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Abstract. In the present paper we prove several sharp two-weight Hardy, Hardy-Poincaré, and
Rellich type inequalities on the sub-Riemannian manifold R

2n+1 = R
n ×R

n ×R defined by the
vector fields:

Xj =
∂

∂x j
+2kyj |z|2k−2 ∂

∂ l
, Yj =

∂
∂y j

−2kx j |z|2k−2 ∂
∂ l

, j = 1,2, ...,n

where (z,y) = (x,y, l) ∈ R
2n+1 , |z| = (|x|2 + |y|2)1/2 and k � 1 .

1. Introduction

The present work is concerned with the two-weight Hardy, Hardy-Poincaré, and
Rellich type inequalities on the sub-Riemannian manifold R

2n+1 = R
n ×R

n ×R de-
fined by the vector fields:

Xj =
∂

∂x j
+2ky j|z|2k−2 ∂

∂ l
, Yj =

∂
∂y j

−2kx j|z|2k−2 ∂
∂ l

, j = 1,2, ...,n (1)

where |z| = (|x|2 + |y|2)1/2 and k � 1. The vector fields (1) satisfy Hörmander’s con-
dition for any k ∈ N , i.e, Xj,Yj and their iterated Lie brackets span the tangent space
of R

2n+1 at each point [17].
In order to motivate our work, we first present Hardy and Rellich inequalities on

the Euclidean space R
n . The classical Hardy inequality for the Laplacian in R

n , n � 3,
states that for any smooth, compactly supported function φ ∈ C∞

0 (Rn) , the following
inequality holds [15] :

∫
Rn

|∇φ |2dx � (n−2)2

4

∫
Rn

|φ |2
|x|2 dx. (2)

An extension of the Hardy’s inequality to second-order derivative is referred as the
Rellich inequality [25]:

∫
Rn

|Δφ |2dx � n2(n−4)2

16

∫
Rn

|φ |2
|x|4 dx (3)
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where φ ∈ C∞
0 (Rn) and n � 5. The coefficients (n−2)2

4 and n2(n−4)2
16 are sharp, but

are never achieved. Hardy and Rellich type inequalities and their improved versions
play important role in the study of elliptic and parabolic partial differential equations
involving singular potentials, e.g. [1], [2], [3], [5], [6], [9], [10], [12], [13], [18], [20],
[21], [24], [26], [27] and references therein.

There has been a growing interest in Hardy and Rellich type inequalities on the
sub-Riemannian manifold R

2n+1 = R
n ×R

n ×R defined by the vector fields (1). In
the article [28], Niu and Zhang established the following Hardy type inequality for all
φ ∈ R

2n+1 \ {(0,0)} :

∫
R2n+1

|∇kφ |pdw �
(Q− p

p

)p ∫
R2n+1

( |z|
ρ

)p(2k−1) |φ |p
ρ p dw (4)

where ρ denotes the homogeneous norm: ρ = (|z|4k + l2)1/4k , Q = 2n+ 2k the ho-
mogeneous dimension,1 < p < Q , ∇kφ = (X1φ , . . . ,Xnφ ,Y1φ , . . . ,Ynφ) the sub-elliptic
gradient. On the other hand, Niu, Ou and Han [22] obtained (among other inequalities)
a weighted version of (4):

∫
R2n+1

ρα p|∇kφ |pdw �
(Q− p+ α p

p

)p ∫
R2n+1

ρα p
( |z|

ρ

)p(2k−1) |φ |p
ρ p dw (5)

where φ ∈R
2n+1\{(0,0)} , 1 < p < Q and Q− p+α p> 0. Furthermore, the constant(

Q−p+α p
p

)p
is sharp.

In our previous work [4], we studied sharp uncertainty principle inequality and
Hardy-Poincaré type inequality with radial weight ρα . So far only one weight function
has been considered in above inequalities and the role of the radial weight function ρα

is well known.
The purpose of this paper is to give new sharp weighted Hardy, Hardy-Poincaré

and Rellich type inequalities where weight function is given by the product of the radial
functions ρα and |z|t on the sub-Riemannian manifold R

2n+1 = R
n ×R

n×R defined
by the vector fields (1). We note that the new radial weight function |z|t has influence
on the sharp constant, brings some difficulties in some computations and also leads to
obtain nonnegative remainder term in Rellich-type inequality (see Theorem 4). Fur-
thermore, our results improve and include previously known some results as special
cases.

2. Preliminary and notations

In this section, we will introduce some notations, definitions, and preliminary facts
which will be used throughout the article. A generic point in R

2n+1 , n � 1 is defined by
w = (z, l) = (x,y, l) ∈ R

2n+1 where x,y ∈ R
n , z = x+

√−1y . The sub-elliptic gradient
is the 2n dimensional vector field given by

∇k := (X1, ...,Xn,Y1, ...,Yn)
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where Xj and Yj are the smooth vector fields which are defined as in (1). The general-
ized Greiner operator on R

2n+1 is defined by,

Δk =
n

∑
j=1

(X2
j +Y 2

j ) = Δz +4k2|z|4k−2 ∂ 2

∂ l2
+4k|z|2k−2 ∂

∂ l
T

where Δz = ∑n
j=1(

∂ 2

∂x2
j
+ ∂ 2

∂y2
j
) is the Laplacian in the variable z = (x,y) ∈ R

2n and T

denotes the vector field as T = ∑n
j=1(y j

∂
∂x j

− x j
∂

∂y j
) . When k = 1, Δk becomes the

sub-Laplacian on the Heisenberg group H
n [11]. We note that there exists family of

dilations
δλ : (z, l) �→ (u,v) := (λ z,λ 2kl), λ > 0

associated with the vector fields in (1). It is easy to see that Δk is the homogeneous
of degree two with respect to the dilation δλ . The change of variable formula for the
Lebesgue measure gives that

dudv = λ Qdzdl

where
Q = 2(k+n)

is the homogeneousdimension with respect to dilation δλ and dzdl denotes the Lebesgue
measure on R

2n+1 . For w = (z, l) ∈ R
2n×R , there is a natural norm:

ρ = ρ(w) := ((|x|2 + |y|2)2k + l2)1/4k = (|z|4k + l2)1/4k.

The norm function ρ is related to the fundamental solution of sub-Laplacian Δk at the
origin (see, [7], [8], [14], [28]).

A direct computation shows that

Xjρ =
|z|2(k−1)

ρ4k−1 [x j|z|2k + y jl], Yjρ =
|z|2(k−1)

ρ4k−1 [y j|z|2k − x jl].

Let φ = φ(ρ) is a smooth radial function (i.e., φ only depends on the function ρ ), then
using a direct computation, it can be easily shown that [19]

|∇kφ(ρ)| = |z|2k−1

ρ2k−1 |φ ′(ρ)|

and

Δkφ(ρ) =
|z|4k−2

ρ4k−2

(
φ ′′ +

Q−1
ρ

φ ′
)

= |∇kρ |2
(

φ ′′ +
Q−1

ρ
φ ′

)
.

In particular

Δkρ =
|∇kρ |2

ρ
(Q−1).

The norm function is ∞- harmonic, that is ρ is the solution of

∇k(|∇kρ |2) ·∇kρ = 0. (6)
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A direct computations shows that

∇k ·
(

ρ
|∇kρ |2 ∇kρ

)
= Q. (7)

The open ball with respect to ρ centered at the origin (0,0)∈R
2n×R with radius

R will be denoted by

BR(0) := {(z, l) ∈ R
2n×R : ρ < R}.

Let D = BR2(0) \BR1(0) be an annulus with 0 � R1 < R2 . Introducing the spherical
coordinate transformation as in [19], the volume element satisfies the following relation

dw = dzdl = ρQ−1dρ(sinϕ)
n−k
k dϕ

n−1

∏
j=1

[
cosψ j(sinψ j)2(n− j)dψ j

] n

∏
j=1

dθ j (8)

where 0 � ϕ � π , 0 � ψ j � π/2, j = 1, ...,n−1 and 0 � θ j � 2π , j = 1, ...,n , and

|z|2 = ρ2 sin
1
k ϕ . (9)

3. Sharp Hardy-Poincaré and Hardy type inequalities

The following theorem is the main result of this section.

THEOREM 1. Let Q = 2n+2k , p > 1 , t +2n > 0 and Q+ α + t > 0 . Then the
following inequality is valid for all φ ∈C∞

0 (R2n+1):

∫
R2n+1

|z|tρα+p|∇kρ ·∇kφ |p
|∇kρ |2p dzdl �

(Q+ α + t
p

)p ∫
R2n+1

|z|tρα |φ |pdzdl. (10)

Furthermore, the constant (Q+α+t
p )p is sharp.

Proof. Multiply both sides of (7) by the function ρα |z|t |φ |p and integrating over
R

2n+1 yields

Q
∫

R2n+1
ρα |z|t |φ |pdzdl =

∫
R2n+1

ρα |z|t |φ |pdzdl +
∫

R2n+1

ρα+1|z|t
|∇kρ |2 |φ |pΔkρdzdl. (11)

Applying integration by parts to the second integral in the righthand side, we have,

∫
R2n+1

ρα+1|z|t
|∇kρ |2 |φ |pΔkρdzdl =− (α +1)

∫
R2n+1

ρα |z|t |φ |pdzdl

−
∫

R2n+1

ρα+1

|∇kρ |2 |φ |
p∇kρ ·∇k(|z|t)dzdl

−
∫

R2n+1

ρα+1|z|t
|∇kρ |2 ∇k|φ |p ·∇kρdzdl.

(12)
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Substituting (12) into (11), we get

Q+ α + t
p

∫
R2n+1

ρα |z|t |φ |pdzdl = −
∫

R2n+1

ρα+1|z|tφ |φ |p−2

|∇kρ |2 ∇kφ ·∇kρdzdl. (13)

Let

R = −
∫

R2n+1

ρα+1|z|tφ |φ |p−2

|∇kρ |2 ∇kφ ·∇kρdzdl.

Applying successively the Cauchy-Schwarz, Hölder and Young inequalities, we get

R �
(∫

R2n+1

ρα+p|z|t
|∇kρ |2p |∇kρ ·∇kφ |pdzdl

)1/p(∫
R2n+1

ρα |z|t |φ |pdzdl
)(p−1)/p

�ε p

p

∫
R2n+1

ρα+p|z|t
|∇kρ |2p |∇kρ ·∇kφ |pdzdl +

(p−1)

pε
p

p−1

∫
R2n+1

ρα |z|t |φ |pdzdl
(14)

where ε > 0. Substituting (14) into (13) and then rearranging terms, we get,∫
R2n+1

ρα+p|z|t
|∇kρ |2p |∇kρ ·∇kφ |pdzdl � f (Q,α, p,t;ε)

∫
R2n+1

ρα |z|t |φ |pdzdl

where f (Q,α, p, t;ε) = ε−p[(Q + α + t)− (p− 1)ε−
p

(p−1) ] . Note that the function
f attains the maximum for ε = ( p

Q+α+t )
(p−1)/p and this maximum value is equal to

(Q+α+t
p )p . Therefore we obtain the desired inequality

∫
R2n+1

ρα+p|z|t
|∇kρ |2p |∇kρ ·∇kφ |pdzdl �

(Q+ α + t
p

)p ∫
R2n+1

ρα |z|t |φ |pdzdl. (15)

Now, we need to show that
(Q+α+t

p

)p
is the best constant. Let CH be defined as the

best constant of (15);

CH := inf
0 �=φ∈C∞

0 (R2n+1)

∫
R2n+1

ρα+p|z|t
|∇kρ |2p |∇kρ ·∇kφ |pdzdl∫

R2n+1 ρα |z|t |φ |pdzdl
.

It is clear from (15) that

(
Q+ α + t

p

)p

�
∫
R2n+1

ρα+p|z|t
|∇kρ |2p |∇kρ ·∇kφ |pdzdl∫

R2n+1 ρα |z|t |φ |pdzdl
(16)

holds for all φ ∈C∞
0 (R2n+1) . By taking the infimum in (16), we have(Q+ α + t

p

)p
� CH . (17)

To prove that CH =
(Q+α+t

p

)p
, we now only need to show that CH �

(Q+α+t
p

)p
. Hence,

for a given ε > 0, we define the radial function φε (ρ)∈C∞
0 (R2n+1) that can be approx-

imated by smooth functions with compact support in R
2n+1 :

φε (ρ) =

{
ρβ+ε if 0 � ρ � 1,

ρ−(β+ε) if ρ > 1,
(18)
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where β = Q+α+t
p . It is clear that

ρα+p|z|t
|∇kρ |2p |∇kρ ·∇kφε |p =

{
(β + ε)p|z|tρα+p(ε+β ) if 0 < ρ < 1,

(β + ε)p|z|tρα−p(ε+β ) if ρ > 1.

In the sequel we indicate B1 = {(z, l) ∈R
2n+1,0 � ρ � 1} ρ -ball centered at the origin

in R
2n+1 with radius 1. By direct computation we get∫

R2n+1

ρα+p|z|t
|∇kρ |2p |∇kρ ·∇kφε |pdzdl =(β + ε)p

[∫
B1

ρα+p(β+ε)|z|t dzdl

+
∫

R2n+1\B1

ρα−p(β+ε)|z|t dzdl
]

=(β + ε)p
∫

R2n+1
ρα |z|t |φε |pdzdl

By the spherical coordinates in Section 2, we have

∫
B1

ρα+p(β+ε)|z|t dzdl =
1

α + p(β + ε)+ t +Q

[∫ π

0

(
sinϕ

) t
2k + n−k

k
dϕ

]
Kn

∫
R2n+1\B1

ρα+p(β+ε)|z|t dzdl =
1

α − p(β + ε)+ t +Q

[∫ π

0

(
sinϕ

) t
2k + n−k

k
dϕ

]
Kn

where

Kn =
∫ π

2

0
. . .

∫ π
2

0

n−1

∏
j=1

[
cosψ j(sinψ j)2(n− j)dψ j

]
×

∫ 2π

0
. . .

∫ 2π

0

n

∏
j=1

dθ j. (19)

Note that the improper integral
∫ π

0

(
sinϕ

) t
2k + n−k

k
dϕ converges for t > −2n . It

is clear that

CH < (β + ε)p =

∫
R2n+1

ρα+p|z|t
|∇kρ |2p |∇kρ ·∇kφ |pdzdl∫

R2n+1 ρα |z|t |φ |pdzdl
. (20)

Letting ε → 0, it follows that CH �
(Q+α+t

p

)p
. Therefore, from (17) and (20) we have

CH =
(Q+α+t

p

)p
. �

We now prove the following weighted Lp Hardy-type inequality which plays an
important role in the proof of the weighted Rellich type inequalities.

THEOREM 2. Let Q = 2n+ 2k , p > 1 , α ∈ R , t ∈ R , Q + α + t − p > 0 and
t +2kp− p+2n> 0 . Then the following inequality is valid for all φ ∈C∞

0 (R2n+1):∫
R2n+1

ρα |z|t |∇kφ |pdzdl �
(Q+ α + t− p

p

)p ∫
R2n+1

ρα−p|z|t |∇kρ |p|φ |pdzdl (21)

Furthermore, the constant (Q+α+t−p
p )p is sharp.
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Proof. Using the identity (6) we get the following inequality |∇kρ ·∇k(|∇kρ |φ)|�
|∇kρ |2|∇kφ | . We now replace |∇ρ |φ instead of φ in the inequality (10) and we get

∫
R2n+1

ρα+p|z|t |∇kφ |pdzdl �
(

Q+ α + t
p

)p ∫
R2n+1

ρα |z|t |∇kρ |p|φ |pdzdl. (22)

Next, using the well known inequality in Lp - spaces, || f +g||p � || f ||p−||g||p , yields;

(∫
R2n+1

|ρα |z|t∇k(ρφ)|pdzdl
)1/p

+
(∫

Ω
ρα |z|t |∇kρ |p|φ |pdzdl

)1/p

�
(∫

R2n+1
ρα+p|z|t |∇kφ |pdzdl

)1/p
(23)

Substituting (23) into (22) yields,

∫
R2n+1

ρα |z|t |∇k(ρφ)|pdzdl �
(Q+ α + t− p

p

)p ∫
R2n+1

ρα |z|t |∇kρ |p|φ |pdzdl.

Now, we replace φ
ρ instead of φ to obtain the usual weighted Lp− Hardy inequality:

∫
R2n+1

ρα |z|t |∇kφ |pdzdl �
(Q+ α + t− p

p

)p ∫
R2n+1

ρα−p|z|t |∇kρ |p|φ |pdzdl.

To show that the constant
(Q+α+t−p

p

)p
is sharp, we use the same family of functions

φε(ρ) in Theorem 1 and pass to the limit as ε → 0. �

4. Sharp weighted Rellich type inequalities with two weight functions

The purpose of this section is to derive sharp weighted Rellich type inequalities
with two radial weight functions on the sub-Riemannianmanifold R

2n+1 = R
n×R

n×R

defined by the vector fields (1). First, we prove the following theorem:

THEOREM 3. Let α ∈R , t ∈R , Q � 3 , Q+t +α−2 > 0 and Q+t +2k−2> 0 .
Then the following inequality is valid for all φ ∈C∞

0 (R2n+1):

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δkφ |2dzdl �ζ 2

0

∫
R2n+1

ρα−2|z|tφ2|∇kρ |2dzdl

−2ζ0t
( t

2
−1+n

)∫
R2n+1

ρα |z|t−2φ2 dzdl

(24)

where ζ0 = (Q+t−2)2−α(α+2t)
4 . Furthermore, the constant ζ 2

0 is sharp.

Proof. A straightforward computation shows that

Δkρα = ξ ρα−2|∇kρ |2, (25)
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where ξ = α(Q + α − 2) . Multiplying both sides of (25) by the function |z|tφ2 and
integrating over R

2n+1 , we obtain∫
R2n+1

|z|tφ2Δkραdzdl = ξ
∫

R2n+1
ρα−2|z|tφ2|∇kρ |2dzdl.

By integration by parts, we have∫
R2n+1

|z|tφ2Δkραdzdl =−2
∫

R2n+1
|z|tφ∇kρα ·∇kφdzdl

−
∫

R2n+1
φ2∇k(ρα) ·∇k(|z|t )dzdl.

(26)

Applying integration by parts to the first and second integrals on the right hand side,
(26) becomes∫

R2n+1
|z|tρα |∇kφ |2dzdl =

(
ξ
2

+ αt

)∫
R2n+1

|z|tρα−2φ2|∇kρ |2dzdl

+ t
( t

2
−1+n

)∫
R2n+1

ρα |z|t−2φ2dzdl

−
∫

R2n+1
ρα |z|tφΔkφdzdl.

(27)

By using the sharp weighted Lp -Hardy inequality (21) into (27), we get

−
∫

R2n+1
ρα |z|tφΔkφdzdl �ζ0

∫
R2n+1

ρα−2|z|tφ2|∇kρ |2dzdl

− t
( t

2
−1+n

)∫
R2n+1

ρα |z|t−2φ2dzdl
(28)

where ζ0 = (Q+t−2)2−α(α+2t)
4 . Applying Cauchy-Schwarz and Young’s inequalities

gives

−
∫

R2n+1
ρα |z|tφΔkφdzdl �ε

∫
R2n+1

ρα−2|z|tφ2|∇kρ |2dzdl

+
1
4ε

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δφ |2dzdl.

(29)

Substituting (29) into (28) yields

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δkφ |2dzdl �4ε(ζ0− ε)

∫
R2n+1

ρα−2|z|t |∇kρ |2φ2dzdl

−4εt
( t

2
−1+n

)∫
R2n+1

ραφ2|z|t−2dzdl.

(30)

Inequality (24) follows from (30) by taking ε = ζ0
2 . We now show that ζ 2

0 is the best
constant in (24):

CR := inf
0 �=φ∈C∞

0 (R2n+1)

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δkφ |2dzdl∫

R2n+1 ρα−2|z|tφ2|∇kρ |2dzdl
.
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It is clear that

ζ 2
0 �

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δkφ |2dzdl∫

R2n+1 ρα−2|z|tφ2|∇kρ |2dzdl
(31)

holds for all φ ∈C∞
0 (R2n+1) . If we take the infimum in (31) we get,

ζ 2
0 � CR. (32)

We only need to show that ζ 2
0 � CR and for this we use the following family of radial

functions

φε(ρ) =

{
−(β + ε)(ρ −1)+1 if 0 � ρ � 1,

ρ−(β+ε) if ρ > 1,
(33)

where ε > 0 and β =
Q−2

2
+

√
(2−Q)2−4ζ0

2
. First we construct the Rayleigh

quotient:

R :=

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δkφε |2dzdl∫

R2n+1 ρα−2|z|tφ2
ε |∇kρ |2dzdl

.

By direct computation, we have,

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δkφε(ρ)|2dzdl =C(Q,β ,ε)

(∫ 1

0
ρα+t+Q−1dρ

)
K̃

+D(Q,β ,ε)
(∫ ∞

1
ρ (−2β−2ε+α+t+Q−3)dρ

)
K̃.

Here C(Q,β ,ε) = (β + ε)2(Q−1)2, D(Q,β ,ε) = (−β − ε)2(Q−2−β − ε)2 and

K̃ = Kn

∫ π

0
(sinϕ)(t−2+Q)/2kdϕ

where Kn is given in (19). The integral
∫ 1

0
ρ2β+2ε+α+t+Q−3dρ is finite and C(Q,β ,ε)

is positive. Therefore,

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δkφε(ρ)|2dzdl = D(Q,β ,ε)

(∫ ∞

1
ρ (α+t−2β−2ε+Q−3)dρ

)
K̃ +O(1).

Similarly we get∫
R2n+1

ρα−2|z|tφ2
ε (ρ)|∇kρ |2dzdl =

(∫ ∞

1
ρ (α+t−2β−2ε+Q−3)dρ

)
K̃ +O(1).

Letting ε → 0, it follows that

R :=

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δkφε |2dzdl∫

R2n+1 ρα−2|z|tφ2
ε |∇kρ |2dzdl

→ ζ 2
0 =

[
(Q+ t−2)2−α(α +2t)

4

]2

, (34)

and then the constant ζ 2
0 is sharp. �
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THEOREM 4. Let α ∈R , t ∈R , Q � 3 , Q+t +α−2 > 0 and Q+t +2k−2> 0 .
Then the following inequality is valid for all φ ∈C∞

0 (R2n+1):

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δkφ |2dzdl � 4ζ 2

0

(Q+ α + t−2)2

∫
R2n+1

|z|tρα |∇kφ |2dzdl

− ζ0t(t +2n−2)
∫

R2n+1
ρα |z|t−2φ2dzdl

(35)

where ζ0 = (Q+t−2)2−α(α+2t)
4 . Furthermore, the constant

4ζ 2
0

(Q+α+t−2)2 is sharp.

Proof. To prove the theorem, we apply Cauchy-Schwarz inequality to the integral
on the left hand side of (27) and we get

∫
R2n+1

ρα |z|t |∇kφ |2dzdl �
(ξ +2αt

2
+ ε

)∫
R2n+1

ρα−2|z|tφ2|∇kρ |2dzdl

+ t
( t

2
+n−1

)∫
R2n+1

ρα |z|t−2φ2dzdl

+
1
4ε

∫
R2n+1

ρα+2|z|t |Δkφ |2
|∇kρ |2 dzdl.

(36)

Now, by using the Rellich type inequality in (24) and rearranging the resulting inequal-
ity, we have,

∫
R2n+1

ρα |z|t |∇kφ |2dzdl � f (Q,α,ε)
∫

R2n+1

ρα+2|z|t |Δkφ |2
|∇kρ |2 dzdl

+g(Q,α,ε)
∫

R2n+1
ρα |z|t−2φ2dzdl

where

f (Q,ξ ,ε) =
1

ζ 2
0

(
(ξ +2αt)

2
+ ε

)
+

1
4ε

, ζ0 =
(Q+ t−2)2−α(α +2t)

4
,

and

g(Q,ξ ,ε) =
t(t +2n−2)

ζ0

(
ξ +2αt

2
+ ε

)
+ t

( t
2

+n−1
)
.

Note that the function f attains its minimum value (Q+α+t−2)2

4ζ 2
0

at ε = ζ0
2 . Therefore

we obtain the desired inequality:

∫
R2n+1

ρα+2|z|t
|∇kρ |2 |Δkφ |2dzdl � 4ζ 2

0

(Q+ α + t−2)2

∫
R2n+1

|z|tρα |∇kφ |2dzdl

− ζ0t(t +2n−2)
∫

R2n+1
ρα |z|t−2φ2dzdl.
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For the sharpness of the constant
4ζ 2

0
(Q+α+t−2)2 , we use the family of radial functions

φε (ρ) =

{
ρ (β+ε) if 0 � ρ � 1,

ρ−(β+ε) if ρ > 1,
(37)

where ε > 0, β =
(Q+ α −2)2 + t(2α − t)

2(Q+ α + t−2)
and pass to the limit as ε → 0. �
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