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INTEGRAL INEQUALITIES OF KANTOROVICH AND FIEDLER

TYPES FOR HADAMARD PRODUCTS OF OPERATORS
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(Communicated by F. Hansen)

Abstract. The scalar Kantorovich inequality is a reverse weighted arithmetic-harmonic mean
inequality. In matrix case, this inequality is also a reverse version of Fiedler’s inequality. In
this paper, we establish several Kantorovich and Fiedler types integral inequalities involving
Hadamard products of continuous fields of Hilbert space operators. Kantorovich type inequality
in which the product is replaced by an operator mean is also investigated. Such inequalities
include discrete inequalities as special cases. Moreover, we obtain the monotonicity of certain
maps involving Hadamard products of operators. As special cases, we get some operator versions
of Fiedler matrix inequality.

1. Introduction

The scalar Kantorovich inequality [13] is a reverse weighted arithmetic-harmonic
mean (AM-HM) inequality. It says that for real numbers ai and wi such that 0 < m �
ai � M and wi � 0 for all 1 � i � n , we have

(
n

∑
i=1

wiai

)(
n

∑
i=1

wi

ai

)
� (m+M)2

4mM

(
n

∑
i=1

wi

)2

. (1.1)

Note that the constant (m + M)2/(4mM) is the square of the ratio between the arith-
metic mean and the geometric mean of m and M . Numerical analyses and statisticians
use this inequality in the convergence analysis for the method of steepest descent. In the
past decades, various extensions, variations and refinements of this inequality in several
contexts have been investigated by many authors. This inequality has been proved to
be equivalent to many inequalities, e.g. Cauchy-Schwarz-Bunyakovsky inequality and
Wielant’s inequality; see also [10, 23].

In the literature, there also exists an integral version of Kantorovich inequality as
follows. For an integrable function f : [α,β ] → R with 0 < m � f (x) � M for all
x ∈ [α,β ] , we have

∫ β

α
f (x)2 dx � (m+M)2

4mM

(∫ β

α
f (x)dx

)2

.
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This inequality is also called an additive version of Grüss inequality; see more infor-
mation in [2].

Many matrix versions of Kantorovich inequality were obtained in the literature,
e.g. [4, 15, 16]. Denote by Mk the algebra of k -by-k complex matrices. Recall that
the Hadamard product of A,B ∈ Mk is defined to be the entrywise product:

A◦B = [ai j bi j] ∈ Mk.

A matrix analogue of this inequality involving Hadamard product is given in [17] as
follows.

THEOREM 1.1. ([17], Theorem 2.2) For each i = 1,2, . . . ,n, let Ai ∈ Mk be a
positive definite matrix such that 0< mI � Ai �MI and Wi ∈Mk a positive semidefinite
matrix. Then

n

∑
i=1

W
1
2

i AiW
1
2

i ◦
n

∑
i=1

W
1
2

i A−1
i W

1
2

i � m2 +M2

2mM

(
n

∑
i=1

Wi ◦
n

∑
i=1

Wi

)
. (1.2)

Kantorovich inequality can be regarded as a reverse of Fiedler’s inequality:

THEOREM 1.2. ([1, 7]) For any positive definite matrix A ∈ Mk , we have

A◦A−1 � I. (1.3)

Several operator extensions of Kantorovich inequality were also investigated, for
instance, in [6, 9, 18, 19, 21] and references therein. Kantorovich type inequality where
the product is replaced by an operator mean was considered in [20, 22].

In this paper, we establish various integral inequalities of Kantorovich and Fiedler
types for continuous field of Hilbert space operators. Theorems 1.1 and 1.2 are gen-
eralized in many ways in terms of Hadamard products of operators. Kantorovich type
inequalities involving Kubo-Ando operator means are also investigated. Such inte-
gral inequalities include discrete inequalities as special cases. Moreover, we obtain the
monotonicity of certain maps involving Hadamard products of operators. As special
cases, we get some operator versions of Fiedler’s inequality (1.3).

This paper is organised as follows. Section 2 consists of preliminaries on continu-
ous fields of operators and the main assumption used throughout the paper. In Section
3, after providing some useful facts about Hadamard products of operators, we prove
Kantorovich type integral inequalities involving Hadamard product of continuous fields
of operators. In Section 4, after recalling Kubo-Ando theory of operator means, we de-
rive Kantorovich integral inequalities involving operator means. In the last section, we
investigate the monotonicity of certain maps involving Hadamard products of operators.
Fiedler type inequalities are also obtained in this section.



INTEGRAL INEQUALITIES OF KANTOROVICH AND FIEDLER TYPES 957

2. Continuous field of operators

Throughout this paper, let H be a separable Hilbert space over the complex num-
bers. Denote by B(H) the C∗ -algebra of bounded linear operators acting on H . The
identity operator on H is denoted by I . The spectrum of A∈ B(H) is written as Sp(A) .
Let Ω be a compact Hausdorff space endowed with a Radon measure μ .

A parametrized family (At)t∈Ω of operators in B(H) is said to be a continuous
field of operators if the operator-valued function t �→ At is norm continuous and the
real-valued function t �→ ‖At‖ is Lebesgue integrable on Ω . The continuity of the field
(At)t∈Ω allows us to form the Bochner integral of the operators At ’s as follows. Let P
be a partition of Ω into disjoint Borel subsets and let ε > 0 be a real number. For each
operator At in B(H) , we can approximate At by a net of operators in the form

FP,ε(At) =
n

∑
i=1

μ(Ei)Ati

where Ei ∈ P and ti ∈ Ei ⊆ {t ∈ Ω : ‖At −Ati‖ < ε} for each 1 � i � n . Then the net
FP,ε(At) converges uniformly to the Bochner integral

∫
Ω

At dμ(t).

The set of continuous functions from Ω to B(H) is a C∗ -algebra under the pointwise
operations and the C∗ -norm

‖(At)t∈Ω‖ = sup
t∈Ω

‖At‖.

Now, we state the main assumption for most of the results in this paper.

Main hypothesis. Let Ω be a compact Hausdorff space equipped with a Radon mea-
sure μ . Let (At)t∈Ω be a continuous field of strictly positive operators in B(H) such
that Sp(At) ⊆ [m,M] ⊆ (0,∞) for each t ∈ Ω . Let (Wt)t∈Ω be a continuous field of
positive operators in B(H) .

PROPOSITION 2.1. Assume Main hypothesis. For any continuous function f :
[m,M] → R , we can form the Bochner integral

∫
Ω

W
1
2

t f (At)W
1
2

t dμ(t).

In addition, if f ([m,M]) ⊆ [0,∞) , then this operator is positive.

Proof. Since (Ω,μ) is a finite measure space, it suffices to prove the Lebesgue
integralability of its norm function. Indeed, we have
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∫
Ω
‖W

1
2

t f (At )W
1
2

t ‖dμ(t) �
∫

Ω
‖W

1
2

t ‖ · ‖ f (At)‖ · ‖W
1
2

t ‖dμ(t)

�
∫

Ω
‖Wt‖ · ‖ f‖∞ dμ(t)

�
∫

Ω
sup
t∈Ω

‖Wt‖ · ‖ f‖∞ dμ(t)

= μ(Ω)sup
t∈Ω

‖Wt‖ · ‖ f‖∞

< ∞.

Suppose that f is positive on [m,M] . Then f (At ) is a positive operator for each t ∈ Ω .
It follows that the integral is positive since the integrand is positive. �

3. Kantorovich type integral inequalities for Hadamard product of operators

In this section, we establish many integral analogues of Kantorovich type inequal-
ities concerning Hadamard products of operators. These results includes discrete in-
equalities as special cases. In particular, we get a reverse version of weighted AM-HM
operator inequality.

In what follows, fix an orthonormal basis {e j} j∈N for H . The Hadamard product
of A and B in B(H) is defined to be the unique operator A◦B in B(H) such that

〈(A◦B)e j,e j〉 = 〈Ae j,e j〉〈Bej,e j〉 for all j ∈ N.

Equivalently, it was shown in [8] that

A◦B = U∗(A⊗B)U (3.1)

where U : H → H⊗H is the isometry defined by

Uej = e j ⊗ e j for all j ∈ N. (3.2)

When H = Cn , the Hadamard product A ◦B for complex matrices is a principal sub-
matrix of the Kronecker (tensor) product of A and B . For each fixed X ∈ B(H) , the
map A �→ A◦X is a bounded linear operator from B(H) to itself. It follows that∫

Ω
At dμ(t)◦X =

∫
Ω
(At ◦X)dμ(t). (3.3)

Moreover, this map preserves positivity when the multiplier is a positive operator.
We start with the following estimation about tensor products.

LEMMA 3.1. The minimum constant α for which the following inequality

A1⊗A2
−1 +A−1

1 ⊗A2 � α(I⊗ I). (3.4)

holds for all selfadjoint operators A1,A2 such that mI � A1,A2 � MI for some m,M >
0 is given by α = (m2 +M2)/(mM) .
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Proof. First, note that the minimum constant α for which the scalar inequality

x
y

+
y
x

� α

holds for all real numbers x,y such that x,y∈ [m,M] is given by α = (m/M)+(M/m) .
Now, since Sp(Ai) ⊆ [m,M] for i = 1,2, we have Sp(A1⊗A2

−1) ⊆ [m/M,M/m] .
Note that (A1⊗A2

−1)−1 = A−1
1 ⊗A2 . It follows from spectral mapping theorem that

‖A1⊗A−1
2 +A−1

1 ⊗A2‖ = sup{λ + λ−1 : λ ∈ Sp(A1⊗A2
−1)}

� sup{λ + λ−1 : λ ∈ [m/M,M/m]}

=
m2 +M2

mM
.

Thus, we arrive at the inequality (3.4). The constant (m2 +M2)/(mM) cannot be im-
proved since the case A1 = xI and A2 = yI is reduced to the scalar case. �

The following theorem is a Kantorovich type integral inequality.

THEOREM 3.2. Under Main hypothesis, the following integral inequality holds∫
Ω

W
1
2

t AtW
1
2

t dμ(t)◦
∫

Ω
W

1
2

t A−1
t W

1
2

t dμ(t)

� K(m,M)
(∫

Ω
Wt dμ(t)◦

∫
Ω

Wt dμ(t)
)

.
(3.5)

Here, K(m,M) :=
m2 +M2

2mM
is the best possible constant.

Proof. Proposition 2.1 allows the existence of the operators in the left hand of the
inequality (3.5). It follows from the property (3.3) that∫

Ω
Wt

1
2 AtWt

1
2 dμ(t)◦

∫
Ω

Wt
1
2 At

−1Wt
1
2 dμ(t)

=
∫

Ω

(∫
Ω

Wt
1
2 AtWt

1
2 dμ(t)

)
◦W

1
2

s A−1
s W

1
2

s dμ(s)

=
∫∫

Ω2

(
W

1
2

t AtW
1
2

t ◦W
1
2

s A−1
s W

1
2

s

)
dμ(t)dμ(s)

Passing through the isometry U defined by (3.2), we have∫
Ω
Wt

1
2 AtWt

1
2 dμ(t)◦

∫
Ω

Wt
1
2 At

−1Wt
1
2 dμ(t)

=
∫∫

Ω2
U∗
(

W
1
2

t AtW
1
2

t ⊗W
1
2

s A−1
s W

1
2

s

)
U dμ(t)dμ(s)

=
∫∫

Ω2
U∗
[
(Wt ⊗Ws)

1
2
(
At ⊗A−1

s

)
(Wt ⊗Ws)

1
2

]
U dμ(t)dμ(s)

=
1
2

∫∫
Ω2

U∗
[
(Wt ⊗Ws)

1
2
(
At ⊗A−1

s +A−1
t ⊗As

)
(Wt ⊗Ws)

1
2

]
U dμ(t)dμ(s).
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By making use of Lemma 3.1 and the property (3.3), we obtain∫
Ω

Wt
1
2 AtWt

1
2 dμ(t)◦

∫
Ω

Wt
1
2 At

−1Wt
1
2 dμ(t)

� 1
2

∫
Ω

∫
Ω

2K(m,M)U∗(Wt ⊗Ws)U dμ(t)dμ(s)

= K(m,M)
∫

Ω

∫
Ω
(Wt ◦Ws)dμ(t)dμ(s)

= K(m,M)
∫

Ω

(∫
Ω

Wt dμ(t)
)
◦Ws dμ(s)

= K(m,M)
∫

Ω
Wt dμ(t)◦

∫
Ω

Wt dμ(t).

Therefore, we arrive at the desired inequality (3.5). �
Note that K(m,M) is the ratio between the arithmetic mean and the geometric

mean of m2 and M2 . As a special case of Theorem 3.2, we obtain a discrete version of
the integral inequality (3.5) as follows.

COROLLARY 3.3. For each i = 1,2, . . . ,n, let Ai ∈ B(H) be a selfadjoint opera-
tor such that Sp(Ai)⊆ [m,M]⊆ (0,∞) and let Wi be a positive operator in B(H) . Then
we have

n

∑
i=1

W
1
2

i AiW
1
2

i ◦
n

∑
i=1

W
1
2

i A−1
i W

1
2

i � K(m,M)

(
n

∑
i=1

Wi ◦
n

∑
i=1

Wi

)
. (3.6)

Proof. Set μ to be the countingmeasure on Ω = {1,2, . . . ,n} in Theorem 3.2. �
This corollary is an operator extension of [17, Theorem 2.2]. The next result is an

integral inequality of Kantorovich type in which the weights are scalars.

COROLLARY 3.4. Assume Main hypothesis. Let w : Ω → [0,∞) be a continuous
function. Then the following integral inequality holds

∫
Ω

w(t)At dμ(t)◦
∫

Ω
w(t)A−1

t dμ(t) � K(m,M)
(∫

Ω
w(t)dμ(t)

)2

I. (3.7)

Proof. Set Wt = w(t)I for each t ∈ Ω in Theorem 3.2. �
The following result is a discrete version of the inequality (3.7).

COROLLARY 3.5. For each i = 1,2, . . . ,n, let Ai ∈ B(H) be a selfadjoint opera-
tor such that Sp(Ai) ⊆ [m,M] ⊆ (0,∞) and let wi � 0 be a constant. Then

(
n

∑
i=1

wiAi

)
◦
(

n

∑
i=1

wiA
−1
i

)
� K(m,M)

(
n

∑
i=1

wi

)2

I. (3.8)
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Proof. Set μ to be the countingmeasure on Ω = {1,2, . . . ,n} in Corollary 3.4. �
In this corollary, when the weight wi is 1/n for each i , it holds that

1
n

(A1 +A2 + . . .+An)◦ 1
n

(
A−1

1 +A−1
2 + . . .+A−1

n

)
� K(m,M)I. (3.9)

The inequality (3.9) can be viewed as a reverse arithmetic-harmonic mean inequality
for operators concerning Hadamard product.

Theorem 3.2 can be extended in the following way:

THEOREM 3.6. Assume Main hypothesis. Let f be a continuous real-valued
function defined on [m,M]∪ [1/M,1/m] such that f (x) f (1/x) � 1 for all x ∈ [m,M] .
If f ([m,M]) ⊆ [m,M] or f ([m,M]) ⊆ [1/M,1/m] , then

∫
Ω

W
1
2

t f (At )W
1
2

t dμ(t)◦
∫

Ω
W

1
2

t f (A−1
t )W

1
2

t dμ(t)

� K(m,M)
(∫

Ω
Wt dμ(t)◦

∫
Ω

Wt dμ(t)
)

.
(3.10)

Proof. The existence of the operators in the left hand of (3.10) follows from Propo-
sition 2.1. Applying functional calculus yields f (A−1

t ) � f (At )−1 for each t ∈ Ω . The
desired result is a direct consequence of Theorem 3.2 together with the monotonicity of
the Bochner integration and the Hadamard multiplication with a fixed positive operator.
Note that K(m,M) = K(1/M,1/m) . �

Theorem 3.6 is reduced to Theorem 3.2 by setting f (x) = x or f (x) = 1/x .

4. Kantorovich integral inequalities involving Hadamard products
and operator means

In this section, we establish integral analogues of Kantorovich inequality involving
operator means. To begin with, recall some fundamental facts in Kubo-Ando theory of
operator means [14]; see also [11, Section 3] and [12, Chapter 5].

An operator connection is a binary operation σ assigned to each pair of positive
operators such that for all A,B,C,D � 0,

(M1) monotonicity: A � C,B � D =⇒ Aσ B � Cσ D

(M2) transformer inequality: C(Aσ B)C � (CAC)σ (CBC)

(M3) upper semi-continuity: for An,Bn ∈ B(H)+ , if An ↓ A and Bn ↓ B , then An σ Bn ↓
Aσ B . Here, Xn ↓ X indicates that (Xn) is a decreasing sequence converging
strongly to X .

From these axioms, it holds that

X(Aσ B)X = (XAX)σ (XBX), (4.1)
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(A+B)σ (C+D) � (Aσ C)+ (Bσ D) (4.2)

for any A,B,C,D � 0 and X > 0.
An operator mean is an operator connection σ with idempotent property

Aσ A = A, for all A � 0. (4.3)

Classical examples of operator means are the arithmetic mean, the harmonic mean,
the geometric mean and their weighted versions. For each α ∈ [0,1] , we define the
α -weighted geometric mean for strictly positive operators A and B as follows:

A#α B = A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 . (4.4)

A major core of Kubo-Ando theory is the one-to-one correspondence between
operator connections and operator monotone functions. Recall (e.g. [5, Chapter V])
that a continuous function f : [0,∞) → R is said to be operator monotone if

A � B =⇒ f (A) � f (B)

holds for any positive operators A and B .

THEOREM 4.1. ([14, Theorem 3.4]) Given an operator connection σ , there is a
unique operator monotone function f : [0,∞) → [0,∞) such that

f (A) = I σ A, A � 0. (4.5)

In fact, the map σ �→ f is a bijection.

Such a function f is called the representing function of σ . For example, the
representing function of #α is the operator monotone function f (x) = xα .

In order to prove the main result in this section, recall the following fact:

LEMMA 4.2. ([3]) Let σ be an operator connection on B(H)+ . Then for all
positive operators A and B, we have

‖Aσ B‖ � ‖A‖σ ‖B‖.
Here, σ on the right-hand side of this inequality is the operator connection on [0,∞)
defined by (aσ b)I = (aI)σ (bI) for each a,b � 0 .

We say that a function f : E →R defined on a subset E ⊆R is super-multiplicative
if f (xy) � f (x) f (y) for all x,y ∈ E .

LEMMA 4.3. Let σ be an operator connection associated with an operator mono-
tone function f : [0,∞) → [0,∞) . If f is super-multiplicative, then

(Aσ C)◦ (Bσ D) � (A◦B)σ (C ◦D)

for all positive operators A,B,C,D in B(H) .
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Proof. By continuity, we may assume that A and B are invertible. For conve-
nience, write X = A− 1

2CA− 1
2 and Y = B− 1

2 DB− 1
2 . It follows from the the properties

(4.1) and (4.5) that

(Aσ C)⊗ (Bσ D) = (A⊗B)
1
2 [(I σ X)⊗ (I σ Y )](A⊗B)

1
2

= (A⊗B)
1
2 [ f (X)⊗ f (Y )](A⊗B)

1
2

� (A⊗B)
1
2 [ f (X ⊗Y )](A⊗B)

1
2

= (A⊗B)
1
2 [I σ (X ⊗Y )](A⊗B)

1
2

= (A⊗B)σ (C⊗D).

Now, passing through the isometry U defined by (3.2), we have

(Aσ C)◦ (Bσ D) = U∗ [(Aσ C)⊗ (Bσ D)]U
� U∗ [(A⊗B)σ (C⊗D)]U
� U∗(A⊗B)U σ U∗(C⊗D)U
= (A◦B)σ (C ◦D).

Here, we use the transformer inequality (M2) in the second inequality. �
The following result can be regarded as a Kantorovich type integral inequality

involving operator means.

THEOREM 4.4. Assume Main hypothesis. Let (Bt)t∈Ω be a continuous field of
strictly positive operators in B(H) such that Sp(Bt) ⊆ [m,M] ⊆ (0,∞) for each t ∈ Ω .
Let σ be an operator mean with the super-multiplicative representing function. Then∫

Ω
W

1
2

t (At σ Bt)W
1
2

t dμ(t)◦
∫

Ω
W

1
2

t (A−1
t σ B−1

t )W
1
2

t dμ(t)

� K(m,M)
(∫

Ω
Wt dμ(t)◦

∫
Ω

Wt dμ(t)
)

.
(4.6)

Proof. The operator-valued function t �→ W
1
2

t (At σ Bt)W
1
2

t is Bochner integrable
due to the norm estimate in Lemma 4.2. It follows that∫

Ω
W

1
2

t (AtσBt)W
1
2

t dμ(t)◦
∫

Ω
W

1
2

t (A−1
t σ B−1

t )W
1
2

t dμ(t)

�
∫

Ω

(
W

1
2

t AtW
1
2

t σ W
1
2

t BtW
1
2

t

)
dμ(t)◦

∫
Ω

(
W

1
2

t A−1
t W

1
2

t σ W
1
2

t B−1
t W

1
2

t

)
dμ(t)

(since σ satisfies the transformer inequality (M2))

�
[∫

Ω
Wt

1
2 AtWt

1
2 dμ(t)σ

∫
Ω

Wt
1
2 BtWt

1
2 dμ(t)

]

◦
[∫

Ω
Wt

1
2 A−1

t Wt
1
2 dμ(t)σ

∫
Ω

Wt
1
2 B−1

t Wt
1
2 dμ(t)

]
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(since σ satisfies property (4.2))

�
[∫

Ω
Wt

1
2 AtWt

1
2 dμ(t)◦

∫
Ω

Wt
1
2 A−1

t Wt
1
2 dμ(t)

]

σ
[∫

Ω
Wt

1
2 BtWt

1
2 dμ(t)◦

∫
Ω

Wt
1
2 B−1

t Wt
1
2 dμ(t)

]
(by Lemma 4.3)

�
[
K(m,M)

∫
Ω

Wt dμ(t)◦
∫

Ω
Wt dμ(t)

]
σ
[
K(m,M)

∫
Ω

Wt dμ(t)◦
∫

Ω
Wt dμ(t)

]
(by Theorem 3.5)

= K(m,M)
∫

Ω
Wt dμ(t)◦

∫
Ω

Wt dμ(t) (by property (4.3)). �

Theorem 4.4 can be reduced to Theorem 3.2 by setting At = Bt for all t ∈ Ω . The
next result is a discrete version of inequality (4.6).

COROLLARY 4.5. For each i = 1,2, . . . ,n, let Ai,Bi,Wi ∈ B(H) be selfadjoint
operators such that Sp(Ai),Sp(Bi) ⊆ [m,M] ⊆ (0,∞) and Wi � 0 . Then we have

n

∑
i=1

W
1
2

i (Ai σ Bi)W
1
2

i ◦
n

∑
i=1

W
1
2

i (A−1
i σ B−1

i )W
1
2

i � K(m,M)

(
n

∑
i=1

Wi ◦
n

∑
i=1

Wi

)
. (4.7)

The next result is also a special case of Theorem 4.4 in which an operator mean is
specified.

COROLLARY 4.6. Assume Main hypothesis. Then the following integral inequal-
ity holds for any α ∈ [0,1]:∫

Ω
W

1
2

t (At #α Bt)W
1
2

t dμ(t)◦
∫

Ω
W

1
2

t (A−1
t #α B−1

t )W
1
2

t dμ(t)

� K(m,M)
(∫

Ω
Wt dμ(t)◦

∫
Ω

Wt dμ(t)
)

.
(4.8)

Proof. From Theorem 4.4, set σ to be the α -weighted geometric mean #α . Note
that its representing function f (x) = xα is super-multiplicative. �

COROLLARY 4.7. Assume Main hypothesis. Suppose that 1 ∈ [m,M] . Then the
following integral inequality holds for any α ∈ [−1,1]:∫

Ω
W

1
2

t Aα
t W

1
2

t dμ(t)◦
∫

Ω
W

1
2

t A−α
t W

1
2

t dμ(t)

� K(m,M)
(∫

Ω
Wt dμ(t)◦

∫
Ω

Wt dμ(t)
)

.
(4.9)

Proof. Note that if Sp(At) ⊆ [m,M] , then Sp(A−1
t ) ⊆ [1/M,1/m] for each t ∈ Ω .

Replacing At with A−1
t for each t ∈ Ω in (4.8) does not effect the constant K(m,M) .

Hence, it suffices to consider only the case α ∈ [0,1] . Indeed, replacing At and Bt with
I and At in (4.8), respectively yields the inequality (4.9) via the formula (4.4). �
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5. Monotonicity of certain maps and Fiedler type inequalities
for Hadamard products of operators

In this section, we consider the monotonicity of the Hadamard product map

α �→
∫

Ω
Wt

1
2 Aα

t Wt
1
2 dμ(t)◦

∫
Ω

Wt
1
2 A−α

t Wt
1
2 dμ(t)

where α is a constant. In particular, we get Fiedler type inequalities involvingHadamard
products of operators.

The next lemma is a preparation.

LEMMA 5.1. For each A > 0 , the map α �→ Aα +A−α is increasing on [0,∞) ,
decreasing on (−∞,0] and attaining its minimum at α = 0 .

Proof. For each fixed t > 0, consider the function f (α) = tα + t−α . Differential
analysis tells us that f is increasing on [0,∞) , decreasing on (−∞,0] and attaining its
minimum at α = 0. Now, the claim follows by spectral mapping theorem. �

THEOREM 5.2. Under Main hypothesis, the map

α �→
∫

Ω
Wt

1
2 Aα

t Wt
1
2 dμ(t)◦

∫
Ω

Wt
1
2 A−α

t Wt
1
2 dμ(t) (5.1)

is increasing on [0,∞) , decreasing on (−∞,0] and attaining its minimum at α = 0 .

Proof. Proposition 2.1 allows the Bochner integralability of the map

t �→W
1
2

t Aλ
t W

1
2

t

for any λ ∈ R . It is enough to prove only that the map (5.1) is increasing on [0,∞) .
Consider 0 � α < β . It follows from the properties (3.3) and (3.1) that

∫
Ω

W
1
2

t Aα
t W

1
2

t dμ(t) ◦
∫

Ω
W

1
2

t A−α
t W

1
2

t dμ(t)

=
∫∫

Ω2
(W

1
2

t Aα
t W

1
2

t ◦W
1
2

s A−α
s W

1
2

s )dμ(t)dμ(s)

=
1
2

∫∫
Ω2

(W
1
2

t Aα
t W

1
2

t ◦W
1
2

s A−α
s W

1
2

s )+ (W
1
2

t A−α
t W

1
2

t ◦W
1
2

s Aα
s W

1
2

s )dμ(t)dμ(s)

=
1
2

∫∫
Ω2

U∗
[
(W

1
2

t Aα
t W

1
2

t ⊗W
1
2

s A−α
s W

1
2

s )+ (W
1
2

t A−α
t W

1
2

t ⊗W
1
2

s Aα
s W

1
2

s )
]
U dμ(t)dμ(s)

=
1
2

∫∫
Ω2

U∗(Wt ⊗Ws)
1
2
[
(At ⊗A−1

s )α +(At ⊗A−1
s )−α](Wt ⊗Ws)

1
2 U dμ(t)dμ(s).
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Making use of Lemma 5.1 yields∫
Ω

W
1
2

t Aα
t W

1
2

t dμ(t) ◦
∫

Ω
W

1
2

t A−α
t W

1
2

t dμ(t)

� 1
2

∫∫
Ω2

U∗(Wt ⊗Ws)
1
2

[
(At ⊗A−1

s )β +(At ⊗A−1
s )−β

]
(Wt ⊗Ws)

1
2U dμ(t)dμ(s)

=
1
2

∫∫
Ω2

U∗
[
(W

1
2

t Aβ
t W

1
2

t ⊗W
1
2

s A−β
s W

1
2

s )+ (W
1
2

t A−β
t W

1
2

t ⊗W
1
2

s Aβ
s W

1
2

s )
]
U dμ(t)dμ(s)

=
∫∫

Ω2
(W

1
2

t Aβ
t W

1
2

t ◦W
1
2

s A−β
s W

1
2

s )dμ(t)dμ(s)

=
∫

Ω
W

1
2

t Aβ
t W

1
2

t dμ(t) ◦
∫

Ω
W

1
2

t A−β
t W

1
2

t dμ(t). �

As a special case, we obtain a discrete version of Theorem 5.2 as follows.

COROLLARY 5.3. For each i = 1,2, . . . ,n, let Ai > 0 and Wi � 0 . Then the map

α �→
n

∑
i=1

W
1
2

i Aα
i W

1
2

i ◦
n

∑
i=1

W
1
2

i A−α
i W

1
2

i

is increasing on [0,∞) , decreasing on (−∞,0] and attaining its minimum at α = 0 .

This corollary is an operator extension of [17, Theorem 2.5]. The case n = 1 in
Corollary 5.3 says that the map

α �→ Aα ◦A−α

is increasing on [0,∞) , decreasing on (−∞,0] and attaining its minimum at α = 0.
The next result is also a special case of Theorem 5.2 in which the weights are

scalars.

COROLLARY 5.4. Assume Main hypothesis. For any continuous function w :
Ω → [0,∞) , the map

α �→
∫

Ω
w(t)Aα

t dμ(t)◦
∫

Ω
w(t)A−α

t dμ(t) (5.2)

is increasing on [0,∞) , decreasing on (−∞,0] and attaining its minimum at α = 0 .

Proof. Set Wt = w(t)I for all t ∈ Ω in Theorem 5.2. We see that (Wt)t∈Ω is a
continuous field of operators. �

The minimality condition of the map (5.1) leads to the following Fiedler type
integral inequality:

COROLLARY 5.5. Assume Main hypothesis. Suppose that
∫

ΩWt dμ(t) = I . For
each real number α , we have(∫

Ω
W

1
2

t Aα
t W

1
2

t dμ(t)
)
◦
(∫

Ω
W

1
2

t A−α
t W

1
2

t dμ(t)
)

� I. (5.3)
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The final result is an operator version of Fiedler’s inequality (1.3).

COROLLARY 5.6. For each strictly positive operator A, we have

A◦A−1 � I.

Proof. In Corollary 5.5, set Wt = I and At = A for each t ∈ Ω and put μ to be a
probability measure on Ω . �
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