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HARDY–HILBERT’S INEQUALITY AND POWER

INEQUALITIES FOR BEREZIN NUMBERS OF OPERATORS

MUBARIZ T. GARAYEV, MEHMET GÜRDAL AND ARZU OKUDAN

(Communicated by F. Hansen)

Abstract. We give operator analogues of some classical inequalities, including Hardy and Hardy-
Hilbert type inequalities for numbers. We apply these operator forms of such inequalities for
proving some power inequalities for the so-called Berezin number of self-adjoint and positive
operators acting on Reproducing Kernel Hilbert Spaces (RKHSs). More precisely, we prove that

(ber ( f (A)))2 � Cber
(
( f (A))2

)
for some constants C > 1. We also use reproducing kernels technique to estimate dist(A,U ) ,
where U is the set of all unitary operators on a RKHS H = H (Ω) over some set Ω, for some
operator A on H (Ω) .

1. Introduction

The classical Hardy inequality asserts that
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p > 1 and for any sequence a = (an)n�1 of non-negative real numbers in �p. The

inequality is sharp, in the sense that the constant
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smaller number such that the inequality remains true for all (even finite) sequences of
non-negative real numbers.
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and an equivalent form is
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where the constant factors π
sin π

p
and

(
π

sin π
p

)p

are the best possible. Inequality (3)

is called the Hardy-Hilbert inequality (see [6]), which proves to be important in many
branches of mathematics including function theory, analysis and their applications (see,
for example [12]). Recently many generalizations and refinements of the mentioned
inequalities have been also obtained, see [2, 11, 12].

The continuous forms (the integral forms) of these inequalities are as follows:
If p > 1 and f is a non-negative p -integrable function on (0,+∞) , then
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If p > 1, 1
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All of these inequalities and their valuable applications in operator theory can be found,
for instance, in Hansen [4], Moslehian [13], Hansen, Krulić, Pečarić and Persson [5]
and Kian [9].

Note also that a little bit earlier, Hansen [4] has established an operator version of
the Hardy inequality (1) in the C∗ -algebra B (H) of all bounded linear operators on a
complex Hilbert space H, in the case when 1 < p � 2 (see, also Kian [9]). An operator
version of inequality (2) was also given in [5].

In this paper, we are interested in analogous inequalities for operators acting on a
Reproducing Kernel Hilbert Space H = H (Ω) over some set Ω. We will use these
inequalities in the investigation of some power inequalities for the so-called Berezin
number of an operator (for the definition see below).

Before giving our results, let us introduce some necessary definitions and notations
regarding the reproducing kernel Hilbert space and its operators.

Recall that a reproducing kernel Hilbert space (shortly, RKHS) is a Hilbert space
H = H (Ω) of complex-valued functions on a (nonempty) set Ω, which has the prop-
erty that the point evaluation map f → f (λ ) is continuous on H for all λ ∈ Ω. Then
the Riesz representation theorem guarantees that for every λ ∈ Ω there is a unique el-
ement kH ,λ ∈ H such that f (λ ) =

〈
f ,kH ,λ

〉
H

for all f ∈ H . The function kH ,λ
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is called the reproducing kernel of H . It is well known that (see [1] and [16, 17]) the
reproducing kernel kH ,λ of H is represented by

kH ,λ =
∞

∑
n=1

en (λ )en (z)

for any orthonormal basis (en)n�1 of H . (For example, since {zn}n�0 is an orthonor-
mal basis in the Hardy-Hilbert space H2 = H2 (D) over the unit disc D = {z ∈ C : |z| < 1}
of the complex plane C, the reproducing kernel of H2 is the function kH,λ (z) =

∞

∑
n=1

λ nzn =
(
1−λz

)−1
, λ ∈ D.)

Let k̂H ,λ :=
kH ,λ

‖kH ,λ‖H

be the normalized reproducing kernel of H . The Berezin

sembol Ã of a bounded linear operator A on H is the following bounded function
(see, for instance, Nordgren and Rosenthal [14]):

Ã(λ ) :=
〈
Ak̂H ,λ , k̂H ,λ

〉
, λ ∈ Ω.

Often the behavior of the Berezin symbol of an operator provides important information
about the operator, for example, it is known that (see, Zhu [19]) A = 0 if and only if
Ã(λ ) = 0 for all λ ∈ Ω, which shows that the Berezin symbol defines the operator
uniquely.

The Berezin set and the Berezin number of an operator A are defined by (see
Karaev [7, 8])

Ber(A) = Range
(
Ã
)

=
{

Ã(λ ) : λ ∈ Ω
}

and
ber(A) = sup{|μ | : μ ∈ Range(A)} ,

respectively. Clearly, Ber(A) ⊂ W (A) = {〈Ax,x〉 : ‖x‖H = 1} (numerical range) and
ber(A) � w(A) = sup{|〈Ax,x〉| : ‖x‖H = 1} (numerical radius).

2. Hardy-Hilbert inequality and Berezin number

In this section, we prove an analog of inequality (2) for self-adjoint operators on
a RKHS H (Ω) and apply it for estimating Berezin number of its powers.

Recall that it is well known that (see, for example, Halmos [3])

w(An) � (w(A))n

for all integers n � 1. However, it seems that the similar inequality

ber(An) � (ber(A))n

n � 2, is not known in the literature. The second open question is the following: does
there exist a constant C = C (n) > 1 such that the power inequality for the Berezin
number

(ber(A))n � C (ber(An)) , n > 1, (4)
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holds?
Here we partially solve the latter question by proving inequality (4) for n = 2 and

for some positive operators A on H (Ω) . For this, we essentially use some arguments
from [9].

In what follows, we will denote by J the interval contained in the positive semi-
axis (0,+∞) . Also, we will sometimes use the notation λ for the scalar operator λ I.

LEMMA 1. Let f ,g be continuous functions defined on an interval J and f ,g � 0.
If p > 1, 1

p + 1
q = 1, then

1
2

˜f (A)g(A)(λ )+
1
3

f̃ (A)(λ ) g̃(B)(μ)+
1
3

f̃ (A)(μ) g̃(B)(λ )+
1
4

˜f (B)g(B)(μ)

� π

sin
(

π
p

) [( f p (A)+ f p (B))1/p (gq (A)+gq (B))1/q
]∼

(λ )

for any self-adjoint operators A,B∈B (H ) with spectra contained in J and all λ ,μ ∈
Ω.

Proof. In inequality (2) , put an = 0, bn = 0 for all n � 3. Since an,bn � 0,we
have from (2) that

a1b1

2
+

a1b2

3
+

a2b1

3
+

a2b2

4
� π

sin
(

π
p

) (ap
1 +ap

2

)1/p (
bq

1 +bq
2

)1/q
. (5)

Let x,y∈ J. By considering that f ,g � 0 and putting a1 = f (x) , a2 = f (y) , b1 = g(x)
and b2 = g(y) in (5) , we obtain

f (x)g(x)
2

+
f (x)g(y)

3
+

f (y)g(x)
3

+
f (y)g(y)

4

� π

sin
(

π
p

) ( f p (x)+ f p (y))1/p (gq (x)+gq (y))1/q (6)

for all x,y ∈ J. Since a self-adjoint operator A admits functional calculus with respect
to the class of continuous functions, it follows from (6) that

f (A)g(A)
2

+
f (A)g(y)

3
+

f (y)g(A)
3
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f (y)g(y)

4

� π

sin
(
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p
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whence
1
2

〈
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〉
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〉
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4
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) 〈( f p (A)+ f p (y))1/p (gq (A)+gq (y))1/q k̂H ,λ , k̂H ,λ

〉
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for all λ ∈ Ω and y ∈ J.
Again, applying the functional calculus to the self-adjoint operator B, we have

1
2

˜( f g) (A)(λ )+
1
3

f̃ (A)(λ )g(B)+
1
3
g̃(A)(λ ) f (B)+

1
4

( f g) (B)

� π

sin
(

π
p

) [( f p (A)+ f p (B))1/p (gq (A)+gq (B))1/q
]∼

(λ ) .

This shows that

1
2

˜f (A)g(A)(λ )+
1
3

f̃ (A)(λ ) g̃(B)(μ)+
1
3

f̃ (B)(μ) g̃(A)(λ )

+
1
4

˜f (B)g(B)(μ)

� π

sin
(

π
p

) [( f p (A)+ f p (B))1/p (gq (A)+gq (B))1/q
]∼

(λ ) . (7)

for any self-adjoint operators A,B ∈H (Ω) with spectra contained in J and all λ ,μ ∈
Ω. This proves the lemma. �

COROLLARY 1. (ber( f (A)))2 �
(

3π
sin

(
π
p

) − 9
8

)
ber

(
f 2 (A)

)
for any positive op-

erator A ∈ B (H ) with spectrum contained in J.

Proof. Indeed, replacing B by A, μ by λ in Lemma 1, and using the fact that
1
p + 1

q = 1, we get from (7) that
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�
[
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]
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and hence (
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�
[
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8

]
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for all λ ∈ Ω. Since
(

f̃ (A) (λ )
)2

� 0 and f̃ 2 (A)(λ ) � 0, this inequality implies that(
sup
λ∈Ω

f̃ (A)(λ )
)2

�
[

3π
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]
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or equivalently,

(ber( f (A)))2 �
[

3π
sin(π/p)

− 9
8

]
ber

(
f 2 (A)

)
for any positive operator A on H (Ω) with spectrum σ (A)⊂ J. This proves the corol-
lary. �

Note that, in general, ÃB 
= ÃB̃; for more details, see Kılıç [10].
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COROLLARY 2. (ber( f (A)))2 �
(
3π − 9

8

)
ber

(
( f (A))2

)
for any positive oper-

ator A with σ (A) ⊂ J.

Now by considering an equivalent form

∞

∑
n=1

(
∞

∑
m=1

am

m+n

)p

<

(
π

sin(π/p)

)p ∞

∑
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of the Hardy-Hilbert inequality (2) , we prove an inverse inequality for the Berezin
number of positive operators. The main result of the paper is the inequality given in the
next theorem, which gives a sharper estimate than Corollary 2.

THEOREM 1. Let f be a non-negative continuous function defined on an interval
J. Then

(ber( f (A)))2 � 16π2−77
72

ber
(
f 2 (A)

)
for any positive operator A ∈ B (H (Ω)) with spectrum contained in J .

Proof. For p = 2, we have from (3) that(a1

2
+

a2

3

)2
+
(a1

3
+

a2

4

)2
< π2 (a2

1 +a2
2

)
. (7)

Let x,y ∈ J. Since f is a continuous positive function on J, by putting a1 = f (x) and
a2 = f (y) in (7) , we get(

f (x)
2

+
f (y)
3

)2

+
(

f (x)
3

+
f (y)
4

)2

< π2 ( f 2 (x)+ f 2 (y)
)
,

and hence

13
36

f 2 (x)+
1
2

f (x) f (y)+
25
144

f 2 (y) < π2 ( f 2 (x)+ f 2 (y)
)
. (8)

So, as in the proof of Lemma 1, introducing the functional calculus in equality (8) , we
obtain

13
36

f 2 (A)+
1
2

f (y) f (A)+
25
144

f 2 (y) < π2 ( f 2 (A)+ f 2 (y)
)
,

and therefore

13
36

〈
f 2 (A) k̂H ,λ , k̂H ,λ

〉
+

1
2

f (y)
〈
f (A) k̂H ,λ , k̂H ,λ

〉
+

25
144

f 2 (y)

< π2 (〈 f 2 (A) k̂H ,λ , k̂H ,λ
〉
+ f 2 (y)

)
for all λ ∈ Ω. Applying the functional calculus once more to A , we get from the latter
equality that

13
36

f̃ 2 (A)(λ )+
1
2

f̃ (A)(λ ) f (A)+
25
144

f 2 (A) < π2
(

f̃ 2 (A)(λ )+ f 2 (A)
)

.
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From this we have

13
36

f̃ 2 (A)(λ )+
1
2

(
f̃ (A)(λ )

)2
+

25
144

f̃ 2 (A)(λ ) < 2π2 f̃ 2 (A) (λ )

for all λ ∈ Ω, and hence

(
f̃ (A)(λ )

)2
<

16π2−77
72

(
˜f (A)2 (λ )

)
for all λ ∈ Ω. This implies that

(ber( f (A)))2 <
16π2−77

72
ber

(
( f (A))2

) (≈ 1.121ber
(
f 2 (A)

))
.

This proves the theorem. �

3. A dist-estimate for the set of unitary operators

It is well known that (see Stampfli [18]), unitary operators on a Hilbert space H
can be characterized by invertible contractions with contractive inverses, i.e., in terms
of operators A with ‖A‖ � 1 and

∥∥A−1
∥∥� 1.

In general, if A ∈ B (H) is invertible then (see Rogers [15])

dist (A,U ) = max
{
‖A‖−1,1−∥∥A−1

∥∥−1
}

,

where U := {U ∈ B (H) : U unitary} is the set of all unitary operators on H. Also,
it follows from the proof of this formula that if A ∈ B (H) is an invertible operator
satisfying ‖A‖ � r and

∥∥A−1
∥∥� r for some r � 1, then there exists a unitary operator

U ∈ B (H) such that

‖A−U‖� r−1. (9)

Here, in case of H = H (Ω) , we give an estimate for dist(A,U ) which is similar
to (9) .

THEOREM 2. Let r � 1 and A : H (Ω)→ H (Ω) be an operator such that there
exists an operator X := XA satisfying

1) XA = AX = rI (or equivalently, X
( 1

r A
)

=
( 1

r A
)
X = I )

and
2)

sup
λ∈Ω

(∥∥∥A∗k̂H ,λ

∥∥∥2
+
∥∥∥Xk̂H ,λ

∥∥∥2
)

� 2r. (10)

Then dist(A,U ) � √
r−1.
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Proof. Since AX = XA = rI, we have for all λ ∈ Ω that:∥∥∥(A∗ −X) k̂H ,λ

∥∥∥2
=
〈
(A∗ −X) k̂H ,λ ,(A∗ −X) k̂H ,λ

〉
=
∥∥∥A∗k̂H ,λ

∥∥∥2
+
∥∥∥Xk̂H ,λ

∥∥∥2−
〈
A∗k̂H ,λ ,Xk̂H ,λ

〉
−
〈
Xk̂H ,λ ,A∗k̂H ,λ

〉
=
∥∥∥A∗k̂H ,λ

∥∥∥2
+
∥∥∥Xk̂H ,λ

∥∥∥2−
〈
k̂H ,λ ,AXk̂H ,λ

〉
−
〈
AXk̂H ,λ , k̂H ,λ

〉
=
∥∥∥A∗k̂H ,λ

∥∥∥2
+
∥∥∥Xk̂H ,λ

∥∥∥2−2r � 0 (by condition (10)),

which implies that (A∗ −X)
kH ,λ

‖kH ,λ‖ = 0; that is (A∗ −X)kH ,λ = 0 for all λ ∈ Ω (be-

cause
∥∥kH ,λ

∥∥ 
= 0 for all λ ∈ Ω), and since span
{
kH ,λ : λ ∈ Ω

}
= H (Ω) , we con-

clude that X = A∗. Therefore, AA∗ = A∗A = rI, and hence
(

A√
r

)∗
A√
r = A√

r

(
A√
r

)∗
= I,

which implies that A√
r is unitary. Then we obtain∥∥∥∥A− A√

r

∥∥∥∥=
(√

r−1
)∥∥∥∥ A√

r

∥∥∥∥=
√

r−1,

which implies that dist(A,U ) �
∥∥∥A− A√

r

∥∥∥=
√

r−1, that is dist(A,U ) �√
r−1. This

proves the theorem. �
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Department of Mathematics, Suleyman Demirel University

32260, Isparta, Turkey
e-mail: gurdalmehmet@sdu.edu.tr

Arzu Okudan
Department of Mathematics, Suleyman Demirel University

32260, Isparta, Turkey
e-mail: arzuokudan@hotmail.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


