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CONVEXITY OF Γ(x)Γ(1/x)

G. J. O. JAMESON

(Communicated by N. Elezović)

Abstract. It is shown that log[Γ(x)Γ(1/x)] is convex. Gautschi’s inequality Γ(x)Γ(1/x) � 1 is
an immediate consequence.

1. Introduction

The following inequalities for the gamma function were proved by Gautschi [5] in
1974: for all x > 0,

Γ(x)+ Γ(1/x) � 2, (1)

Γ(x)Γ(1/x) � 1. (2)

Clearly, (2) implies (1).
A third result of Gautschi, which in turn implies (2), states that the harmonic mean

of Γ(x) and Γ(1/x) is at least 1. Numerous refinements and extensions of these in-
equalities have appeared in later articles, for example [1], [2], [3], [7], [8].

In this note we present some results on convexity which have (1) and (2) as imme-
diate consequences, so can be regarded as strengthening them. The underlying obser-
vation is: if f is a convex, differentiable function on (0,∞) satisfying f (1/x) = f (x) ,
then f ′(1) = 0, hence f (x) is decreasing on (0,1] and increasing on [1,∞) , so the least
value occurs at x = 1.

For (1), this is easy. It was shown in [7, Lemma 2] that the function Γ(1/x) is
convex on (0,∞) . So Γ(x)+ Γ(1/x) is convex, which implies (1). (The fact that this
function is decreasing on (0,1] and increasing on [1,∞) was shown in [3, Lemma 2]
by more elaborate methods.)

The corresponding step for (2) is not quite so simple. We will prove the following
theorem:

THEOREM 1. The function logΓ(x)+ logΓ(1/x) , is convex. Hence Γ(x)Γ(1/x)
is log-convex, so convex.

Two preliminary remarks will help to set the context for this statement. Firstly,
in general, a product of two convex functions is convex if both are increasing or both
decreasing, but not otherwise. Secondly, while logΓ(x) is convex, logΓ(1/x) is not.

We conclude with a brief outline of some analogous results for ψ(1/x) , where
ψ(x) is the digamma function Γ′(x)/Γ(x) . For example, ψ(x)+ ψ(1/x) is concave.
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2. Proof of Theorem 1

Write L(x) = logΓ(x)+ logΓ(1/x) . Then

L′(x) = ψ(x)− 1
x2 ψ(1/x), (3)

L′′(x) = ψ ′(x)+
2
x3 ψ(1/x)+

1
x4 ψ ′(1/x). (4)

The proof will use a number of estimations for ψ(x) , ψ ′(x) and ψ ′′(x) , mostly
elementary. The function ψ(x) is strictly increasing on (0,∞) , with ψ(x0) = 0, where
x0 ≈ 1.46163, so ψ(x) < 0 on (0,x0) and ψ(x) > 0 on (x0,∞) , hence ψ(1/x) > 0 for
0 < x < 1/x0 ≈ 0.68417. So it is already clear from (4) that L′′(x) > 0 on (0,1/x0) .

Since ψ(1) = −γ , we have ψ(x) � −γ for x � 1, hence

ψ(1/x) � −γ for 0 < x � 1. (5)

The function ψ(x) is concave and satisfies ψ(x+1) = ψ(x)+1/x . We deduce:

LEMMA 1. We have

ψ(1/x) � 1
x
− x− γ for x � 1. (6)

Proof. Since ψ(1) = −γ , ψ(2) = 1− γ and ψ(x) is concave, we have ψ(x)+
1
x = ψ(1+ x) � x− γ for 0 < x � 1. Substitute x for 1/x to obtain (6). �

We now deduce some bounds from the series expressions

ψ ′(x) =
∞

∑
n=0

1
(n+ x)2 , ψ ′′(x) = −

∞

∑
n=0

2
(n+ x)3 .

Simply taking the first term of the series, we have

ψ ′(x) � 1
x2 , ψ ′′(x) � − 2

x3 , (7)

so also ψ ′(1/x) � x2 and ψ ′′(1/x) � −2x3 for x � 1.
For x > 1, better bounds are found by integral estimation, as follows.

LEMMA 2. For all x > 0 ,

1
x

+
1

2x2 � ψ ′(x) � 1
x

+
1
x2 , (8)

− 1
x2 − 2

x3 � ψ ′′(x) � − 1
x2 −

1
x3 . (9)
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Proof. For a convex, decreasing, non-negative function f with
∫ ∞
0 f (t) dt = I ,

integral estimation gives

I + 1
2 f (0) �

∞

∑
n=0

f (n) � I + f (0),

in which the lower bound results from the fact that the trapezium formula overestimates
the integral. The stated inequalities follow. �

REMARK 1. Further degrees of accuracy are provided by Euler-Maclaurin sum-
mation. For example,

ψ ′(x) =
1
x

+
1

2x2 +
1

6x3 − r2(x),

where 0 � r2(x) � 1/(30x5) .

Rewritten for 1/x , (8) and (9) become:

x+ 1
2 x2 � ψ ′(1/x) � x+ x2, (10)

− x2−2x3 � ψ ′′(1/x) � −x2− x3. (11)

Proof of Theorem 1. We have already noted that L′′(x) > 0 for 0 < x < 1/x0 . We
now consider the cases 1

4 � x � 1 and x > 1 separately. We will estimate ψ ′(y) (where
y is x or 1/x ) by (7) if y � 1 and by (6) or (8) if y � 1.

Case 1
4 � x � 1. In (4), we estimate ψ ′(x) by (7), ψ(1/x) by (5) and ψ ′(1/x) by

(10), to obtain

x4L′′(x) � x2 −2γx+(x+ 1
2x2)

= x
( 3

2x− (2γ −1)
)

> 0 for x � 1
4 .

Case x > 1. We now estimate ψ ′(x) by (8), ψ(1/x) by (6) and ψ ′(1/x) by (7),
to obtain

x4L′′(x) � x4
(

1
x

+
1

2x2

)
+2x

(
1
x
− x− γ

)
+ x2

= x3− 1
2x2−2γx+2.

Denote this by p(x) . Then p(1) = 5
2 − 2γ > 0 and p′(x) = 3x2 − x− 2γ > 0, hence

p(x) > 0 and L′′(x) > 0, for x � 1. �

REMARK 2. The method shows that logΓ(1/x) is convex on (0,1] . However,
for x > 1/(x0 − 1) , it is elementary that ψ(1/x) < −x . With (10), this shows that
logΓ(1/x) is concave for such x .
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3. Some corresponding results for ψ(1/x)

The following lemma (and indeed a more general statement) is known, but, with
the help of our Lemma 2, a very brief proof is available for the case we want, so we
include it for completeness.

LEMMA 3. For all x > 0 , x2ψ ′(x) is increasing, while xψ ′(x) is decreasing.

Proof. We have

x2ψ ′(x) =
∞

∑
n=0

x2

(n+ x)2 .

Since x/(n+ x) = 1−1/(n+ x) is increasing, so is x2ψ ′(x) . Also, by Lemma 2,

d
dx

[xψ ′(x)] = ψ ′(x)+ xψ ′′(x) � 1
x

+
1
x2 −

(
1
x

+
1
x2

)
= 0. �

REMARK 3. Lemma 3 is a special case of [2, Lemma 1], which states: for integers
k � 1, xk+1|ψ(k)(x)| is increasing, while xk|ψ(k)(x)| is decreasing. The proof in [2]
uses the integral representation of ψ(x) . A completely different proof of the second
statement was given in [6, Corollary 4.5].

We now state two results for ψ(1/x) that follow easily. The first one may be
known, but I am not aware of a previous reference for it.

PROPOSITION 1. The function ψ(1/x) is convex.

Proof. We have

d
dx

ψ
(

1
x

)
= − 1

x2 ψ ′
(

1
x

)
= −y2ψ ′(y),

where y = 1/x . By Lemma 3, this is decreasing with y , hence increasing with x . �

PROPOSITION 2. For all x > 0 , we have

ψ(x)+ ψ(1/x) � −2γ. (12)

Proof. Write ψ(x)+ ψ(1/x) = P(x) . Then

P′(x) = ψ ′(x)− 1
x2 ψ ′

(
1
x

)
=

1
x

[
xψ ′(x)− 1

x
ψ ′

(
1
x

)]
.

Let x > 1 and write y = 1/x . Then x > y , so by Lemma 3, xψ ′(x) � yψ ′(y) , hence
P′(x) � 0. So P(x) is decreasing on [1,∞) , hence increasing on (0,1] , and the maxi-
mum value is P(1) = −2γ . �
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Like (1) and (2), this inequality can be derived from a convexity result: P(x) is
concave. The proof is similar to the proof of Theorem 1, given that

P′′(x) = ψ ′′(x)+
2
x3 ψ ′(1/x)+

1
x4 ψ ′′(1/x).

Lemma 1 is replaced by the inequality ψ ′(1/x) � x2 +ζ (2)−1/x . We omit the details
here, because this result is presented (with a slightly different proof) in [4], where it is
also shown that the harmonic mean of ψ(x) and ψ(1/x) is not less than −γ .
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