini’s theorem we have

∫
�(2B)

|Ω(x− y)|| f (y)|
|x0 − y|n dy ≈

∫
�(2B)

|Ω(x− y)| | f (y)|
∫ ∞

|x−y|
dt

tn+1 dy

=
∫ ∞

2r

∫
2r�|x0−y|<t

|Ω(x− y)| | f (y)|dy
dt

tn+1

�
∫ ∞

2r

∫
B(x0,t)

|Ω(x− y)| | f (y)|dy
dt

tn+1 .

By applying Hölder’s inequality for q′ � p < ∞ , p �= 1 and w ∈ Ap/q′ , we get

∫
�(2B)

|Ω(x− y)| | f (y)|
|x0 − y|n dy �

∫ ∞

2r
‖Ω(x−·)‖Lq(B(x0,t)) ‖ f‖Lq′ (B(x0,t))

dt
tn+1

� ‖Ω‖Lq(Sn−1)

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) ‖w−q′/p‖

1
q′
L(p/q′)′ (B(x0,t))

|B(0,t + |x− x0|)|
1
q

dt
tn+1

� ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′

∫ ∞

2r
‖ f‖Lp,w(B(x,t)) w(B(x0,t))

− 1
p |B(x0,t)|

1
q′ |B(0,t)| 1

q
dt

tn+1

≈ ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′

∫ ∞

2r
‖ f‖Lp,w(B(x0,t))w(B(x0,t))

− 1
p

dt
t

. (4.3)

Moreover, for all q′ � p < ∞ , p �= 1 the inequality

‖TΩ ( f2)‖Lp,w(B) � ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′
w(B)

1
p

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) w(B(x0,t))

− 1
p

dt
t

.

is valid. Thus

‖TΩ( f )‖Lp,w(B)

� ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′

(
‖ f‖Lp,w(2B) +w(B)

1
p

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) w(B(x0,t))

− 1
p

dt
t

)
.

On the other hand,

‖ f‖Lp,w(2B) ≈ |B|‖ f‖Lp,w(2B)

∫ ∞

2r

dt
tn+1

� |B|
∫ ∞

2r
‖ f‖Lp,w(B(x0,t))

dt
tn+1

� w(B)
1
p ‖w−1/p‖Lp′ (B)

∫ ∞

2r
‖ f‖Lp,w(B(x0,t))

dt
tn+1

� w(B)
1
p

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) ‖w−1/p‖Lp′ (B(x0,t))

dt
tn+1

� [w]
1
p
A p

q′
w(B)

1
p

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) w(B(x0,t))

− 1
p

dt
t

. (4.4)
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Thus

‖TΩ( f )‖Lp,w(B)

� ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′
w(B)

1
p

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) w(B(x0,t))

− 1
p

dt
t

� w(B(x0,r))
1
p

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) w(B(x0, t))

− 1
p

dt
t

.

Let also 1 < p � q , p �= ∞ and w1−p′ ∈ Ap′/q′ . Since f1 ∈ Lp,w(Rn) , TΩ ( f1) ∈
Lp,w(Rn) and from the boundedness of TΩ in Lp,w(Rn) for w1−p′ ∈ Ap′/q′ and 1 < p <
q (see Theorem 3) it follows that

‖TΩ ( f1)‖Lp,w(B) � ‖TΩ ( f1)‖Lp,w(Rn) � ‖Ω‖Lq(Sn−1) [w
1−p′ ]

1
p′
A p′

q′
‖ f1‖Lp,w(Rn)

≈ ‖Ω‖Lq(Sn−1) [w
1−p′ ]

1
p′
A p′

q′
‖ f‖Lp,w(2B).

If 1 < p � q , p �= ∞ and w1−p′ ∈ Ap′/q′ , then Minkowski theorem and Hölder
inequality,

‖TΩ( f2)‖Lp,w(B) �
(∫

B

(∫ ∞

2r

∫
B(x0,t)

|Ω(x− y)|| f (y)|dy
dt

tn+1

)p

w(x)dx

) 1
p

�
∫ ∞

2r

∫
B(x0,t)

‖Ω(·− y)‖Lp,w(B)| f (y)|dy
dt

tn+1

�
∫ ∞

2r

∫
B(x0,t)

‖Ω(·− y)‖Lq(B)‖w‖
1
p

L(q/p)′ (B) | f (y)|dy
dt

tn+1

� ‖Ω‖Lq(Sn−1) ‖w‖
1
p

L(q/p)′ (B)

∫ ∞

2r

∫
B(x0,t)

|B(0,r+ |x0− y|)| 1
q | f (y)|dy

dt
tn+1

� ‖Ω‖Lq(Sn−1) ‖w‖
1
p

L(q/p)′ (B)

∫ ∞

2r
‖ f‖L1(B(x0,t)) |B(0,r+ t)| 1

q
dt

tn+1

� ‖Ω‖Lq(Sn−1) ‖w‖
1
p

L q
q−p

(B)

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) ‖w−p′/p‖

1
p′
L1(B(x0,t))

|B(x0, t)|
1
q

dt
tn+1

� ‖Ω‖Lq(Sn−1) |B|
1
q ‖w‖

1
p

L q
q−p

(B)

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) ‖w1−p′‖

1
p′
L1(B(x0,t))

|B(x0,t)|
1
q

dt
tn+1

is obtained. By applying (3.3) for ‖w1−p′‖
1
p′
L1(B(x0,t))

and (3.5) for ‖w‖
1
p

L q
q−p

(B) we have

the following inequality

‖TΩ( f2)‖Lp,w(B)

� ‖Ω‖Lq(Sn−1) [w
1−p′ ]

1
p′
A p′

q′
‖w‖

1
p
L q

q−p (B)

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) ‖w‖

− 1
p

L q
q−p

(B(x0,t))
dt
t
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is valid. Thus

‖TΩ( f )‖Lp,w(B)

� ‖Ω‖Lq(Sn−1)[w
1−p′ ]

1
p′
A p′

q′

(
‖ f‖Lp,w(2B)+‖w‖

L
1
p
q

q−p (B)

∫ ∞

2r
‖ f‖Lp,w(B(x0,t))‖w‖

− 1
p

L q
q−p

(B(x0,t))
dt
t

)
.

On the other hand,

‖ f‖Lp,w(2B) ≈ |B|‖ f‖Lp,w(2B)

∫ ∞

2r

dt
tn+1

� |B|
∫ ∞

2r
‖ f‖Lp,w(B(x0,t))

dt
tn+1

= [w1−p′ ]
− 1

p′
Ap′ (B) |B|

1
q ‖w1−p′‖

1
p′
L1(B) ‖w‖

1
p
L q

q−p (B)

∫ ∞

2r
‖ f‖Lp,ω (B(x0,t))

dt
tn+1

� [w1−p′ ]
− 1

p′
Ap′ (B)‖w‖

1
p
L q

q−p (B)

∫ ∞

2r
‖ f‖Lp,ω (B(x0,t)) |B(x0,t)|

1
q ‖w1−p′‖

1
p′
L1(B(x0,t))

dt
tn+1

� ‖w‖
1
p
L q

q−p (B)

∫ ∞

2r
‖ f‖Lp,ω(B(x0,t)) ‖w‖

− 1
p

L q
q−p (B(x0 ,t))

dt
t

.

Thus

‖TΩ( f )‖Lp,w(B)

� ‖Ω‖Lq(Sn−1) [w
1−p′ ]

1
p′
A p′

q′
‖w‖

1
p
L q

q−p (B)

∫ ∞

2r
‖ f‖Lp,w(B(x0,t)) ‖w‖

− 1
p

L q
q−p (B(x0 ,t))

dt
t

.

Thus we complete the proof of Lemma 1. �

THEOREM 9. Suppose that Ω be satisfies the conditions (1.1), (1.2) and Ω ∈
Lq(Sn−1) , 1 < q � ∞ . Let also, for q′ < p < ∞ , w ∈ Ap/q′ the pair (ϕ1,ϕ2) satisfies

the condition (3.8) and for 1 < p < q, w1−p′ ∈ Ap′/q′ the pair (ϕ1,ϕ2) satisfies the
condition

∫ ∞

r

ess inf
t<τ<∞

ϕ1(x,τ)‖w‖1/p
L q

q−p (B(x,τ))

‖w‖1/p
L q

q−p (B(x,t))

dt
t

� Cϕ2(x,r)
w(B(x,r))

1
p

‖w‖
1
p
L q

q−p (B(x,r))

, (4.5)

where C does not depend on x and r .
Then the operator TΩ is bounded from Mp,ϕ1(w) to Mp,ϕ2(w) . Moreover

‖TΩ( f )‖Mp,ϕ2 (w) � ‖ f‖Mp,ϕ1 (w).
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Proof. When q′ < p < ∞ , w ∈ Ap/q′ , by Lemma 1 and Theorem 5 with ν2(r) =

ϕ2(x,r)−1 , ν1(r) = ϕ1(x,r)−1w(B(x,r))−
1
p , g(r) = ‖ f‖Lp,w(B(x,r)) and w(r) =

w(B(x,r))−
1
p r−1 we have

‖TΩ( f )‖Mp,ϕ2 (w) = sup
x∈Rn,r>0

ϕ2(x,r)−1 w(B(x,r))−
1
p ‖μΩ( f )‖Lp,w(B(x,r))

� sup
x∈Rn,r>0

ϕ2(x,r)−1
∫ ∞

r
‖ f‖Lp,w(B(x,t)) w(B(x, t))−

1
p

dt
t

� sup
x∈Rn,r>0

ϕ1(x,r)−1 w(B(x,r))−
1
p ‖ f‖Lp,w(B(x,r))

= ‖ f‖Mp,ϕ1 (w).

For the case of 1 < p < q , w1−p′ ∈ Ap′/q′ , by Lemma 1 and Theorem 5 with

ν2(r)= ϕ2(x,r)−1 w(B(x,r))−
1
p ‖w‖

1
p
L q

q−p (B(x,r))
, ν1(r)= ϕ1(x,r)−1w(B(x,r))−

1
p , g(r)=

‖ f‖Lp,w(B(x,r)) and w(r) = ‖w‖−
1
p

L q
q−p (B(x,r))

r−1 we have

‖TΩ( f )‖Mp,ϕ2 (w) = sup
x∈Rn,r>0

ϕ2(x,r)−1 w(B(x,r))−
1
p ‖μΩ( f )‖Lp,w(B(x,r))

� sup
x∈Rn,r>0

ϕ2(x,r)−1 w(B(x,r))−
1
p ‖w‖

1
p
L q

q−p (B)

∫ ∞

r
‖ f‖Lp,w(B(x0,t)) ‖w‖

− 1
p

L q
q−p (B(x0 ,t))

dt
t

� sup
x∈Rn,r>0

ϕ1(x,r)−1 w(B(x,r))−
1
p ‖ f‖Lp,w(B(x,r))

= ‖ f‖Mp,ϕ1 (w). �

5. Commutator of singular integral operator with rough kernels
[b,TΩ] in the spaces Mp,ϕ(w)

REMARK 5. ([21])

(1) The John-Nirenberg inequality: There are constants C1 , C2 > 0, such that
for all b ∈ BMO(Rn) and β > 0

|{x ∈ B : |b(x)−bB| > β}| � C1|B|e−C2β/‖b‖∗ , ∀B ⊂ R
n.

(2) The John-Nirenberg inequality implies that

‖b‖∗ ≈ sup
x∈Rn,r>0

(
1

|B(x,r)|
∫

B(x,r)
|b(y)−bB(x,r)|pdy

) 1
p

(5.1)

for 1 < p < ∞ .
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(3) Let b ∈ BMO(Rn) . Then there is a constant C > 0 such that

∣∣bB(x,r)−bB(x,t)
∣∣ � C‖b‖∗ ln

t
r

for 0 < 2r < t, (5.2)

where C is independent of b , x , r and t .

In the following lemma we get local estimate (see, for example, [15] ) for the
commutator operator TΩ,b .

LEMMA 2. Suppose that Ω be satisfies the conditions (1.1), (1.2) and Ω∈Lq(Sn−1) ,
1 < q � ∞ .

If q′ < p < ∞ and w ∈ Ap/q′ , then the inequality

‖TΩ,b( f )‖Lp,w(B(x0,r))

� ‖b‖∗w(B(x0,r))
1
p

∫ ∞

2r

(
1+ ln

t
r

)
‖ f‖Lp,w(B(x0,t))w(B(x0,t))

− 1
p
dt
t

holds for any ball B(x0,r) , and for all f ∈ Lloc
p,w(Rn) .

If 1 < p < q and w1−p′ ∈ Ap′/q′ , then the inequality

‖TΩ,b( f )‖Lp,w(B(x0,r))

� ‖w‖1/p
L q

q−p (B(x0 ,r))

∫ ∞

2r

(
1+ ln

t
r

)
‖ f‖Lp,w(B(x0,t)) ‖w‖

−1/p
L q

q−p (B(x0 ,t))

dt
t

holds for any ball B(x0,r) , and for all f ∈ Lloc
p,w(Rn) .

Proof. Let p ∈ (1,∞) and b ∈ BMO(Rn) . For arbitrary x0 ∈ R
n , set B = B(x0,r)

for the ball centered at x0 and of radius r , 2B = B(x0,2r). We represent f as (4.2) and
have

‖TΩ,b( f )‖Lp,w(B) � ‖TΩ,b( f1)‖Lp,w(B) +‖TΩ,b( f2)‖Lp,w(B).

Since f1 ∈ Lp,w(Rn) , TΩ,b ( f1) ∈ Lp,w(Rn) and from the boundedness of TΩ,b in
Lp,w(Rn) for w ∈ Ap/q′ and q′ < p < ∞ (see Theorem 4) it follows that

‖TΩ,b ( f1)‖Lp,w(B) � ‖TΩ,b ( f1)‖Lp,w(Rn)

� ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′
‖b‖∗ ‖ f1‖Lp,w(Rn)

≈ ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′
‖b‖∗ ‖ f‖Lp,w(2B).

For x ∈ B we have

TΩ,b( f2(x)) �
∫

�(2B)
|b(y)−b(x)||Ω(x− y)| | f (y)|

|x0− y|n dy.
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Then

‖TΩ,b( f2)‖Lp,w(B)

�
(∫

B

(∫
�(2B)

|b(y)−b(x)||Ω(x− y)| | f (y)|
|x0− y|n dy

)p

w(x)dx

) 1
p

�
(∫

B

(∫
�(2B)

|b(y)−bB,w||Ω(x− y)| | f (y)|
|x0− y|n dy

)p

w(x)dx

) 1
p

+
(∫

B

(∫
�(2B)

|b(x)−bB,w||Ω(x− y)| | f (y)|
|x0− y|n dy

)p

w(x)dx

) 1
p

= I1 + I2.

Let us estimate I1 .

I1 = w(B)
1
p

∫
�(2B)

|b(y)−bB,w||Ω(x− y)| | f (y)|
|x0− y|n dy

≈ w(B)
1
p

∫
�(2B)

|b(y)−bB,w||Ω(x− y)|| f (y)|
∫ ∞

|x0−y|
dt

tn+1 dy

≈ w(B)
1
p

∫ ∞

2r

∫
2r�|x0−y|�t

|b(y)−bB,w||Ω(x− y)|| f (y)|dy
dt

tn+1

� w(B)
1
p

∫ ∞

2r

∫
B(x0,t)

|b(y)−bB,w||Ω(x− y)|| f (y)|dy
dt

tn+1 .

Set m = p/q′ > 1. Since w ∈ Am , from (3.3), we know w1−m′ ∈ Am′ . Applying
Hölder’s inequality and by (5.2), we get

I1 � ‖b‖∗w(B)
1
p

∫ ∞

2r
‖Ω(x−·)‖Lq(B(x0,t)) ‖|b(y)−bB,w| f‖Lq′ (B(x0,t))

dt
tn+1

� ‖Ω‖Lq(Sn−1) w(B)
1
p

∫ ∞

2r
‖b−bB,w‖L

m′q′ ,w1−m′ (B(x0,t)) ‖ f‖Lp,w(B(x0,t))×

×|B(x0,t + |x− x0|)|
1
q

dt
tn+1

� ‖Ω‖Lq(Sn−1)‖b‖∗w(B)
1
p

∫ ∞

2r

(
1+ ln

t
r

)
(w1−m′

(B(x0,t)))
1

m′q′ ×

×‖ f‖Lp,w(B(x0,t)) |B(x0,t)| dt
tn+1

� ‖Ω‖Lq(Sn−1)[w]
1
p
A p

q′
‖b‖∗w(B)

1
p

∫ ∞

2r

(
1+ ln

t
r

)
‖ f‖Lp,w(B(x0,t)) w(B(x0,t))

− 1
p

dt
t

.
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In order to estimate I2 note that

I2 =
(∫

B
|b(x)−bB,w|pw(x)dx

) 1
p
∫

�(2B)

|Ω(x− y)|| f (y)|
|x0− y|n dy.

By (4.3) and (5.2), we get

I2 � ‖b‖∗w(B)
1
p

∫
�(2B)

|Ω(x− y)|| f (y)|
|x0− y|n dy

� ‖Ω‖Lq(Sn−1)[w]
1
p
A p

q′
‖b‖∗w(B)

1
p

∫ ∞

2r
‖ f‖Lp,w(B(x,t)) w(B(x0, t))

− 1
p

dt
t

.

Summing up I1 and I2 , for all p ∈ (1,∞) we get

‖TΩ,b( f2)‖Lp,w(B)

� ‖Ω‖Lq(Sn−1)[w]
1
p
A p

q′
‖b‖∗w(B)

1
p

∫ ∞

2r

(
1+ ln

t
r

)
‖ f‖Lp,w(B(x0,t))w(B(x0,t))

− 1
p
dt
t

.

Thus

‖TΩ,b( f )‖Lp,w(B) � ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′
‖b‖∗

(
‖ f‖Lp,w(2B)

+ w(B)
1
p

∫ ∞

2r

(
1+ ln

t
r

)
‖ f‖Lp,w(B(x0,t))w(B(x0, t))

− 1
p
dt
t

)
.

On the other hand, by (4.4) we get

‖TΩ,b( f )‖Lp,w(B)

� ‖Ω‖Lq(Sn−1) [w]
1
p
A p

q′
‖b‖∗w(B)

1
p

∫ ∞

2r

(
1+ ln

t
r

)
‖ f‖Lp,w(B(x0,t)) w(B(x0,t))

− 1
p

dt
t

� ‖b‖∗w(B(x0,r))
1
p

∫ ∞

2r

(
1+ ln

t
r

)
‖ f‖Lp,w(B(x0,t)) w(B(x0,t))

− 1
p

dt
t

.

With similar techniques for 1 < p < q , w1−p′ ∈ Ap′/q′ can be achieved and the
proof is finished. �

THEOREM 10. Suppose that Ω be satisfies the conditions (1.1), (1.2) and Ω ∈
Lq(Sn−1) , 1 < q � ∞ . Let b ∈ BMO(Rn) . Let also, for q′ < p < ∞ , w ∈ Ap/q′ the

pair (ϕ1,ϕ2) satisfies the condition (3.9) and for 1 < p < q, w1−p′ ∈ Ap′/q′ the pair
(ϕ1,ϕ2) satisfies the condition

∫ ∞

r

(
1+ ln

t
r

)ess inf
t<τ<∞

ϕ1(x,τ)‖w‖1/p
L q

q−p (B(x,τ))

‖w‖1/p
L q

q−p (B(x,t))

dt
t

� Cϕ2(x,r)
w(B(x,r))

1
p

‖w‖
1
p
L q

q−p (B(x,r))

, (5.3)
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where C does not depend on x and r .
Then the operator TΩ,b is bounded from Mp,ϕ1(w) to Mp,ϕ2(w) .

‖TΩ,b( f )‖Mp,ϕ2 (w) � ‖ f‖Mp,ϕ1 (w).

Proof. When q′ < p < ∞ , w ∈ Ap/q′ , by Lemma 2 and Theorem 6 with ν2(r) =

ϕ2(x,r)−1 , ν1(r) = ϕ1(x,r)−1w(B(x,r))−
1
p , g(r) = ‖ f‖Lp,w(B(x,r)) and w(r) =

w(B(x,r))−
1
p r−1 we have

‖TΩ,b( f )‖Mp,ϕ2 (w) = sup
x∈Rn,r>0

ϕ2(x,r)−1 w(B(x,r))−
1
p ‖μΩ,b( f )‖Lp,w(B(x,r))

� ‖b‖∗ sup
x∈Rn,r>0

ϕ2(x,r)−1
∫ ∞

r

(
1+ ln

t
r

)
‖ f‖Lp,w(B(x,t)) w(B(x, t))−

1
p

dt
t

� ‖b‖∗ sup
x∈Rn,r>0

ϕ1(x,r)−1 w(B(x,r))−
1
p ‖ f‖Lp,w(B(x,r))

= ‖b‖∗‖ f‖Mp,ϕ1 (w).

For the case of 1 < p < q , w1−p′ ∈ Ap′/q′ , by Lemma 1 and Theorem 6 with

ν2(r)= ϕ2(x,r)−1 w(B(x,r))−
1
p ‖w‖

1
p
L q

q−p (B(x,r))
, ν1(r)= ϕ1(x,r)−1w(B(x,r))−

1
p , g(r)=

‖ f‖Lp,w(B(x,r)) and w(r) = ‖w‖−
1
p

L q
q−p (B(x,r))

r−1 we have

‖TΩ,b( f )‖Mp,ϕ2 (w) = sup
x∈Rn,r>0

ϕ2(x,r)−1 w(B(x,r))−
1
p ‖μΩ( f )‖Lp,w(B(x,r))

� sup
x∈Rn,r>0

ϕ2(x,r)−1 w(B(x,r))−
1
p ‖w‖

1
p
L q

q−p (B)

×
∫ ∞

r

(
1+ ln

t
r

)
‖ f‖Lp,w(B(x0,t)) ‖w‖

− 1
p

L q
q−p (B(x0 ,t))

dt
t

� sup
x∈Rn,r>0

ϕ1(x,r)−1 w(B(x,r))−
1
p ‖ f‖Lp,w(B(x,r))

= ‖ f‖Mp,ϕ1 (w). �
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