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Abstract. Some Hermite-Hadamard type inequalities via fractional integration are derived for
superior order differentiable functions having one derivative with s -convexity of either first kind
or second kind. The n -th order cumulative behavior of the function in the neighborhood of the
frontier of the definition interval is studied in case of the s -convexity of second kind, by means
of fractional integration. The inequalities are as best as possible from the sharpness point of
view, meaning that a sharpness class of functions is identified, for each inequality, within the
functions that have one derivative that is s -affine either of first kind or of second kind.

1. Introduction

The concept of convexitywas extended in a wide range of directions during the last
century (see [3]) due to its important applications in optimization (see [21]), geometry
(see [8]) and pattern recognition (see [3], [20]). Generally, a convexity of a set takes
into account some relationship between a class of geometric objects and the set itself
(see [3]). Also, the convexity of a function takes into account a relationship between
the graph of the function and some geometric objects of a given class (see [1], [18],
[19]). This relation is defined, many times, by some functional inequation. One of
the most general functional inequations, which generates a convexity concept, is in
[12]. In the framework of a real or complex topological vector space X , and with T a
nonempty set, if α,β ,a,b : T → R , a nonempty set D ⊂ X is said to be (α,β )-convex
if α(t)x+ β (t)y ∈ D , whenever x,y ∈ D and t ∈ T . Considering D ⊂ X a nonempty
open (α,β )-convex set, a function f : D → R , which verifies the functional inequality

f (α(t)x+ β (t)y) � a(t) f (x)+b(t) f (y), ∀x,y ∈ D, t ∈ T, (1)

is called (α,β ,a,b)-convex. The functions, which make sharp (1) are called (α,β ,a,b)-
affine.

The most important particular case of (α,β ,a,b)-convexity is the classical con-
vexity, defined as follows. Let R be the set of real numbers, I ⊆ R be an interval and
f : I → R . Function f is a convex function whether it satisfies the inequality

f (tx+(1− t)y) � t f (x)+ (1− t) f (y) (2)
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whenever x,y ∈ I and t ∈ [0,1] . The functions that fulfill the equality in (2) are called
affine functions and are polynomials of at most first degree. Let now a,b ∈ I with
a < b . Then the following inequality is known as the Hermite-Hadamard inequality:

f

(
a+b

2

)
� 1

b−a

b∫
a

f (x)dx � f (a)+ f (b)
2

. (3)

named after the first mathematicians publishing it, Ch. Hermite [10] and J. Hadamard
[9]. This inequality is equivalent to the convexity condition. Every affine function
makes it sharp.

In this paper we take into account two particular cases of (α,β ,a,b)-convex func-
tions, called s-convexities of first and of second kinds. An interesting convexity prop-
erty for functions was introduced W. Orlicz in 1961 [15]. Let us denote, as usual, by
R the set of all real numbers, N the set of natural numbers, N

∗ = N\0, R+ = [0,+∞)
and if I is an interval then L1I means the set of all Lebesque integrable functions on I .
This convexity concept is defined as follows:

DEFINITION 1.1. ([15]) Let f : R+ → R and s ∈ [0,1] . The function f is said to
be Orlicz-convex provided that the inequality

f (αx+ βy) � αs f (x)+ β s f (y), (4)

holds for all x,y ∈ R+ , α,β ∈ [0,1] , with αs + β s = 1.

The functions fulfilling (4), called in many papers Orlicz-convex functions, are
also often named s-convex of first kind [11] or s1 -convex [17]. Obviously, the domain
R+ is stable under the linear combination used in (4) and each subinterval of this set
has the same property. The functions that make (4) sharp are called Orlicz-affine or s-
affine of first kind. It is proved in [12] that if s �= 1 then the only Orlicz-affine functions
are the constants.

REMARK 1.2. Let us suppose that s ∈ [0,1] . The concept introduced by the in-
equality (4) is equivalent to the following one (see [17]), which will be used in the
second section of this paper. A function f : I → R is said to be a s-convex function in
the first kind (also called Orlicz-convex), if

f
(
tx+(1− ts)

1
s y
)

� ts f (x)+ (1− ts) f (y), (5)

whenever x,y ∈ I , t ∈ [0,1] and s ∈ (0,1] .

The convexity, in classical sense (2), is a particular case of Orlicz-convexity, ob-
tained from (4) for s = 1. The affine functions are in this case the at most first degree
polynomials.

DEFINITION 1.3. ([2]) A function f : I → (0,∞) is said to be an s-convex func-
tion in the second sense, if

f (tx+(1− t)y) � ts f (x)+ (1− t)s f (y), ∀x,y ∈ I,t ∈ [0,1]. (6)
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The functions fulfilling (6), called in many papers Breckner-convex functions (or
s-Breckner-convex functions), are also often named s-convex of second kind [11] or
s2 -convex [17]. The functions that make (6) sharp are called Breckner-affine or s-affine
of second kind. It is proved in [12] that if s �= 1 then the only Breckner-affine functions
are the constants.

DEFINITION 1.4. Let f ∈ L1[a,b] . Then the Riemann-Liouville integrals Jα
a+ f

and Jα
b− f of order α > 0 with a � 0 are defined by

Jα
a+ f (x) =

1
Γ(α)

x∫
a

(x− t)α−1 f (t)dt, x > a, (7)

Jα
b− f (x) =

1
Γ(α)

b∫
x

(t − x)α−1 f (t)dt, x < b, (8)

where Γ(α) =
∫ ∞
0 e−txα−1dx is the Gamma function.

The effort to prove similar inequalities to (1) accompanies every attempt to gener-
alize the convexity concept, with more or less refined versions (see [6]), including the
Orlicz-convexity and the Breckner-convexity (see [6], [13], [17] and [22]). Our aim
is also to obtain this type of inequalities, using the Riemann-Liouville fractional inte-
gration and taking into account functions having a superior order derivative with some
kind of s-convexity.

Section 2 of the present paper contains inequalities of Hermite-Hadamard type,
derived via fractional integrals, for k -th order differentiable functions having an Orlicz-
convex derivative of order k .

In section 3 we consider the case of k -th order differentiable functions having an
Breckner-convex derivative of order k , introducing the cumulative frontier gap of order
k of such a function and determining its upper bounds. The inequalities derived in this
section refer to the cumulative behavior of the function and its derivatives of order at
most k in around the extremities of the interval [a,b] .

2. Fractional Hermite-Hadamard type inequalities for functions
having an Orlicz-convex derivative

Our coming results are Hermite-Hadamard inequalities for functions having s-
convexity type of first kind via fractional integration.

The following auxiliary results will be used in the sequel.

LEMMA 2.1. Let f : R+ → R , a,b ∈ R+ , a < b and s ∈ [0,1] . If f is differen-
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tiable of order k ∈ N
∗ and α > 0 then

Jα
a+ f (b)+ Jα

b− f (a)+
k

∑
j=1

(b−a)α+ j−1

Γ(α + j)

[
(−1) j f ( j−1)(b)− f ( j−1)(a)

]

=
1

Γ(α + k)

∫ b

a

[
(b− x)α+k−1 +(−1)k(x−a)α+k−1

]
f (k)(x)dx. (9)

Proof. We compute the two fractional Riemann-Liouville integrals Jα
a+ f (b) and

Jα
b− f (a) by k successive integrations by parts, obtaining

Jα
a+ f (b) =

k

∑
j=1

(b−a)α+ j−1

Γ(α + j)
f ( j−1)(a)+

1
Γ(α + k)

∫ b

a
(b− x)α+k−1 f (k)(x)dx,

Jα
b− f (a) =

k

∑
j=1

(−1) j+1(b−a)α+ j−1

Γ(α + j)
f ( j−1)(b)+

(−1)k

Γ(α + k)

∫ b

a
(x−a)α+k−1 f (k)(x)dx.

Computing the sum of these two fractional integrals, one gets

Jα
a+ f (b)+ Jα

b− f (a) =
k

∑
j=1

(b−a)α+ j−1

Γ(α + j)

[
f ( j−1)(a)+ (−1) j+1 f ( j−1)(b)

]

+
1

Γ(α + k)

∫ b

a

[
(b− x)α+k−1 +(−1)k(x−a)α+k−1

]
f (k)(x)dx,

which leads to the desired equality after minor transformation. �
We denote, for simplicity, by

Jk(α;a,b)( f ) = Jα
a+ f (b)+ Jα

b− f (a)+
k

∑
j=1

(b−a)α+ j−1

Γ(α + j)

[
(−1) j f ( j−1)(b)− f ( j−1)(a)

]
,

all over this paper. Also, if α > 0 we define the functions uk : [a,b] → R by

uk(x) = (b− x)α+k−1 +(−1)k(x−a)α+k−1, (10)

and remark that, according to Lemma 2.1, one has

Jk(α;a,b)( f ) =
1

Γ(α + k)

∫ b

a
uk(x) f (k)(x)dx, (11)

for each k ∈ N
∗ . The boundary properties of these functions are important in the proofs

of the main results from this paper and we include them in the next lemma.

LEMMA 2.2. Let α > 0 .
(a) If k is even then

(b−a)α+k−1

2α+k−2 � uk(x) � (b−a)α+k−1. (12)
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(b) If k is odd then

− (b−a)α+k−1 � uk(x) � (b−a)α+k−1. (13)

Proof. Since function uk is twice differentiable for all k then one can study its
monotony and its convexity or concavity by means of the sign of its derivatives.

(a) If k is even then uk(a) = uk(b) = (b−a)α+k−1 and

uk(x) = (b− x)α+k−1 +(x−a)α+k−1,

u′k(x) = (α + k−1)
[
(x−a)α+k−2− (b− x)α+k−2

]
,

u′′k (x) = (α + k−1)(α + k−2)
[
(b− x)α+k−3 +(x−a)α+k−3

]
.

Since α > 0 and k � 2, then u′′k (x) � 0 for all x ∈ [a,b] ⊂ [0,+∞) . It means that
function u is convex and the root of the first derivative is a minimum point of uk . The
first derivative vanishes in x = a+b

2 and

uk

(
a+b

2

)
=

(b−a)α+k−1

2α+k−2 ,

which is the minimum value of this function. The maximum values are taken on the
frontier of the interval [a,b] and, as consequence, the desired inequality holds.

(b) If k is odd then uk(a) = (b−a)α+k−1 , uk(b) = −(b−a)α+k−1 and

uk(x) = (b− x)α+k−1− (x−a)α+k−1,

u′k(x) = −(α + k−1)
[
(x−a)α+k−2 +(b− x)α+k−2

]
< 0,

for all x ∈ [a,b] , which means that function uk is decreasing. Now the required in-
equality is obvious. �

THEOREM 2.3. Let f : R+ → R be a non-negative function, and the numbers
s ∈ (0,1] and α > 0 . Suppose that [a,b] ⊂ R+ is an interval such that there is a
number k ∈ N

∗ with the property that the derivative f (k) exists, is s-convex of first kind
on [a,b] and f (k) ∈ L1[a,b] . Then the following inequality holds:

Jk(α;a,b)( f ) � a(b−a)α+k−1

2sΓ(α + k)

[
f (k)(a)+ f (k)(b)

]
. (14)

The inequality (14) is sharp.

Proof. In order to prove (14) we change the variable x = t
1
s a+(1− t)

1
s b . Then

x(0) = b , x(1) = a and dx = 1
s

[
t

1−s
s a− (1− t)

1−s
s b
]
dt , which leads to

Jk(α;a,b)( f ) =
1

sΓ(α + k)

∫ 1

0
uk

(
t

1
s a+(1− t)

1
s b
)

f (k)
(
t

1
s a+(1− t)

1
s b
)

v(t)dt,
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with v : [0,1] → R defined by

v(t) = t
1−s
s a− (1− t)

1−s
s b.

Function v is differentiable on (0,1) and

v′(t) =
1− s

s

[
t

1−2s
s a+(1− t)

1−2s
s b
]

� 0

for all t ∈ (0,1) , which means that v is increasing on [0,1] . As consequence,

v(0) = −b � v(t) � v(1) = a, (15)

for all t ∈ (0,1) . This implies that

−b
sΓ(α + k)

∫ 1

0
uk

(
t

1
s a+(1− t)

1
s b
)

f (k)
(
t

1
s a+(1− t)

1
s b
)

dt

� Jk(α;a,b)( f )

� a
sΓ(α + k)

∫ 1

0
uk

(
t

1
s a+(1− t)

1
s b
)

f (k)
(
t

1
s a+(1− t)

1
s b
)

dt, (16)

for all k . Now we analyze the upper bound of (11) in both cases, k even and k odd.
We realize, due to Lemma 2.2, that in both cases one has uk(x) � (b−a)α+k−1 , which
implies

Jk(α;a,b)( f ) � a(b−a)α+k−1

sΓ(α + k)

∫ 1

0
f (k)
(
t

1
s a+(1− t)

1
s b
)

dt.

Since f k is Orlicz-convex, this is upper bounded by

Jk(α;a,b)( f ) � a(b−a)α+k−1

sΓ(α + k)

∫ 1

0

(
t f (k)(a)+ (1− t) f (k)(b)

)
dt,

and computing the integral one gets the required result.
In order to prove the sharpness of (14), we consider the particular case k = 1. The

functions that make sharp (14) are supposed to be among the differentiable functions
having an s-affine of first kind first derivative. According to Corollary 3.3 from [12],
| f ′| should be constant. Let us suppose that | f ′| ≡ 0, which means that function f is
constant, i.e. f ≡ c , for some c ∈ R . In this case, by direct computation one obtains

Jα
a+ f (b) = Jα

b− f (a) =
c(b−a)α

Γ(α +1)

and as consequence Jk(α;a,b)( f ) = 0. The right side of (14) also vanishes in this case,
which completely proves the sharpness. �

THEOREM 2.4. Let f : R+ → R be a non-negative function, and the numbers
s ∈ (0,1] and α > 0 . Suppose that [a,b] ⊂ R+ is an interval such that there is a
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number k ∈ N
∗ with the property that the derivative f (k) exists, is s-convex of first kind

on [a,b] and f (k) ∈ L1[a,b] . Then the following inequality holds:
(a) If k is even then

(b−a)α+k

2α+k−2Γ(α + k)
f (k)
(

a+b

2
1
s

)
� Jk(α;a,b)( f ). (17)

(b) If k is odd then

−a(b−a)α+k−1

2α+k−1sΓ(α + k)

[
f (k)(a)+ f (k)(b)

]
� Jk(α;a,b)( f ). (18)

Both inequalities are sharp.

Proof. We begin by taking into account (11) and we analyze each case.
(a) If k is even then according to Lemma 2.2 one has

uk � (b−a)α+k−1

2α+k−2 .

Then, by (11) and the inequality of Theorem 181 from [6] pp. 281 (first proved in [5]),

f

(
a+b

2
1
s

)
� 1

b−a

∫ b

a
f (x)dx.

which is valid without the monotony condition from [6], one obtains

Jk(α;a,b)( f ) � (b−a)α+k−1

2α+k−2Γ(α + k)

∫ b

a
f (k)(x)dx

� (b−a)α+k

2α+k−2Γ(α + k)
f (k)
(

a+b

2
1
s

)
,

which is the desired inequality.
(b) If k is odd then uk � −(b−a)α+k−1 and

Jk(α;a,b)( f ) � −(b−a)α+k−1

2α+k−2Γ(α + k)

∫ b

a
f (k)(x)dx. (19)

On another hand, since f (k) is s-convex of first kind, one can compute, substituting in
the same manner as in the proof of the previous theorem and using the properties of the
same function v :∫ b

a
f (k)(x)dx =

1
s

∫ 1

0
f (k)
(
t

1
s a+(1− t)

1
s b
)

v(t)dt

� a
s

∫ 1

0
f (k)
(
t

1
s a+(1− t)

1
s b
)

dt

� a
s

∫ 1

0

[
t

1
s f (k)(a)+ (1− t)

1
s f (k)(b)

]
dt

=
a
2s

[
f (k)(a)+ f (k)(b)

]
.

Introducing this evaluation in (3) one obtains the required result. The sharpness con-
clusion is provided by the same example as in the proof of the previous theorem. �
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3. Cumulative k -th order frontier gap of functions having
an s-Breckner-convex derivative

In this section we prove our main results within the class of Breckner’s s-convex
functions. They are sharp inequalities for superior order differentiable function on an
interval [a,b] ⊆ I ⊂ R , which have at least one derivative belonging to the class of
s-convex functions of second kind.

First of all let us remind that for the real or complex numbers a,b,c , other than
0,−1,−2, . . . , the hypergeometric series is defined by

2F1[a,b,c;z] = 1+
ab
c

z
1!

+
a(a+1)b(b+1)

c(c+1)
z2

2!
+ . . . =

∞

∑
m=0

(a)m(b)m

(c)m

zm

m!
.

Here (φ)m is the Pochhammer symbol, which is defined by

(φ)m =

{
1 m = 0,

φ(φ +1) . . .(φ +m−1), m > 0.

The integral form of the hypergeometric function is

2F1(a,b;c;z) =
1

B(b,c−b)

1∫
0

tb−1(1− t)c−b−1(1− zt)−adt

for |z| < 1, c > b > 0. Here

B(a,b) =
1∫

0

ta−1(1− t)b−1 dt =
Γ(a)Γ(b)
Γ(a+b)

,

is the beta function.
All over this section we suppose that α > 0.

LEMMA 3.1. Let us suppose that k ∈ N
∗ , the function f : I → R is of k -th order

differentiable, a,b ∈ I , a < b and n ∈ N
∗ . Then

H (k,n,α,a,b)( f )

=
∫ 1

0
(1− t)α+k−1

[
f (k)
(

n+ t
n+1

a+
1− t
n+1

b

)
+ f (k)

(
1− t
n+1

a+
n+ t
n+1

b

)]
dt, (20)

where

H (k,n,α,a,b)( f )

=
(

n+1
b−a

)k+α
Γ(α + k)

[
Jα
( 1

n+1 a+ n
n+1 b)+

f (b)+ (−1)kJα
( n

n+1 a+ 1
n+1 b)− f (a)

]
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−
k

∑
j=1

Γ(α + k)
Γ(α + k− j +1)

(
n+1
b−a

) j

×
[

f (k− j)
( 1

n+1
a+

n
n+1

b
)

+(−1) j f (k− j)
( n

n+1
a+

1
n+1

b
)]

. (21)

Proof. Let us compute∫ 1

0
(1− t)α+k−1

[
f (k)
(

n+ t
n+1

a+
1− t
n+1

b

)
+ f (k)

(
1− t
n+1

a+
n+ t
n+1

b

)]
dt

=
∫ 1

0
(1− t)α+k−1 f (k)

(
n+ t
n+1

a+
1− t
n+1

b

)
dt

+
∫ 1

0
(1− t)α+k−1 f (k)

(
1− t
n+1

a+
n+ t
n+1

b

)
dt = I1 + I2.

Compute I1 . Integrating by parts k times successively one obtains:

I1 =
k

∑
j=1

(−1) j−1

α + k

(
n+1
b−a

) j

f (k− j)
(

n
n+1

a+
1

n+1
b

) j−1

∏
p=0

(α + k− p)

+
(−1)k

α + k

(
n+1
b−a

)k
[

k

∏
p=0

(α + k− p)

]∫ 1

0
(1− t)α−1 f

(
n+ t
n+1

a+
1− t
n+1

b

)
dt

=
k

∑
j=1

(−1) j−1

α + k

(
n+1
b−a

) j

f (k− j)
(

n
n+1

a+
1

n+1
b

) j−1

∏
p=0

(α + k− p)

+ (−1)k Γ(α + k)
Γ(α)

(
n+1
b−a

)k ∫ 1

0
(1− t)α−1 f

(
n+ t
n+1

a+
1− t
n+1

b

)
dt

=
k

∑
j=1

(−1) j−1
(

n+1
b−a

) j Γ(α + k)
Γ(α + k− j +1)

f (k− j)
(

n
n+1

a+
1

n+1
b

)

+(−1)kΓ(α + k)
(

n+1
b−a

)α+k

Jα
( n

n+1 a+ 1
n+1 b)− f (a).

Compute I2 . Again integrating by parts k times successively one gets:

I2 = −
k

∑
j=1

∏ j−1
p=0(α + k− p)

α + k

(
n+1
b−a

) j

f (k− j)
(

1
n+1

a+
n

n+1
b

)

+
∏k

p=0(α + k− p)
α + k

(
n+1
b−a

)k ∫ 1

0
(1− t)α−1 f

(
1− t
n+1

a+
n+ t
n+1

b

)
dt

= −
k

∑
j=1

(
n+1
b−a

) j Γ(α + k)
Γ(α + k− j +1)

f (k− j)
(

1
n+1

a+
n

n+1
b

)

+
Γ(α + k)

Γ(α)

(
n+1
b−a

)k ∫ 1

0
(1− t)α−1 f

(
1− t
n+1

a+
n+ t
n+1

b

)
dt
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= −
k

∑
j=1

(
n+1
b−a

) j Γ(α + k)
Γ(α + k− j +1)

f (k− j)
(

1
n+1

a+
n

n+1
b

)

+ Γ(α + k)
(

n+1
b−a

)α+k

Jα
( 1

n+1 a+ n
n+1 b)+ f (b).

Now, by computing the sum of I1 and I2 , one gets:

I1 + I2 =
k

∑
j=1

Γ(α + k)
Γ(α + k− j +1)

(
n+1
b−a

) j [
(−1) j−1 f (k− j)

(
n

n+1
a+

1
n+1

b

)

− f (k− j)
(

1
n+1

a+
n

n+1
b

)]

+ Γ(α + k)
(

n+1
b−a

)α+k [
Jα
( 1

n+1 a+ n
n+1 b)+ f (b)+ (−1)kJα

( n
n+1 a+ 1

n+1 b)− f (a)
]
.

After conveniently arranging this sum one obtains the required result. �

REMARK 3.2. The number H (k,n,α,a,b)( f ) is called the cumulative k -th or-
der frontier gap of function f . For n = 1 and k = 2 Lemma 3.1 becomes Lemma 3.1
[13]. For k = 2 the Lemma 3.1 becomes Lemma 1.3 [14].

THEOREM 3.3. Let us suppose that k ∈ N
∗ and f : I → R is of k -th order differ-

entiable, a,b ∈ I , a < b and n ∈ N
∗ . If | f (k)| is s-Breckner convex function, then

(n+1)s |H (k,n,α,a,b)( f )| �
[
E (α,k,s,t)+

1
k+ s+ α

][
| f (k)(a)|+ | f (k)(b)|

]
,

(22)

where

E (α,k,s, t) =
∫ 1

0
(1− t)α+k−1(n+ t)sdt =

ns
2F1[1,−s,1+ α + k,− 1

n ]
α + k

. (23)

The inequality (22) is sharp.

Proof. By Lemma 3.1 and the fact that | f (k)| is s-Breckner convex function, one
has

|H (k,n,α,a,b)( f )|

=
∣∣∣∣
∫ 1

0
(1− t)α+k−1

[
f (k)
(

n+ t
n+1

a+
1− t
n+1

b

)
+ f (k)

(
1− t
n+1

a+
n+ t
n+1

b

)]
dt

∣∣∣∣
�
∣∣∣∣
∫ 1

0
(1− t)α+k−1 f (k)

(
n+ t
n+1

a+
1− t
n+1

b

)
dt

∣∣∣∣
+
∣∣∣∣
∫ 1

0
(1− t)α+k−1 f (k)

(
1− t
n+1

a+
n+ t
n+1

b

)
dt

∣∣∣∣
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�
∫ 1

0
(1− t)α+k−1

[( n+ t
n+1

)s| f (k)(a)|+
( 1− t

n+1

)s| f (k)(b)|
]
dt

+
∫ 1

0
(1− t)α+k−1

[( 1− t
n+1

)s| f (k)(a)|+
( n+ t

n+1

)s| f (k)(b)|
]
dt

=
1

(n+1)s

[
E (α,k,s,t)+

1
k+ s+ α

][
| f (k)(a)|+ | f (k)(b)|

]
.

This completes the proof of inequality (22).
For proving the sharpness we analyze the proof of inequality (22) and realize that

the main inequality used in order to get the required upper bound is (6). This is sharp
for s-affine functions of second kind, that are constants if s �= 1 and at most first degree
polynomials whether s = 1. Let us consider the case s �= 1 and k = 2. Let us suppose
that | f ′′| is a s-convex function of second kind. Then, according to Corollary 3.3 from
[12], | f ′′| should be constant and that implies that f ′′(x) = ±c , with c ∈ R . But f ′′
is a derivative, which means that it has Darboux property, transforming an interval into
another interval. As consequence, f ′′ ≡ c . Let us consider, for simplicity, f ′′ ≡ 0. It
implies that f ′ ≡ p and f (x) = px+q for all x ∈ [a,b] , with p,q ∈ R . In this case,

Jα
( n

n+1 a+ 1
n+1 b)−

f (a) =
1

Γ(α +1)

(
b−a
n+1

)α(
p
na+b
n+1

+q

)
− p

(
b−a
n+1

)α+1

,

Jα
( n

n+1 a+ 1
n+1 b)+ f (b) =

1
Γ(α +1)

(
b−a
n+1

)α(
p
a+nb
n+1

+q

)
+ p

(
b−a
n+1

)α+1

,

which implies, by direct computation, that

H (k,n,α,a,b)( f ) = 0.

On another hand, the right side of inequality (22) also equals to zero, which proves the
sharpness of this inequality. The integral E (α,k,s,t) is computed by Maple. �

THEOREM 3.4. Let us suppose that k ∈ N
∗ and f : I → R is of k -th order differ-

entiable, a,b ∈ I , a < b and n ∈ N
∗ . If | f (k)|q is s-Breckner convex function where

1
p + 1

q = 1 , q > 1 , then

(n+1)
s
q [p(α + k−1)+1]

1
p (s+1)

1
q |H (k,n,α,a,b)( f )|

�
(
{(n+1)s+1−ns+1}| f (k)(a)|+ | f (k)(b)|

) 1
q

+
(
| f (k)(a)|+{(n+1)s+1−ns+1}| f (k)(b)|

) 1
q
. (24)

The inequality (24) is sharp.
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Proof. By Lemma 3.1, the s-Breckner convexity of | f (k)| and Holder’s inequality,
one gets

|H (k,n,α,a,b)( f )|

�
(∫ 1

0
(1− t)p(α+k−1)dt

) 1
p

( 1∫
0

∣∣∣ f (k)
( n+ t

n+1
a+

1− t
n+1

b
)∣∣∣qdt

) 1
q

+
(∫ 1

0
(1− t)p(α+k−1)dt

) 1
p

( 1∫
0

∣∣∣ f (k)
( 1− t

n+1
a+

n+ t
n+1

b
)∣∣∣qdt

) 1
q

�
(∫ 1

0
(1− t)p(α+k−1)dt

) 1
p

( 1∫
0

{( n+ t
n+1

)s| f (k)(a)|q +
( 1− t

n+1

)s| f (k)(b)|q
}

dt

) 1
q

+
(∫ 1

0
(1− t)p(α+k−1)dt

) 1
p

( 1∫
0

{( 1− t
n+1

)s| f (k)(a)|q +
( n+ t

n+1

)s| f (k)(b)|q
}

dt

) 1
q

=
1

(n+1)
s
q

(
1

p(α + k−1)+1

) 1
p
(

1
s+1

) 1
q

×
[(

{(n+1)s+1−ns+1}| f (k)(a)|+ | f (k)(b)|
) 1

q

+
(
| f (k)(a)|+{(n+1)s+1−ns+1}| f (k)(b)|

) 1
q

]
.

This completes the proof of inequality (24). This inequality is sharp for first degree
polynomials. The proof is similar to the proof of the sharpness of (22). �

THEOREM 3.5. Let us suppose that k ∈ N
∗ and f : I → R is of k -th order differ-

entiable, a,b ∈ I , a < b and n ∈ N
∗ . If | f (k)|q is s-Breckner convex function where

1
p + 1

q = 1 , q > 1 , then

(n+1)
s
q |H (k,n,α,a,b)( f )|

�
(
E (α,k,s,q,t)| f (k)(a)|+ 1

q(α + k−1)+ s+1
| f (k)(b)|

) 1
q

+
( 1

q(α + k−1)+ s+1
| f (k)(a)|+E (α,k,s,q,t)| f (k)(b)|

) 1
q
, (25)

where

E (α,k,s,q, t) =
1∫

0

(1− t)q(α+k−1)(n+ t)sdt =
ns

2F1[1,−s,2+(1−α + k)q,− 1
n ]

1+(−1+ α + k)q
.

(26)
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The inequality (25) is sharp.

Proof. Using Lemma 3.1, the fact that | f (k)| is a s-Breckner convex function and
the Holder’s inequality, we have

|H (k,n,α,a,b)( f )|

�
(∫ 1

0
1dt
) 1

p

( 1∫
0

(1− t)q(α+k−1)
∣∣∣ f (k)

( n+ t
n+1

a+
1− t
n+1

b
)∣∣∣qdt

) 1
q

+
(∫ 1

0
1dt
) 1

p

( 1∫
0

(1− t)q(α+k−1)
∣∣∣ f (k)

( 1− t
n+1

a+
n+ t
n+1

b
)∣∣∣qdt

) 1
q

�
( 1∫

0

(1− t)q(α+k−1)
{( n+ t

n+1

)s| f (k)(a)|q +
( 1− t

n+1

)s| f (k)(b)|q
}

dt

) 1
q

+

( 1∫
0

(1− t)q(α+k−1)
{( 1− t

n+1

)s| f (k)(a)|q +
( n+ t

n+1

)s| f (k)(b)|q
}

dt

) 1
q

=
1

(n+1)
s
q

[(
E (α,k,s,q,t)| f (k)(a)|+ 1

q(α + k−1)+ s+1
| f (k)(b)|

) 1
q

+
( 1

q(α + k−1)+ s+1
| f (k)(a)|+E (α,k,s,q,t)| f (k)(b)|

) 1
q

]
.

This completes the proof of inequality (25). The sharpness is obtained for the first
degree polynomials as in the proof of the sharpness of (22). �

THEOREM 3.6. Let us suppose that k ∈ N
∗ and f : I → R is of k -th order differ-

entiable, a,b ∈ I , a < b and n ∈ N
∗ . If | f (k)|q is s-Breckner convex function where

q > 1 , then

(n+1)
s
q |H (k,n,α,a,b)( f )| �

(
E (α,k,s,t)| f (k)(a)|+ 1

k+ s+ α
| f (k)(b)|

) 1
q

+
( 1

k+ s+ α
| f (k)(a)|+E (α,k,s, t)| f (k)(b)|

) 1
q
,

(27)

where E (α,k,s, t) is given by (26).
The inequality (27) is sharp.

Proof. Using Lemma 3.1, the fact that | f (k)| is s-Breckner convex function and
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the power-mean inequality, we have

|H (k,n,α,a,b)( f )|

�
(∫ 1

0
(1− t)α+k−1dt

)1− 1
q

( 1∫
0

(1− t)α+k−1
∣∣∣ f (k)

( n+ t
n+1

a+
1− t
n+1

b
)∣∣∣qdt

) 1
q

+
(∫ 1

0
(1− t)α+k−1dt

)1− 1
q

( 1∫
0

(1− t)α+k−1
∣∣∣ f (k)

( 1− t
n+1

a+
n+ t
n+1

b
)∣∣∣qdt

) 1
q

�
(

1
α + k

)1− 1
q
[( 1∫

0

(1− t)α+k−1
{( n+ t

n+1

)s| f (k)(a)|q +
( 1− t

n+1

)s| f (k)(b)|q
}

dt

) 1
q

+

( 1∫
0

(1− t)α+k−1
{( 1− t

n+1

)s| f (k)(a)|q +
( n+ t

n+1

)s| f (k)(b)|q
}

dt

) 1
q
]

=
1

(n+1)
s
q

[(
E (α,k,s,t)| f (k)(a)|+ 1

k+ s+ α
| f (k)(b)|

) 1
q

+
( 1

k+ s+ α
| f (k)(a)|+E (α,k,s,t)| f (k)(b)|

) 1
q

]
.

This completes the proof of inequality (27). The sharpness is obtained for the polyno-
mials of at most first degree, as in the proof of the sharpness of (22). �

REMARK 3.7. The set of functions, which was identified as the sharpness class of
each inequality may not be maximal. The identification of the maximal sharpness class
remains open. To derive better inequalities means, in this case, to obtain inequalities
having a larger sharpness class.
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