
Mathematical
Inequalities

& Applications

Volume 19, Number 3 (2016), 909–922 doi:10.7153/mia-19-66

MEAN VALUE BOUNDED VARIATION CONCEPT

IN REAL SENSE: AN APPLICATION WITH NEW

TECHNIQUES TO WEIGHTED INTEGRABILITY

SONGPING ZHOU

(Communicated by J. Pečarić)

Abstract. In this paper, we consider numerical and trigonometric series with a very general
monotonicity condition. A necessary and sufficient condition for the weighted integrability of
sine and cosine series is proved generalizing a classical theorem of Boas and Heywood. We
also remark here the inequality established in Lemma 2.7 does reflex some essential property of
MVBV concept in real sense.

1. Introduction

A real sequence A = {an} is said to satisfy the mean value bounded variation
condition (in real sense) if there is a λ � 2 and a positive constant M depending upon
the sequence A and λ only such that for all n we have

2n

∑
k=n

|Δak| :=
2n

∑
k=n

|ak −ak+1| � M
n

λn

∑
k=n/λ

|ak|, (1)

where
λn
∑

k=n/λ
means ∑

n/λ�k�λn
.

We denote the set of real sequences satisfying (1) as MVBVS (Mean Value Bounded
Variation Sequences).

The MVBV concept is generalized from positive sense (see [20]) to real sense in
[3].

In Fourier analysis, in many important classical results which play fundamental
roles in the field, positivity and monotonicity are two key conditions.

To generalize monotonicity, people spent more than 90 years. Under positive con-
dition, monotonicity was generalized to various quasimonotone conditions and various
bounded variation conditions while still keep most important classical results alive. See
the papers [7]–[9], [15]–[18] and [20] for various variations, of which (1) in the positive
case is the most general one. For positive sequences property (1) was first introduced
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in [20], where it was called the Mean Value Bounded Variation (MVBV) condition,
and the papers [2], [12]–[13], [15]–[17], [20] show that (1) in the positive case allows
one to derive necessary and sufficient conditions for various properties of trigonometric
sums in terms of their coefficient sequences. In the papers [20], [17] etc., it was also
shown that from this point of view condition (1) cannot be further weakened. There-
fore we can say that MVBV concept in positive sense is the ultimate generalization to
monotonicity.

It is ever harder to generalize or remove the positivity to some stage. This kind of
work first initiated by Telyakovskii [10] (in 1993) and [11] considering the convergence
of series with rarely changing coefficients (piecewisely keeping sign and constant, not
necessarily to be nonnegative) and recently by Zhou etc. [19] initially using the piece-
wise mean value bounded variation concept.

Very recently, our work [3] surprisingly shows that in many situations the positiv-
ity assumption can be dropped. In particular, for sine series condition (1) allows us to
derive necessary and sufficient conditions for uniform convergence, thereby obtaining
a very general extension of the classical result of Jolliffe and Chaundy (see e.g. [21,
Theorem V.1.3]).

It possibly displays that condition (1)(MVBV concept in real sense) is not only an
ultimate generalization to monotonicity, but also a natural replacement of positivity.

Clearly, classical results which holds for condition (1) are no longer needed to be
discussed piecewisely.

After applications in other cases such as L1 -convergence ([5]) and trigonometric
inequalities ([4]) were successfully produced, it is of great interest to investigate further
whether condition (1) is natural to replace positivity and monotonicity in most classical
results or just occasional?

This paper shows that condition (1) can also be applied in weighted integrability
case, in which the necessary and sufficient condition has the series form, different from
the limit form in uniform and L1 -convergence we already solved successfully.

Let L2π be the space of integrable functions of period 2π . We will prove the
following theorem:

THEOREM 1.1. Suppose that a real sequence {an} satisfies condition (1) , and
consider the trigonometric series

S(x) ≡
∞

∑
n=1

an sinnx

or

S(x) ≡
∞

∑
n=1

an cosnx,

and its sum function is denoted by f (x) . Let 0 < γ < 1 . Then x−γ f (x) ∈ L2π and {an}
is the Fourier coefficients of f (x) if and only if

∞

∑
n=1

nγ−1|ak| < ∞.
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The claim for nonnegative sequences is in [14] which generalizes a classical result
of Boas [1] and Heywood [6].

Note that if {an} satisfies (1), then {|an|} satisfies (1) too. We have the following
corollary:

COROLLARY 1.2. Suppose that a real sequence {an} satisfies condition (1) , and
consider the trigonometric series

∞

∑
n=1

an sinnx

or
∞

∑
n=1

an cosnx,

and its sum function is denoted by f (x) , also the trigonometric series

∞

∑
n=1

|an|sinnx

or
∞

∑
n=1

|an|cosnx,

and its sum function is denoted by g(x) . Let 0 < γ < 1 . Then x−γ f (x) ∈ L2π and {an}
is the Fourier coefficients of f (x) if and only if x−γg(x)∈ L2π and {|an|} is the Fourier
coefficients of g(x) .

Throughout the paper, we always use M to stand for the positive constant appear-
ing in (1), and M1 denotes a positive constant that may not be necessarily the same
at each occurrence. Sometimes, to avoid confusion, we also use M1,M2, · · · to denote
different constants.

2. Preliminaries and proofs

If condition (1) is true for a λ then it is true for any larger λ , therefore we may
assume that λ > 8 is an integer and M > 1 in (1). For a real sequence {an} set

bn =
1
n

λn

∑
k=n/λ

|ak|.

LEMMA 2.1. For all n we have

|an| � 2Mbn.

This is a fundamental inequality. See [3, Lemma 2.2], for example.
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THEOREM 2.2. Let a real sequence {an} satisfy condition (1) , 0 < γ < 1 . Then,
for any n, ∣∣∣∣∣ n

∑
k=1

ak sinkx

∣∣∣∣∣= O(x−γ)

holds if and only if
n1−γan = O(1). (2)

REMARK. Theorem 2.2 also holds for cosine series.

Proof. This is an important inequality and is already mentioned and sketched in
[4]. As a very useful tool, it will be applied twice in this paper. Here we will give a
detailed proof for the sufficient part.

The cases x = 0 or x = π are trivial. Let x ∈ (0,π) , set N = [1/x] . Write

n

∑
k=1

ak sinkx =
N−1

∑
k=1

ak sinkx+
n

∑
k=N

ak sinkx =: I1(x)+ I2(x).

For the first part, we have, by (2),

|I1(x)| �
N−1

∑
k=1

kγ−1k1−γ |ak| = O(Nγ ) = O(x−γ ).

On the other hand, by using Abel’s transformation we see that

|I2(x)| � M1x
−1

(
|aN |+ |an|+

n−1

∑
k=N

|Δak|
)

.

Take a natural number m such that 2m−1N < n � 2mN , we calculate that, by condition
(1) and (2),

n−1

∑
k=N

|Δak| � M1

m

∑
j=0

1
2 jN

λ2 jN

∑
l=2 jN/λ

|al| � M1N
−1

m

∑
j=0

2− j
λ2 jN

∑
l=2 jN/λ

lγ−1.

Thus

|I2(x)| � M1x
−1

⎛⎝Nγ−1 +nγ−1 +N−1
m

∑
j=0

2− j
λ2 jN

∑
l=2 jN/λ

lγ−1

⎞⎠
= O

(
Nγ

∞

∑
j=0

2− j(1−γ)

)
= O(x−γ ).

Altogether, we have proved the required result. �
Define, for convenience, that

T (n)
j = (λ j+1n)γ−1

λ j+2n

∑
l=λ jn

|al|, 0 < γ < 1, j,n ∈ N,
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where n ∈ N means that n is a natural number. It is easy to see that T (n)
j = T (λ j−kn)

k .

For any n , by taking j =
[

logn−logn0
logλ

]
−1, we also easily see that

nγ−1
λn

∑
k=n/λ

|ak| � M2(T
(n0)
j +T (n0)

j+2 ),

so that the following lemma is straightforward.

LEMMA 2.3. If a real sequence {an} satisfies that limsup
j→∞

T (n0)
j < ∞ for a given

fixed integer n0 ∈ N , then limsup
n→∞

nγ−1
λn
∑

k=n/λ
|ak| < ∞ .

LEMMA 2.4. Let a real sequence {an} satisfy lim
n→∞

an = 0 and

limsup
n→∞

nγ−1
λn

∑
k=n/λ

|ak| = ∞,

then for any given n0 ∈ N , there exists a subsequence of natural numbers { jk} such
that

T (n0)
jk

+T (n0)
jk+2 = O(T (n0)

jk+1)

and
lim
k→∞

T (n0)
jk+1 = ∞

hold.

Proof. First assume that {T (n0)
j }∞

j=1 has only ∞ as its accumulation point. Then

lim
j→∞

T (n0)
j = ∞. (3)

Suppose to the contrary, the conclusion of Lemma 2.4 does not hold, then it holds that

lim
j→∞

T (n0)
j +T (n0)

j+2

T (n0)
j+1

= ∞.

Hence there exists a J ∈ N such for all j > J that

T (n0)
j +T (n0)

j+2

T (n0)
j+1

> 2λ 4.

Note that j > J , T (n0)
j cannot be a decreasing sequence for j , otherwise it makes a

contradiction to (3). Therefore we assume now for some j0 > J it holds that T (n0)
j0+1 >
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T (n0)
j0

. With λ � 2, and writing two roots of the equation x2 −2λ 4x+1 = 0 as x1 and

x2 , where 0 < x1 < 1
2 < λ 4 < x2 , by Viete’s formulas, we have

T (n0)
m+2 − x1T

(n0)
m+1 � x2(T

(n0)
m+1 − x1T

(n0)
m ), m > J,

in particular,

T (n0)
j0+2− x1T

(n0)
j0+1 > x2(T

(n0)
j0+1− x1T

(n0)
j0

) � 0

by the assumption. Therefore,

T (n0)
j+2 > M1

(
T (n0)

j0+1− x1T
(n0)
j0

)
x j− j0+1
2 > M1λ 4 j−4 j0+4

for j � j0 , hence

max
λ j+2n0�k�λ j+4n0

|ak| � M1

λ jγ T (n0)
j+2 > M1λ 4 j−γ j−4 j0+4, j � j0.

However it contradicts to the condition that lim
n→∞

an = 0.

Altogether, the conclusion of Lemma 2.4 holds in this case.

Next, in case {T (n0)
j }∞

j=1 has at least one finite accumulation point, then, there

exists a number L and a subsequence of natural numbers { j̃(1)
k }∞

k=1 satisfying

lim
k→∞

T (n0)

j̃(1)
k

= L,

hence {T (n0)

j̃
(1)
k

}∞
k=1 has an upper bound S . Applying Lemma 2.3, we see that limsup

j→∞
T (n0)

j

= ∞ , and thus select a subsequence { j̃(2)
k } such for all k ∈ N that T (n0)

j̃
(2)
k

> S , and

lim
k→∞

T (n0)

j̃(2)
k

= ∞.

Set j(1)
1 = j̃(1)

1 , take

j(2)
i = min{ j̃(2)

k > j(1)
i : k ∈ N}, i = 1,2, · · · ,

j(1)
i+1 = min{ j̃(1)

k > j(2)
i : k ∈ N}, i = 1,2, · · · ,

and define j̃2k−1 = j(1)
k , while define j̃2k as the number satisfying

T (n0)
j̃2k

= max
j̃2k−1< j< j̃2k+1

T (n0)
j .

It is clear that T (n0)
j̃2k

� T (n0)

j
(2)
k

. Furthermore, lim
k→∞

T (n0)
j̃2k

= ∞ since lim
k→∞

T (n0)

j
(2)
k

= ∞ . Setting

jk = j̃2k −1, we get

lim
k→∞

T (n0)
jk+1 = lim

k→∞
T (n0)

j̃2k
= ∞.
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At the same time, by noting j̃2k−1 � jk < jk + 2 � j̃2k+1 with T (n0)

j̃
(2)
k

> S � T (n0)

j̃
(1)
k

, we

deduce that

T (n0)
jk

+T (n0)
jk+2 � 2T (n0)

jk+1,

we also prove the conclusion in this case.
Altogether, Lemma 2.4 is completed. �

LEMMA 2.5. Under the conditions and symbols of Lemma 2.4 , set nk = λ jk+2n0 ,
and define

Aα
nk

=

{
l : |al| � 1

αl

λnk

∑
j=nk/λ

|a j|, nk/λ � l � λnk

}
.

Then, taking a sufficiently large α0 , there is a constant M0 > 0 such that |Aα0
nk |� M0nk ,

where |Aα
nk
| indicates the number of the elements in Aα

nk
.

Proof. By Lemma 2.4, for fixed n0 , we already know that, there is a natural sub-
sequence { jk} such that

lim
k→∞

T (n0)
jk+1 = ∞; T (n0)

jk
+T (n0)

jk+2 = O(T (n0)
jk+1).

By Lemma 2.1,

λnk

∑
l=nk/λ

|al| � ∑
l∈[nk/λ ,λnk]\Aα

nk

1
αl

λnk

∑
j=nk/λ

|a j|+ ∑
l∈Aα

nk

M1

nk

λ 2nk

∑
j=nk/λ 2

|a j|. (4)

We note that,

λ 2nk

∑
j=nk/λ 2

|a j| =
λ jk+4n0

∑
j=λ jk n0

|a j| � M1n
1−γ
k (T (n0)

jk
+T (n0)

jk+2) � M1n
1−γ
k T (n0)

jk+1 � M1

λnk

∑
j=nk/λ

|a j|.

(5)
Therefore, with the above symbols, from (4) and (5) it is deduced that

T (n0)
jk+1 � M1

α
λ
nk

(
λnk − nk

λ
−|Aα

nk
|
)

T (n0)
jk+1 +

M1

nk
|Aα

nk
|T (n0)

jk+1,

i.e.,

|Aα
nk
| � nk

M1

1− M1λ 2

α

1− λ
α

. (6)

With (6), taking sufficiently large α0 , we can find a constant M0 > 0 such that |Aα0
nk |�

M0nk . �
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THEOREM 2.6. Suppose that a real sequence {an} satisfies condition (1) , and
consider the trigonometric series

S(x) ≡
∞

∑
n=1

an sinnx

or

S(x) ≡
∞

∑
n=1

an cosnx,

and its sum function is denoted by f (x) . Let 0 < γ < 1 . If x−γ f (x) ∈ L2π and {an} is
the Fourier coefficients of f (x) , then

limsup
n→∞

nγ−1
λn

∑
k=n/λ

|ak| < ∞.

Proof. Now the Fourier coefficients {an} satisfy lim
n→∞

an = 0. Suppose that

limsup
n→∞

nγ−1
λn

∑
k=n/λ

|ak| = ∞.

With the same symbols (e. g., nk = λ jk+2n0 ), applying Lemma 2.3 and Lemma 2.4, we
have

lim
k→∞

T (n0)
jk+1 = ∞, (7)

and there is a natural subsequence {nk} and a sufficiently large α0 as well as a constant
M0 > 0 such that |Aα0

nk | � M0nk .

We select disjoint subsets U1, . . . ,Uκk of [nk/λ ,λnk] as follows. Set m(k)
1 =

minAα0
nk , and select ν1 according to the following procedure:

(i) If for j = 0,1, · · · , j0 , nk/λ � m(k)
1 + j � λnk the numbers a

m
(k)
1 + j

have the same

sign, and for j = 0,1, · · · , j0−1, |a
m(k)

1 + j
|� T

(n0)
jk+1

2α0(m
(k)
1 + j)γ

while |a
m(k)

1 + j0
|< T

(n0)
jk+1

2α0(m
(k)
1 + j)γ

,

then let ν1 = j0 .
(ii) If case (i) is not satisfied for any j0 , then let ν1 = k0 for which a

m
(k)
1 +k0

is

the first element with m(k)
1 + k0 ∈ [nk/λ ,λnk] to become zero or of opposite sign than

a
m(k)

1
.

(iii) If neither (i) and (ii) happen, then simply let ν1 = l0 for which m(k)
1 + l0 is the

first number greater than λnk . Define now

U1 =
{

m(k)
1 , m(k)

1 +1, · · · ,m(k)
1 + ν1−1

}
.
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Next, set m(k)
2 = min(Aα0

nk \U1) if this latter set is not empty, and using the same proce-
dure we select ν2 and define

U2 =
{

m(k)
2 , m(k)

2 +1, · · · ,m(k)
2 + ν2−1

}
.

We continue this procedure until we reach an Uκk for which Aα0
nk \ (U1∪·· ·∪Uκk) = /0 .

Next we show that the number κk of {Ui} is bounded as k → ∞ .

Indeed, since
λn
∑

j=n/λ
|Δa j| � M1

n

λ 2n
∑

j=n/λ 2
|a j| , applying Lemma 2.1 and Lemma 2.4

we get

M1

nγ
k

T (n0)
jk+1 �

λnk

∑
j=nk/λ

|Δa j| �
κk

∑
i=1

∑
j∈Ui

|Δa j| �
κk

∑
i=1

T (n0)
jk+1

2α0(m
(k)
i + νi)γ

�
M2T

(n0)
jk+1κk

α0n
γ
k

.

Therefore κk � M3α0 , i.e., the number κk is bounded independent of nk .
Denote Sn(x) the n th sum of sine series S (the same method also holds for cosine

series). Write

φn,m(x) =
m

∑
l=1

(
lγ−1 sin(n+ l)x− lγ−1 sin(n− l)x

)
= 2sinnx

m

∑
l=1

lγ−1 sin lx

for m � n . We know from Theorem 2.2 that |φn,m(x)| = O(x−γ ) . Define

Vn(x) =
1
n

2n−1

∑
k=n

Sk(x),

r j = min{m(k)
j ,ν j}, j = 1,2, · · · ,κk,

then it is easy to verify that, there is a constant r0 > 0 only depending upon λ such that

r0ν j � r j � m(k)
j .

Therefore, for j = 1,2, · · · ,κk , in view of that {m(k)
j ,m(k)

j +1, · · · ,m(k)
j + r j −1} ⊆Uj ,∫ π

0
x−γ
∣∣∣∣ f (x)−V

m
(k)
j −2

(x)
∣∣∣∣dx � M1

∫ π

0

(
f (x)−V

m
(k)
j −2

(x)
)

φ
m

(k)
j ,ν j

(x)dx

� M1

m(k)
j

∣∣∣∣∣
r j

∑
l=1

lγa
m

(k)
j +l−1

∣∣∣∣∣� M1

nk

r j

∑
l=1

lγ |a
m

(k)
j +l−1

|,

so, since x−γ f (x) ∈ L2π , for arbitrary j , 1 � j � κk , with the definition of Uj , we have

M1 � M2

nk

r j

∑
l=1

lγT (n0)
jk+1

2α0(m
(k)
1 + l−1)γ

�
M3νγ+1

j

n1+γ
k

T (n0)
jk+1,
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that is,
ν j � M4nk(T

(n0)
jk+1)

−1/(1+γ).

In other words,
κk

∑
j=1

|Uj| =
κk

∑
j=1

ν j � M4κknk(T
(n0)
jk+1)

−1/(1+γ),

which contradicts the fact that
κk

∑
j=1

|Uj| � |Aα0
nk
| � M0nk

by Lemma 2.5 and (7). The proof is therefore completed. �
Write Ik = {2k,2k + 1, · · · ,2k+1 − 1} , and select disjoint subsets S1, . . . ,Sκk of Ik

according to the property of the sequence {an} as follows. Set

m1 = min{m ∈ Ik : am �= 0} .

Without loss of generality, we may assume that m1 = 2k . If {am} does not change sign
in Ik , let ν1 = 2k+1 − 1. Otherwise let ν1 = k0 for which am1+k0 is the first element
with m1 + k0 ∈ Ik of opposite sign than am1 . Define now

S1 = {m1, m1 +1, · · · ,m1 + ν1−1} .

Next, set m2 = min(Ik \S1) if this latter set is not empty, and using the same procedure
we select ν2 and define

S2 = {m2, m2 +1, · · · ,m2 + ν2−1} .

We continue this procedure until we reach an Sκk for which Ik \ (S1 ∪ ·· · ∪ Sκk) = /0 .
Set I+k to be the union of all subsets {S j} whose elements an keep positive sign, and
I−k the union of all subsets {S j} whose elements an keep negative sign. Also, define

J(1)
k = {∪S j : |S j| � 2k/(32λ 2M),1 � j � κk},

J(2)
k = {∪S j : |S j| < 2k/(32λ 2M),1 � j � κk},

and write
|aμ j | = max

m∈S j
|am|.

With all the above symbols, we have

LEMMA 2.7. Suppose that a real sequence {an} satisfies condition (1) , and let
0 < γ < 1 . Then, for sufficiently large k we have

∑
m∈J

(2)
k

mγ−1|am| � 1
4λ 2 ∑

m∈J
(1)
k

mγ−1|am|+ 1
4λ 2

2k−1

∑
n=2k/λ

nγ−1|an|+ 1
4λ

λ2k

∑
n=2k+1

nγ−1|an|.

Furthermore, the number of sets S j in J(1)
k is bounded independent of k .



MEAN VALUE BOUNDED VARIATION CONCEPT IN REAL SENSE 919

Proof. It is easy to see that, by condition (1),

1
2 ∑

S j⊆J(2)
k

|aμ j | �
1
2

κk

∑
j=1

|aμ j | �
2k+1

∑
n=2k

|Δan| � M
2k

λ2k

∑
n=2k/λ

|an|,

or in other words,

1
2 ∑

S j⊆J
(2)
k

|aμ j | �
M
2k

⎛⎜⎝ ∑
S j⊆J

(2)
k

|S j||aμ j |+ ∑
n∈J

(1)
k

|an|

⎞⎟⎠+
M
2k

⎛⎝ 2k−1

∑
n=2k/λ

|an|+
λ2k

∑
n=2k+1

|an|
⎞⎠ .

A direct calculation yields that

1
4 ∑

S j⊆J
(2)
k

|aμ j | � 1
2 ∑

S j⊆J
(2)
k

|aμ j |(1−M|S j|/2k)

� M
2k ∑

n∈J(1)
k

|an|+ M
2k

⎛⎝ 2k−1

∑
n=2k/λ

|an|+
λ2k

∑
n=2k+1

|an|
⎞⎠ (8)

by noticing that |S j| � 2k/(32λ 2M) for S j ⊆ J(2)
k . At the same time,

∑
n∈J

(2)
k

|an| � ∑
S j⊆J

(2)
k

|S j||aμ j | �
2k

32λ 2M ∑
S j⊆J

(2)
k

|aμ j |,

with (8), we have

∑
n∈J(2)

k

|an| � 1
8λ 2 ∑

n∈J(1)
k

|an|+ 1
8λ 2

⎛⎝ 2k−1

∑
n=2k/λ

|an|+
λ2k

∑
n=2k+1

|an|
⎞⎠ .

From this the required result of Lemma 2.7 immediately follows. Furthermore, since

|S j| � 2k/(32λ 2M) for S j ⊆ J(1)
k ⊆ {2k,2k +1, · · · ,2k+1 −1} , the number of S j ∈ J(1)

k
is definitely bounded independent of k . �

We also remark here the inequality established in Lemma 2.7 does reflex some es-
sential property of MVBV concept in real sense, although it needs further investigation
in the future.

COROLLARY 2.8. Let 0 < γ < 1 ,{an} satisfy condition (1) . For sufficiently large
k0 and arbitrary N we have

N

∑
k=k0

∑
m∈J

(2)
k

mγ−1|am| � 2

⎛⎜⎝ N

∑
k=k0

∑
m∈J

(1)
k

mγ−1|am|+
2k0−1

∑
n=2k0/λ

nγ−1|an|+
λ2N

∑
n=2N+1

nγ−1|an|

⎞⎟⎠ .
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Proof. The number of repeat points of {2k0 ,2k0 +1, · · · ,2N −1} with {m : 2k/λ �
m < 2k} , k = k0+1, · · · ,N and {m : 2k � m < λ2k} , k = k0, · · · ,N−1 is surely bounded
by 2λ . Therefore, we can easily have the conclusion of Corollary 2.8 by a simple
calculation. �

By using the symbols of Lemma 2.7, for sufficiently large k0 and k = k0,k0 +
1, · · · , set

dm =

⎧⎪⎨⎪⎩
mγ−1, m ∈ J(1)

k ∩ I+k ,

−mγ−1, m ∈ J(1)
k ∩ I−k ,

0, m ∈ J(2)
k .

LEMMA 2.9. Under the above symbols, {dm} satisfies condition (1) .

Proof. Since the number of sets S j in J(1)
k is bounded independent of k , |S j| �

2k/(32λ 2M) for all S j ⊆ J(1)
k , and d2m ≈ dm for every m � k0 and dm �= 0, d2m �= 0,

the fact that {dm} satisfies condition (1) can be easily verified. �

LEMMA 2.10. Suppose that a real sequence {an} satisfies condition (1) and
consider the trigonometric series

S(x) ≡
∞

∑
n=1

an sinnx

or

S(x) ≡
∞

∑
n=1

an cosnx,

and its sum function is denoted by f (x) . Let 0 < γ < 1 . If x−γ f (x) ∈ L2π and {an} is
the Fourier coefficients of f (x) , then for any N � k0 , we have

N

∑
k=k0

∑
m∈J

(1)
k

mγ−1|am| � M1

∫ π

0
x−γ | f (x)|dx.

Proof. We need only prove the conclusion for sine series, the other case can be
treated in the same manner. It is clear to see that f ∈ L2π . Hence

N

∑
k=k0

∑
m∈J(1)

k

mγ−1|am| =
N

∑
k=k0

⎛⎜⎝ ∑
m∈J(1)

k ∩I+k

mγ−1am + ∑
m∈J(1)

k ∩I−k

mγ−1(−am)

⎞⎟⎠
=

2
π

N

∑
k=k0

⎛⎜⎝ ∑
m∈J

(1)
k ∩I+k

mγ−1
∫ π

0
f (x)sinmxdx+ ∑

m∈J
(1)
k ∩I−k

(−mγ−1)
∫ π

0
f (x)sinmxdx

⎞⎟⎠
=

2
π

∫ π

0
f (x)

(
2N−1

∑
m=2k0

dm sinmx

)
dx,
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or
N

∑
k=k0

∑
m∈J

(1)
k

mγ−1|am| � 2
π

∫ π

0
| f (x)|

∣∣∣∣∣ 2N−1

∑
m=2k0

dm sinmx

∣∣∣∣∣dx.

By Theorem 2.2 and Lemma 2.9, we immediately get∣∣∣∣∣ 2N−1

∑
m=2k0

dm sinmx

∣∣∣∣∣= O(x−γ),

so that
N

∑
k=k0

∑
m∈J(1)

k

mγ−1|am| � M1

∫ π

0
x−γ | f (x)|dx.

Lemma 2.10 is proved. �
Proof of Theorem 1.1. It is deduced immediately from Corollary 2.8 and Lemma

2.10 that

2N

∑
m=2k0

mγ−1|am| � M1

⎛⎝∫ π

0
x−γ | f (x)|dx+

2k0−1

∑
n=2k0/λ

nγ−1|an|+
λ2N

∑
n=2N+1

nγ−1|an|
⎞⎠ ,

in combining with Theorem 2.6 we have

2N

∑
m=2k0

mγ−1|am| � M1

∫ π

0
x−γ | f (x)|dx+O(1),

that already finish the proof of necessity.
Sufficiency can be derived from Corollary 2.3 in [3]. �
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