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Abstract. This paper deals with the approximation of functions by sequences of linear operators
via B -statistical A -summability. Quantitative results and asymptotic formulae are stated under
a conservative approximation setting. A short discussion is addressed in connection with the rate
of statistical convergence. Finally, the applicability of the results is illustrated.

1. Introduction

In the general setting of the approximation of functions by sequences of linear op-
erators, Korovkin-type theory merits special attention, primarily because of its connec-
tions with other areas of mathematics (see [1]). This theory originated in the fifties with
the classical results of Popoviciu, Bohmann and Korovkin, and since then, it has been
extended in many directions. One of them refers to the study of convergence methods
that are stronger than the classical notion. Here one finds B-statistical A-summability,
that has shown to be quite effective in summing sequences which are not convergent in
the classical sense. In this paper, we shall deal with this method that has received a lot
of recent attention in different branches of mathematics (such as approximation theory,
stochastic processes or fuzzy logic) and has found applications in engineering, artificial
intelligence and computational mathematics among others. We begin by recalling its
definition.

Let A = (ai j) , i, j = 1,2, . . . be an infinite summability matrix. For a given se-
quence of real numbers z = (z j) , the A-transform of z is another sequence, denoted by
Az or A(z j) , whose elements are defined by

(Az)i :=
∞

∑
j=1

ai jz j,

provided the series converges for each i . A is said to be regular if Az converges to � (as
i→ +∞) whenever z converges to � (as j → +∞). Obviously, the infinite identity ma-
trix I is regular, since Iz = z . As usual, if we use certain letter to represent a sequence,
then its elements or terms are denoted by the same letter followed by a subindex.
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Let B = (bnk) , n,k = 1,2, . . . be a non-negative regular summability matrix. For a
given set of natural numbers K ⊂ N , the B-density of K , denoted by δB(K) , is defined
by

δB(K) := lim
n→∞ ∑

k∈K

bnk = lim
n→∞

(BχK)n = lim
n→∞

∞

∑
k=1

bnk (χK)k ,

provided the limit exists, where χK denotes the characteristic sequence of K , i.e.
(χK)k = 1 if k ∈ K and (χK)k = 0 otherwise. Obviously, the regularity of B im-
plies that δB(N) = 1. This definition was introduced by Freedman and Sember [13] as
a generalization of the natural density which appears when B is defined by bnk = 1/n if
n � k and bnk = 0 otherwise, that is to say, when B coincides with (C,1) , the Cesàro
matrix of order 1. In this particular setting, δB(K) is simply denoted by δ (K) and
obeys the following expression:

δ (K) = lim
n→∞

#Kn

n
,

where Kn = {k ∈ K : k � n} and #Kn denotes its cardinality.

DEFINITION 1. Let A = (ai j) and B = (bnk) be two non-negative regular summa-
bility matrices. A sequence z = (z j) is said to be B-statistically A-summable to � , de-
noted by �= stB− lim Az , if for every ε > 0, the B-density of Kε := {i : |(Az)i − �|� ε}
is zero, i.e.

δB(Kε ) = lim
n→∞ ∑

k∈Kε

bnk = lim
n→∞

(BχKε )n = lim
n→∞

∞

∑
k=1

bnk (χKε )k = 0.

The concept of B-statistical A-summability has been recently presented in [11] as
a generalization of a long list of variants and extensions of the classical statistical con-
vergence introduced by Fast in 1951 [12], which, by the way, appears after taking in the
definition above A = I and B = (C,1) . It is worth mentioning some other outstanding
particular cases of this concept: if A = B = I , it appears the classical convergence; if
only A = I , it reduces to B-statistical convergence; if only B = (C,1) , then it becomes
statistical A-summability; finally, if only B = I , the ordinary matrix summability is
recovered. It must be remarked that many other particular choices of A and B give
rise to well established settings, and that there is an extensive literature dealing with
this matter. We suggest the novel interested reader to consult firstly the recent easy
to get papers [11, 22] (which study this matter in approximation theory) and then the
references therein.

As regards notation, in the definition above, stB takes the simpler form st when
B = (C,1) , and it is merely deleted if B = I . Obviously, lim Az is written as lim z
when A = I .

Once introduced the notion of convergence that we are going to consider in this
work, we shall roughly describe our subject of interest within approximation theory.
We are concerned with Korovkin-type results that deal with the approximation of func-
tions of the form D f , D being certain differential operator to be defined, by using
sequences of functions built from D and from Lj f , where L = (Lj) is a sequence of
linear operators. Here D f and Lj f denote the images of f by D and Lj respectively.
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The idea of examining different notions of generalized convergence in approxi-
mation theory turns to be a pattern that has been followed by a long list of researchers
for many years. One of the archetypes within Korovkin-type theory is represented
by the results of King and Swetits [16], who proved qualitative results via the almost
convergence introduced by Lorentz in 1948 [17]. We notice, however, that the al-
most convergence is not a particular case of B-statistical A-summability. As far as
the notion of the classical statistical convergence is concerned, Gadjiev and Orhan in
2002 [14] were the first who examined it in approximation theory. Specifically, they
proved some basic Korovkin-type results related to the approximation of functions by
sequences of linear positive operators. In this line and very recently, Mursaleen and
Kiliçman [22] have done some work under the more general notion of B-statistical A-
summability. Chronologically, between these two last aforementioned papers, one finds
in the literature many others about this subject through an important number of vari-
ants and generalizations of the classical statistical convergence. For example, statistical
A-summability and the particular case of statistical (C,1)-summability have been stud-
ied in [7] and [18] respectively, and B-statistical convergence has been investigated in
[2, 8, 9, 10]. Further results appear in [19, 20, 21].

To be more specific with our aim, in this paper, under the assumption that the oper-
ators Lj fulfill certain shape preserving property related to D , we first prove a quantita-
tive result about the pointwise B-statistical A-summability of the sequence of functions
(DLj f ) towards the function D f , and then we analyze the rate of approximation by
stating an asymptotic formula of Voronovskaya type. The inequality that yields our
quantitative result is more general than the one stated in [22], and more importantly, it
is also more appropriate, as it does allow to recover properly the corresponding qualita-
tive version. As regards asymptotic expressions under statistical convergence, up to our
knowledge, only the particular case of the well-known Szász-Mirakjan-Kantorovichop-
erators has been studied in [2], whereas the result we are stating here is general. In this
respect we refer the reader to the recent related papers [3, 23], that deal with different
notions of statistical convergence.

We also pursue a further aim with this work, namely, to bring a sort of unification
to the notation, the results and their tools in some of the aforementioned papers that
deal with this subject. In this respect, a short discussion is addressed in connection with
the appropriate notion of rate of B-statistical A-summability to be considered.

To finish this introduction and just to fix ideas about the aforesaid conservative
setting, we suggest the reader to assume that D is the classical differential operator of
order m , namely D = Dm ; this takes us to the framework of the so-called simultaneous
approximation, where it is natural to assume that the operators are m-convex, i.e. they
map m-convex functions onto m-convex functions (recall that a m-times continuously
differentiable function is said to be m-convex if its m th derivative is non-negative). In
this case, the interest would be focused on the pointwise B-statistical A-summability
of the sequence of functions (DmLj f ) towards the function Dm f .
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2. General setting, specific objectives and preliminaries

Let J = [0,1] ⊂ R , J◦ = (0,1) and let i ∈ N0 = N∪{0} . We denote by Ci(J)
the space of all real valued i-times continuously differentiable functions defined on J
and, as pointed out in the introduction, we denote by Di the classical i th differential
operator. Obviously, C0(J)=C(J) is the space of all continuous functions on J , D0 = I

is the identity operator and C∞(J) = ∩i∈NCi(J) . For low order derivatives of a function
f we keep on using the classical notation f ′ , f ′′ , . . . As usual, for f ∈C(J) , ω( f ,ξ )
denotes its classical modulus of continuity with argument ξ .

Let τ ∈ C∞(J) such that τ(0) = 0, τ(1) = 1 and τ ′(t) > 0 for t ∈ (0,1) . As a
generalization of the usual notation for the monomials ei(t) = ti and ex

i (t) = (t − x)i ,
we denote by eτ,i and ex

τ,i the functions

eτ,i(t) = τ(t)i, ex
τ,i(t) = (τ(t)− τ(x))i.

Now, we detail the differential operator referred as D in the previous section by
considering Di

τ , already used by the authors in [5] and defined by

Di
τ f (t) := Di ( f ◦ τ−1) (τ(t)). (1)

Obviously, D0
τ = I , and if τ = e1 , then Di

τ = Di . Moreover, we notice that the operator
Di

τ coincides with the i th iterate of the operator 1
τ ′ D

1 , denoted by Di,τ ′ and defined
recursively as follows:

D0,τ ′ = I, D1,τ ′ =
1
τ ′

D1, Di+1,τ ′ = D1,τ ′ ◦Di,τ ′ , i ∈ N.

Besides, it can be easily checked that for x ∈ J ,

Di
τe

x
τ, j =

⎧⎨
⎩

j!
( j−i)!e

x
τ, j−i, if j � i;

0, if j < i.
(2)

Finally, let m∈N , let A =(ai j) and B =(bnk) be two non-negative regular summability
matrices, and let us consider a sequence of linear operators L = (Lj) , Lj : Cm(J) −→
Cm(J) .

Then, given f ∈Cm(J) and x∈ J , we are interested in the B-statistical A-summa-
bility of the sequence (Dm

τ Lj f (x)) towards Dm
τ f (x) . Equivalently, if we use the nota-

tion

A τ,m
L,i f (x) :=

∞

∑
j=1

ai jD
m
τ Lj f (x),

our interest is focused on the B-statistical convergenceof (A τ,m
L,i f (x)) towards Dm

τ f (x) .
With that purpose, in Section 3, with the use of the modulus of continuity of the

function Dm f ◦ τ−1 , we first estimate the quantity

|A τ,m
L,i f (x)−Dm

τ f (x)|, x ∈ J.

Then we study the rate of B-statistical A-summability. Section 4 deals with an asymp-
totic formula for this approximation process, while the last section contains some ap-
plications. Now, we end this one by stating a lemma that we shall use in the rest of the
paper. We omit its proof as it can be derived directly from the definitions above and
follow standard patterns.
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LEMMA 1. Let α = (α j) , β = (β j) and γ = (γ j) be three sequences of real
numbers. Assume that there exists K ⊂ N with δB(K) = 1 such that

α j � β j � γ j, ∀ j ∈ K.

If stB − lim α = stB − lim γ = � , then stB − lim β = � .

3. A quantitative Korovkin-type result

We assume the conditions of the previous section.

THEOREM 1. Let us suppose that the following (shape preserving) property is
satisfied:

Dm
τ f (t) � 0, ∀t ∈ J ⇒ A τ,m

L,i f (t) � 0, ∀t ∈ J, i = 1,2, . . . . (3)

Then, for f ∈Cm(J) and x ∈ J ,∣∣∣A τ,m
L,i f (x)−Dm

τ f (x)
∣∣∣ � |Dm

τ f (x)|
m!

·
∣∣∣A τ,m

L,i eτ,m(x)−Dm
τ eτ,m(x)

∣∣∣
+

1
m!

∣∣∣A τ,m
L,i eτ,m(x)+Dm

τ eτ,m(x)
∣∣∣ω (Dm

τ f ◦ τ−1,ηi,τ,m(x)
)
,

where

η2
i,τ,m(x) =

2
(m+2)!

∣∣∣A τ,m
L,i ex

τ,m+2(x)
∣∣∣ .

Proof. Let f ∈Cm(J) , x ∈ J and ξ > 0. Then, for t ∈ J such that |τ(t)−τ(x)| >
ξ ,∣∣(Dm

τ f ◦ τ−1)(τ(t))− (Dm
τ f ◦ τ−1)(τ(x))

∣∣ � ω
(
Dm

τ f ◦ τ−1, |τ(t)− τ(x)|)
�
(

1+
|τ(t)− τ(x)|

ξ

)
ω
(
Dm

τ f ◦ τ−1,ξ
)

�
(

1+
(τ(t)− τ(x))2

ξ 2

)
ω
(
Dm

τ f ◦ τ−1,ξ
)
.

Obviously, if |τ(t)− τ(x)| � ξ , then∣∣(Dm
τ f ◦ τ−1)(τ(t))− (Dm

τ f ◦ τ−1)(τ(x))
∣∣� ω

(
Dm

τ f ◦ τ−1,ξ
)
.

Hence, for all t ∈ J ,

∣∣(Dm
τ f ◦ τ−1)(τ(t))− (Dm

τ f ◦ τ−1)(τ(x))
∣∣� (1+

(τ(t)− τ(x))2

ξ 2

)
ω
(
Dm

τ f ◦ τ−1,ξ
)
,

which, by using (2), amounts to following functional inequalities:

−ω
(
Dm

τ f ◦ τ−1,ξ
)
Dm

τ

(
eτ,m

m!
+

2ex
τ,m+2

(m+2)! ·ξ 2

)

� Dm
τ

(
f −Dm

τ f (x)
eτ,m

m!

)
� ω

(
Dm

τ f ◦ τ−1,ξ
)
Dm

τ

(
eτ,m

m!
+

2ex
τ,m+2

(m+2)! ·ξ 2

)
.
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Directly from hypothesis (3), using linearity arguments and evaluating at x , we obtain∣∣∣∣∣A τ,m
L,i f (x)−Dm

τ f (x)
A τ,m

L,i eτ,m(x)
m!

∣∣∣∣∣
� ω

(
Dm

τ f ◦ τ−1,ξ
)(A τ,m

L,i eτ,m(x)
m!

+
2A τ,m

L,i ex
τ,m+2(x)

(m+2)! ·ξ 2

)
.

Then, the triangular inequality allows to write∣∣∣A τ,m
L,i f (x)−Dm

τ f (x)
∣∣∣ �

∣∣∣∣∣A τ,m
L,i f (x)−Dm

τ f (x)
A τ,m

L,i eτ,m(x)
m!

∣∣∣∣∣
+

∣∣∣∣∣Dm
τ f (x)

A τ,m
L,i eτ,m(x)

m!
−Dm

τ f (x)
Dm

τ eτ,m(x)
m!

∣∣∣∣∣
� ω

(
Dm

τ f ◦ τ−1,ξ
)(A τ,m

L,i eτ,m(x)
m!

+
2A τ,m

L,i ex
τ,m+2(x)

(m+2)! ·ξ 2

)

+
|Dm

τ f (x)|
m!

∣∣∣A τ,m
L,i eτ,m(x)−Dm

τ eτ,m(x)
∣∣∣ ,

from where the proof is over after taking ξ = ηi,τ,m(x) . �

4. Rate of B-statistical A-summability

Directly from Theorem 1, the corresponding qualitative version is easily derived.
We detail it in the following result.

COROLLARY 1. Assume the conditions of Theorem 1. If (Dm
τ Ljes,m(x)) is B-

statistically A-summable to Dm
τ es,m(x) for s = m,m + 1,m + 2 , then (Dm

τ Lj f (x)) is
B-statistically A-summable to Dm

τ f (x) .

Proof. Firstly, we notice that the linearity of the operators Lj and equation (2),
together with the shape preserving assumption (3), yield that

A τ,m
L,i eτ,s(x) = 0, s = 0,1, . . . ,m−1.

As a consequence, the equality

ex
τ,m+2(t) =

m+2

∑
r=0

(
m+2

r

)
(−1)reτ,m+2−r(t)eτ,r(x),

and the triangular inequality, allows us to write,∣∣∣A τ,m
L,i ex

τ,m+2(x)
∣∣∣ �

∣∣∣A τ,m
L,i eτ,m+2(x)−Dm

τ eτ,m+2(x)
∣∣∣

+(m+2)τ(x)
∣∣∣A τ,m

L,i eτ,m+1(x)−Dm
τ eτ,m+1(x)

∣∣∣ (4)

+
(m+1)(m+2)

2
τ(x)2

∣∣∣A τ,m
L,i eτ,m(x)−Dm

τ eτ,m(x)
∣∣∣ .
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On the other hand, Fast [12] pointed out that a sequence of real numbers η is statisti-
cally convergent to 0 if and only if there exists a sequence of natural numbers σn such
that δ ({σn : n ∈ N}) = 1 and ησn → 0 in the classical sense. With the obvious modifi-
cations, this statement holds true if statistic convergence is extended to B-statistic con-
vergence, and directly from it, we deduce that stB− lim ω(Dm

τ f ◦τ−1,η) = 0 whenever
stB − lim η = 0. Obviously, the uniform continuity of Dm

τ f ◦ τ−1 must be taken into
account.

Finally, we apply this last statement to η = ηi,τ,m(x) and finish the proof by using
(4), the thesis of Theorem 1 and Lemma 1. �

Now we pay attention to the rate of B-statistical A-summability of (Dm
τ Lj f (x))

towards Dm
τ f (x) , x ∈ J , or equivalently, to the rate of B-statistical convergence of

(A τ,m
L,i f (x)) towards Dm

τ f (x) , x ∈ J .
First of all, a definition is required, and a good reference to be consulted in this

respect is the paper [9] by Duman, Khan and Orhan.
We follow it to consider below two notions of rate of B-statistical A-summability

with respect to a positive non-increasing sequence α .

DEFINITION 2. A sequence z is B-statistically A-summable to the number �
with the rate of o(α) , denoted by

Az− � = stB −o(α),

if for every ε > 0,

lim
n→∞

1
αn

∑
k∈Kε

bnk = 0,

where Kε = {i : |(Az)i − �|� ε} is given in Definition 1.

DEFINITION 3. A sequence z is B-statistically A-summable to the number �
with the rate of oμ(α) , denoted by

Az− � = stB −oμ(α),

if for every ε > 0,
lim
n→∞ ∑

k∈Kε,α

bnk = 0,

where Kε,α := {i : |(Az)i − �|� εαi} .

Notice the difference between o(α) in Definition 2 and oμ(α) in Definition 3. The
reason why we have used the letter μ , is that it usually denotes a measure in mea-
sure theory and, as it was pointed out in [9], Definition 3 comes from the concept of
convergence in measure.

Definition 2 has been recently used in [22]. It has also been used in [7] under
the particular setting of statistical A-summability. Nevertheless, it is worth mentioning
that in the specific case of B-statistical convergence, both previous definitions had been
considered some years earlier in [9] and, although the authors of this last paper achieved
analogous results in approximation theory using both definitions, the comparison stated
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there showed that Definition 3 was more suitable that Definition 2 because, in this last
case, there is more dependence on the entries of B than on the sequence itself. Some
further arguments were wielded in [9] to endorse this choice. Here we add the following
two simple comments: firstly, notice that if a sequence is A-summable to � , then it is
statistically A-summable to � with the rate o((n−q)) for every q > 0; secondly, the
following particular sequences z and y are not convergent but statistically convergent,
and both of them have the same rate of statistical convergence in the sense of Definition
2:

z j =
{

j, if
√

j ∈ N;
1/ j, otherwise.

y j =
{

j, if
√

j ∈ N;
1/ j2, otherwise.

The following corollary, whose proof we omit, comes directly from Lemma 1, [22,
Lemma 5] and, obviously, from Theorem 1.

COROLLARY 2. Let α , β be two positive non-increasing sequences. Let f ∈
Cm(J) and x ∈ J and let us assume that

A(Dm
τ Ljeτ,m(x))−Dm

τ eτ,m(x) = stB −oμ(α)

and (
ω(Dm f ◦ τ−1,ηi,τ,m(x))

)
= stB −oμ(β ).

Then
A(Dm

τ Lj f (x))−Dm
τ f (x) = stB −oμ(γ),

where γ = (γn) is given by γn = max{αi,βi} .

It would be quite interesting to study the relationship, if any, between the rate of
B-statistical A-summability towards zero of the argument of the modulus of continuity,
and the smoothness of the function Dm f ◦ τ−1 . Up to our knowledge, this matter has
not been explored yet.

5. A result on asymptotic formulae

Here we study the optimal rate of B-statistical A-summability of (Dm
τ Lj f (x)) to-

wards Dm
τ f (x) . As it is usual in approximation theory by linear operators, this is carried

out with the aid of an asymptotic formula. We shall only make use of Definition 3 be-
cause it is the most appropriate notion to compare rates of B-statistical A-summability.
In this respect, and to make it easier to understand the result that follows, it is important
to point out that a sequence z is B-statistically convergente to 0 with the rate oμ(α) if
and only if the sequence (z j/α j) is B-statistically convergente to 0, i. e.

z = stB −oμ(α) ⇔ stB − lim (z j/α j) = 0.

THEOREM 2. Under the general setting of Section 2, let us suppose that the op-
erators L j satisfy (3), let x ∈ J◦ and let us assume that there exist a sequence of real
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positive numbers λi →+∞ and three strictly positive functions w0 , w1 and w2 defined
on J◦ with wi ∈C2−i(J◦) such that, for s ∈ {m,m+1,m+2,m+4} ,

stB − lim
(

λi

(
A τ,m

L,i ex
τ,s(x)−Dm

τ ex
τ,s(x)

))
= w−1

2 D1(w−1
1 D1(w−1

0 Dm
τ ex

τ,s))(x). (5)

Then, for f ∈Cm(J) , m+2 times differentiable in some neighborhood of x ,

stB − lim
(

λi

(
A τ,m

L,i f (x)−Dm
τ f (x)

))
= w−1

2 D1 (w−1
1 D1 (w−1

0 Dm
τ f
))

(x).

Proof. We follow a classical pattern based on the Taylor’s expansion of the func-
tion Dm

τ f ◦ τ−1 at the point τ(x) . This gives the following expression, after using the
equality Dj

τD
m
τ f (t) = Dj

(
Dm

τ f ◦ τ−1
)
(τ(t)) and evaluating at τ(t) with t ∈ J :

Dm
τ f (t) = D0

τ(D
m
τ f )(x)ex

τ,0(t)+D1
τ(D

m
τ f )(x)ex

τ,1(t)

+
1
2
D2

τ(D
m
τ f )(x)ex

τ,2(t)+h(τ(t)− τ(x))ex
τ,2(t),

where h is a continuous function that vanishes at zero.
Equivalently, using (2), we can write, for t ∈ J ,

Dm
τ f (t) = Dm

τ

(
2

∑
s=0

1
(m+ s)!

Ds
τ(D

m
τ f )(x)ex

τ,m+s +Hx

)
(t)

with Hx ∈Cm(J) and Dm
τ Hx(t) = h(τ(t)− τ(x))ex

τ,2(t) .
Linearity arguments and (3) allow to write, after evaluating at x ,

A τ,m
L,i f (x) =

2

∑
s=0

Ds
τ(D

m
τ f )(x)

(m+ s)!
A τ,m

L,i ex
τ,m+s(x)+A τ,m

L,i Hx(x).

Now, we introduce the term

Dm
τ f (x) =

2

∑
s=0

1
(m+ s)!

Ds
τ (D

m
τ f )(x)Dm

τ ex
τ,m+s(x),

and multiply by λi to obtain

λi

(
A τ,m

L,i f (x)−Dm
τ f (x)

)
= λiA

τ,m
L,i Hx(x)+

2

∑
s=0

Ds
τ(D

m
τ f )(x)

(m+ s)!
λi

(
A τ,m

L,i ex
τ,m+s(x)−Dm

τ ex
τ,m+s(x)

)
.

(6)

After some cumbersome but easy calculations, the hypothesis of the theorem for s =
m,m+1,m+2 yield that

stB − lim

(
2

∑
s=0

Ds
τ (D

m
τ f )(x)

(m+ s)!
λi

(
A τ,m

L,i ex
τ,m+s(x)−Dm

τ ex
τ,m+s(x)

))

= w−1
2 D1 (w−1

1 D1 (w−1
0 Dm

τ f
))

(x),

and consequently, if we take into account (6), we end this proof if we check that

stB − lim
(

λiA
τ,m
L,i Hx(x)

)
= 0. (7)



932 D. CÁRDENAS-MORALES AND P. GARRANCHO

To do this, we use continuity arguments on the function h to guarantee the existence of
a neighborhood of x , say θx , for a given ε > 0, such that for t ∈ θx ,

|h(τ(t)− τ(x))| < ε.

Then, for all t ∈ J ,

|Dm
τ Hx(t)| = |h(τ(t)− τ(x))|ex

τ,2(t) � εex
τ,2(t)+max{0, |h(τ(t)− τ(x))|− ε}ex

τ,2(t).

Let us consider a function W ∈Cm(J) such that Dm
τ W (t) = max{0, |h(τ(t)− τ(x))|−

ε}ex
τ,2(t) . As Dm

τ W vanishes in θx , then, for a sufficiently large constant M , one has
|Dm

τ W (t)| � MDm
τ ex

τ,m+4(t) . Thus, gathering the last inequalities we obtain that

|Dm
τ Hx(t)| � 2ε

(m+2)!
Dm

τ ex
τ,m+2(t)+MDm

τ ex
τ,m+4(t).

By using (3) and the fact that λi > 0, we obtain, after evaluating at the point x ,∣∣∣λiA
τ,m
L,i Hx(x)

∣∣∣� 2ε
(m+2)!

λiA
τ,m
L,i ex

τ,m+2(x)+MλiA
τ,m
L,i Mex

τ,m+4(x).

As regards the hypothesis of the result for s = m+2 and s = m+4, after some calcu-
lations using (2), we can write respectively

stB − lim
(

λiA
τ,m
L,i ex

τ,m+2(x)
)

=
2τ ′(x)2

w2(x)w1(x)w0(x)
> 0

and
stB − lim

(
λiA

τ,m
L,i ex

τ,m+4(x)
)

= 0.

Finally, Lemma 1 and the fact that ε > 0 was arbitrary allow to finish the proof. �

6. Applications

Firstly, we mention that Theorem 2 extends previous results stated in [4], [15] and
[6] under different settings. Then, in this section, we apply Theorem 2 to a particular
sequence of operators that cannot be studied with any of the previous results we have
just made reference to.

Let A = (ai j) and B = (bnk) be the regular matrixes defined by

ai j =
{

1, if j = 2i;
0, otherwise.

and

bnk =

⎧⎨
⎩

0, if k > n ∨ k/4 ∈ N;
2/n, if k < n ∧ (k+1)/4∈ N;
1/n, otherwise.

Let us also consider the sequence h = (h j) defined as

h j =
{

j, if ( j +1)/2 ∈ N∨ j/8 ∈ N;
0, otherwise.
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It is obvious that the sequence h does not converge to 0 in the classical sense and it
is not A-summable to 0. Moreover, it is not B-statistically convergent to 0 either,
because if this were so, then for each ε > 0 (sufficiently small)

δB({ j : |h j| � ε}) = δB({ j : h j �= 0}) = 0,

or equivalently δB(Kε) = 1, where

Kε = { j : |h j| � ε} = {2,4,6,10,12,14,18,20,22,26, . . .}.
But this is not true since for each n ∈ N

∞

∑
k=1

bnk (χKε )k � 1
2
.

On the other hand, it takes just a while to check that the sequence h is B-statistically
A-summable to 0.

Now we fix τ in the same conditions as in the paper and consider the sequence of
operators

Bτ = (Bτ
j ) := ((1+h j)Bτ

j ),

where (Bτ
j ) is the sequence studied in [5] and defined for f ∈C(J) by

Bτ
j f (t) =

j

∑
ν=1

(
j
ν

)
τ(t)ν(1− τ(t))1−ν( f ◦ τ−1)(ν/ j).

Given f ∈C3(J) and x ∈ J◦ , our interest is focused on the B-statistical A-summability

of the sequence
(
D3

τB
τ
j f (x)

)
towards D3

τ f (x) or, equivalently, on the B-statistical

convergence of
(
A τ,3

Bτ ,i f (x)
)

towards D3
τ f (x) .

The choice of the third order in the differential operator and of the operators Bτ
j

obeys to illustrative purposes and intend to give a general idea of the applicability of
the results of the paper.

COROLLARY 3. Under the previous conditions, assume that f is 5 -times differ-
entiable in a neighborhood of x . Then

stB − lim
(
2i
(
A τ,3

Bτ ,i f (x)−D3
τ f (x)

))
= D3

τ

(
τ(1− τ)

2
D2

τ f

)
(x).

Proof. We shall apply Theorem 2 with Lj = Bτ
j , m = 3, λi = 2i and

w0 =
1
τ2 , w1 =

2ττ ′

(1− τ)3 , w2 = (1− τ)2τ ′.

Now we show that all the hypotheses are satisfied. Firstly, it was observed in [5] that
the operators Bτ

j are positive and τ -convex of order k for every k ∈ N , i.e. Dk
τ f � 0

implies that Dk
τB

τ
j f � 0. Obviously, this is also the case for Bτ

j . As a consequence, if

D3
τ f (t) � 0 for all t ∈ J one deduces that for i = 1,2, . . .

A τ,3
Bτ ,i f (t) =

∞

∑
j=1

ai jD
3
τB

τ
j f (t) =

∞

∑
j=1

ai j(1+h j)D3
τB

τ
j f (t) = (1+h2i)D3

τB
τ
2i f (t) � 0.
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Hence, hypothesis (3) is fulfill.

As regards hypothesis (5) we first notice the following equality, that can easily
checked with the use of some mathematical software:

D3
τ

(
τ(1− τ)

2
D2

τ f

)
= w−1

2 D1(w−1
1 D1(w−1

0 D3
τ f )).

If f is replaced by ex
τ,s for s = 3,4,5,7, we have the following expressions for the

right-hand side of (5):

D3
τ

(
τ(1− τ)

2
D2

τe
x
τ,s

)
=

⎧⎪⎪⎨
⎪⎪⎩

−18, s = 3;
36(1−2τ), s = 4;
60τ(1− τ), s = 5;
0, s = 7.

(8)

Finally, we have to compute the left-hand side of (5) for s = 3,4,5,7, and check that
the results coincide with the previous expressions (8).

Notice that

2i
(
A τ,3

Bτ ,ie
x
τ,s(x)−D3

τe
x
τ,s(x)

)
= 2i

(
D3

τB
τ
2ie

x
τ,s(x)−D3

τe
x
τ,s(x)

)
+2i(h2i)D3

τB
τ
2ie

x
τ,s(x),

and as

2i(h2i)D3
τB

τ
2ie

x
τ,s(x) =

{
(2i)2 ·D3

τB
τ
2ie

x
τ,s(x), if i

4 ∈ N;
0, otherwise,

then 2i(h2i)D3
τB

τ
2ie

x
τ,s(x) is B-statistically convergent to 0, and consequently we can

rewrite the left-hand side of (5) as follows:

stB − lim
(
2i
(
A τ,3

Bτ ,ie
x
τ,s(x)−D3

τe
x
τ,s(x)

))
= stB − lim

(
2i
(
D3

τB
τ
2ie

x
τ,s(x)−D3

τe
x
τ,s(x)

))
.

In order to calculate D3
τB

τ
2ie

x
τ,s(x) for s = 3,4,5,7, we can consult [4], where the au-

thors obtained expressions for D3Bjex
s(x) , Bj being the classical Bernstein polynomi-

als. With the obvious modifications, namely replacing x by τ(x) , they remain valid for
D3

τB
τ
j e

x
τ,s(x) . The following identities, that appear immediately, allow to complete the



B -STATISTICAL A -SUMMABILITY IN CONSERVATIVE APPROXIMATION 935

proof:

D3
τB

τ
2ie

x
τ,3(x) = 6− 18

(2i)
+

12
(2i)2

D3
τB

τ
2ie

x
τ,4(x) =

36(1−2τ(x))
(2i)

− 108(1−2τ(x))
(2i)2 +

72(1−2τ(x))
(2i)3

D3
τB

τ
2ie

x
τ,5(x) =

60τ(x)(1− τ(x))
(2i)

+
30(5−30τ(x)+30τ(x)2)

(2i)2

−30(15−76τ(x)+76τ(x)2)
(2i)3 +

30(10−48τ(x)+48τ(x)2)
(2i)4

D3
τB

τ
2ie

x
τ,7(x) =

630(1−τ(x))2τ(x)2

(2i)2 − 210τ(x)(−22+133τ(x)−222τ(x)2+111τ(x)3)
(2i)3

+
42(43−930τ(x)+4290τ(x)2−6720τ(x)3 +3360τ(x)4)

(2i)4

+
42(−129+2020τ(x)−8440τ(x)2+12840τ(x)3−6420τ(x)4)

(2i)5

+
84(43−600τ(x)+2400τ(x)2−3600τ(x)3 +1800τ(x)4)

(2i)6 . �

7. Conclusions

The main achievement of the paper is Theorem 2. It is a step forward in the
study of B-statistical A-summability of sequences of linear operators that fulfill shape
preserving properties more general than positivity. Beyond the classical qualitative and
quantitative results, that theorem offers a procedure to obtain asymptotic formulae that
requires a proper choice of a notion of rate of convergence. The topic of saturation, still
to be investigated, turns to be classically the next step.

On the other hand, the paper revisits the aforesaid qualitative and quantitative re-
sults. A novelty here is that the qualitative one is obtain from the quantitative one.
This had not been done before properly in the general framework represented by the
B-statistical A-summability and the simultaneous setting.

The final example illustrates the wide applicability of the results of the paper.
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