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WEIGHTED INEQUALITIES FOR THE GENERALIZED

FOURIER TRANSFORM ASSOCIATED WITH THE

CHEREDNIK OPERATOR ON THE REAL LINE

NAJOUA BARHOUMI, RABIAA GHABI AND MAHER MILI

(Communicated by J. Pečarić)

Abstract. We consider the generalized Fourier transform associated with the Cherednik operator
on R and we give the Hardy-Littelwood inequality and some weighted inequalities associated
to this transform as particular case, we obtain the analogue of the Pitt’s theorem.

1. Introduction

The classical Hardy and Littelwood inequalities in [8] states that

• If 1 < p < 2, then exists a positive constant C such that for all f in Lp(R), its
classical Fourier transform f̂ exists and satisfies[∫

R

| f̂ (λ )|p|λ |p−2dλ
]1/p

� C
[∫

R

| f (x)|pdx
]1/p

. (1)

• If p > 2, then exists a positive constant C such that for all f in Lp(R, |x|p−2dx),
its classical Fourier transform f̂ exists, belongs to Lp(R) and satisfies[∫

R

| f̂ (λ )|pdλ
]1/p

� C
[∫

R

| f (x)|p|x|p−2dx
]1/p

. (2)

Later, in 1983, M. Benjamin has showed that: if we take 1 < p � q < ∞, with sufficient
conditions on nonnegative pairs of functions U and V are given to imply[∫

Rn
| f̂ (λ )|qU(λ )dλ

]1/q
� C

[∫
Rn

| f (x)|pV (x)dx
]1/p

, (3)

where C is independent of f . For the case q = p′ the sufficient condition is that for all
positive r, [∫

U(λ )>Br
U(λ )dλ

][∫
V (x)<rp−1

V (x)−1/(p−1)dx
]

� A,
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where A and B are positive constants independent of r , see [5] for more details. This
result generalized also the Pitt’s theorem which is proved first for the Fourier series (see
[10]) and generalized for the Fourier transform. It states that:

For 1 < p � q < ∞ , a ∈]0,n/q[ and b ∈]0,n(p−1)/p[ such that b = a+n(pq−
p−q)/pq , then for all f in L1(Rn) we have[∫

Rn
| f̂ (λ )|q|λ |−aqdλ

]1/q
� C

[∫
Rn

| f (x)|p|x|bpdx
]1/p

, (4)

where C is a positive constant. More later, in 2003, J. J Benedetto and H. P. Heinig
[2], gave another proof and a generalization of the inequality (1) on Rn as follows:

For 1 < p � q � p′ < ∞ and for all f in Lp(Rn) then exists C > 0 such that[∫
Rn

| f̂ (λ )|q|λ |n(pq−p−q)/pdλ
]1/q

� C
[∫

Rn
| f (x)|pdx

]1/p
. (5)

Generally, the above-mentioned results use rearrangement methods. These methods
do not yield effective criteria for Fourier transform inequalities in the case of non-
monotonic weights, and the constants C become more difficult to compute. Also these
results tend to assume one or the other of such constraints as even weights, function
weights, monotonic weights, or domain R. Our goal is to construct the theory without
rearrangements and with as few constraints as possible. The reasons for such a project
are apparent: restriction theorems, uncertainty principle inequalities and effective cri-
teria to establish Fourier transform inequalities for large classes of weights.

This paper gives some results in this direction. It aims to establish similar in-
equalities to (1), (2), (3) and (5) for a generalized Fourier transform. It is organized as
follows. In section two we recall some basic results on the Cherednik operator which
is a differential-difference operator on the real line and we give the main properties of
the generalized Fourier transform. We establish in the third section an analogue of the
Hardy-Littlwood inequality associated to the generalized Fourier transform. In the last
section, we prove some weighted inequalities for the generalized transform associated
to the Cherednik operator, as particular case, we find the analogue of the Pitt’s type
theorem.

2. Preliminaries

In this section, we collect some basic facts of the differential-difference operator.

Λ f (x) = f ′(x)+
A′(x)
A(x)

f (x)− f (−x)
2

−ρ f (−x), (6)

where
A(x) = |x|2α+1B(x), α > −1/2. (7)

B being a positive C∞ even function, with B(0) = 1, and ρ � 0. In addition to that the
function A satisfies the following conditions.

• For all x � 0,A(x) is increasing and limx→+∞ A(x) = +∞.



WEIGHTED INEQUALITIES FOR THE GENERALIZED... 983

• For all x > 0, A′(x)
A(x) is decreasing and limx→+∞

A′(x)
A(x) = 2ρ .

• There exists a positive constant λ such that for all x in [x0,+∞[ , x0 > 0, we
have

A′(x)
A(x)

=

⎧⎨⎩
2ρ + e−λ xD(x), if ρ > 0

2α+1
x + e−λ xD(x), if ρ = 0,

where D be a C∞ function on R , bounded together with its derivatives.

For the particular case α � β � −1/2, α �= −1/2,

A(x) = (sinh |x|)2α+1(coshx)2β+1, ρ = α + β +1 > 0,

Λ will be denoted by T (α ,β ) , which is given by

T (α ,β ) f (x) = f ′(x)+
[
(2α +1)coth x+(2β +1) tanh x

] f (x)− f (−x)
2

−ρ f (−x).

It is referred to as the Jacobi-Cherednik operator on R and can be written as

T (k1,k2) f (x) = f ′(x)+
[

2k1

1− e−2x +
4k2

1− e−4x

]
{ f (x)− f (−x)}− (k1 +2k2) f (x),

where α = k1 + k2− 1
2 and β = k2− 1

2 . We use [7] and [12] as main references.
For A(x) = |x|2α+1 , α >−1/2 and ρ = 0, we regain the differential-difference

operator

Dα f = f ′(x)+
(

α +
1
2

) f (x)− f (−x)
x

,

which is referred to as the Dunkl operator with parameter
(

α + 1
2

)
associated with the

reflection group Z2 on R.

We denote by φλ , λ ∈ C, the eigenfunction of the operator Λ . It is the unique
C∞ function on R which is equals to 1 at 0 and satisfies the differential-difference
equation

Λ f (x) = iλ f (x).

The function φλ is expressed as follows

φλ (x) =

{
ϕλ (x)+ 1

iλ−ρ
d
dxϕλ (x) if λ �= −iρ

1+ 2ρ
A(x)

∫ x
0 A(t)dt if λ = −iρ ,

where ϕλ is the eigenfunction of the differential equation{
Δu(x) = −(λ 2 + ρ2)u(x), x ∈]0,+∞[,

u(0) = 1,u′(0) = 0,
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with

Δ =
d2

dx2 +
A′(x)
A(x)

d
dx

. (8)

In addition to that φλ has the following Laplace type integral representation

φλ (x) =
∫ |x|

−|x|
K(x,y)eiλ ydy, x �= 0,

where K(x, .) is nonnegative function on R , continuous on ]− |x|, |x|[ and supported
in [−|x|, |x|] . See [9, 13] for more details.

REMARK 1. For all x ∈ R, in [13], the author proved that∫ |x|

−|x|
K(x,y)dy � 2. (9)

The generalized Fourier transform of a function f in D(R) , the space of C∞ func-
tion on R with compact support, is defined by

F ( f )(λ ) =
∫

R

f (x)φ−λ (x)A(x)dx, λ ∈ C.

In addition, it can be written as:

F ( f )(λ ) = FΔ( fe)(λ )+ (iλ −ρ)FΔ(J fo)(λ ), (10)

where fe (resp fo ) denotes the even (resp odd) part of f , FΔ stands the Fourier trans-
form related to the differential operator Δ given by the relation (8), defined on the
subspace of D(R) consisting of even functions, by

FΔh(λ ) =
∫

R

h(x)ϕλ (x)A(x)dx, ∀λ ∈ C (11)

and

J fo(x) :=
∫ x

−∞
fo(t)dt.

The inversion formula for the Fourier transform F is defined for all f ∈ D(R) by,

f (x) =
∫

R

F f (λ )φ−λ (−x)dσ1(λ ) ,

with

dσ1(λ ) =
λ − iρ

λ
dλ

|c(λ )|2 ,

where |c(λ )|−2 is an even continuous function on R , and satisfies the estimates: There
exist positive constants k1,k2,k such that

• If ρ � 0 and α > −1/2, then

k1|λ |2α+1 � |c(λ )|−2 � k2|λ |2α+1, λ ∈ R, |λ | > k. (12)
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• If ρ > 0 and α > −1/2, then

k1|λ |2 � |c(λ )|−2 � k2|λ |2, λ ∈ R, |λ | � k. (13)

• If ρ = 0 and α > 0, then

k1|λ |2α+1 � |c(λ )|−2 � k2|λ |2α+1, λ ∈ R, |λ | � k. (14)

We have the following Plancherel formula: for all f ∈ D(R) , we have∫
R

| f (x)|2A(x)dx =
∫

R

|F f (λ )|2dσ1(λ )+2ρ
∫

R

FΔ( fe)(λ )FΔ (J fo)(λ )
dλ

|c(λ )|2 ,

(15)
where FΔ f given by the relation (11). We refer to [9] for more details.

More of this, by replacing f by f̌ in the relation (15), where f̌ (x) = f (−x) , we
obtain∫

R

| f (x)|2A(x)dx =
∫

R

|F f̌ (λ )|2dσ1(λ )−2ρ
∫

R

FΔ( fe)(λ )FΔ (J fo)(λ )
dλ

|c(|λ |)|2 .

(16)
By summing the relations (15) and (16), we obtain

2
∫

R

| f (x)|2A(x)dx =
∫

R

(|F f̌ (λ )|2 + |F f (λ )|2) dλ
|c(λ )|2 . (17)

• For f belonging to L1(R, A(x)dx) , F ( f ) is a bounded continuous function on
R , vanishes at infinity and verifies

‖F f‖∞ � ‖ f‖1,A. (18)

• If f be in L2(R, A(x)dx) , then∫
R

|F f (λ )|2 dλ
|c|λ ||2 � 2

∫
R

| f (x)|2A(x)dx. (19)

Using the relations (18), (19) and applying the Riesz-Thorin interpolation theorem [[6],
p. 200], we can deduce the following result

COROLLARY 1. (The Hausdorff-Young inequality) Let 1 < p � 2, then for all f
in Lp(R, A(x)dx), we have[∫

R

|F ( f )(λ )|p′ dλ
|c(|λ |)|2

]1/p′
� C

[∫
R

| f (x)|pA(x)dx
]1/p

(20)

where 1
p + 1

p′ = 1, C > 0.

In the squel we will denote by f � g to mean that there exists a positive constant C
such that f � Cg .
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3. Hardy-Littlewood type inequality for the generalized Fourier transform

This section is devoted to the following result.

THEOREM 1. Let 1 < p � 2, p � q � p′. Theen for all f in Lp(R, A(x)dx), the
following inequality holds[∫

R

|F ( f )(λ )|q|λ | (2α+2)(pq−p−q)
p

dλ
|c(λ )|2

]1/q
�

[∫
R

| f (x)|pA(x)dx
]1/p

.

Proof. Let r = 1 + q′/p′. Then r � 2 and r′ = 1 + p′/q′. Denote γ = (2α +
2)/(r′ −1). The Hausdroff-Young inequality gives

[∫
R

[
|λ |γ |F ( f )(λ )|

]r′ |λ |−r′γ dλ
|c(λ )|2

]1/r′
�

[∫
R

| f (x)|rA(x)dx
]1/r

,

for all f ∈ Lr(R,A(x)dx) .
This inequality implies that the operator T : f �−→ |λ |γF ( f ) is of type (r,r′)

between the spaces Lr(R,A(x)dx) and Lr′(R, |λ |−r′γ dλ
|c(λ )|2 ). Next, we need to prove

that T is of weak type (1,1).
By an easy calculation, using the relation (12), we obtain

∫
|λ |γ>s

|λ |−r′γ dλ
|c(λ )|2 �

∫
|λ |γ>s

|λ |−r′γ |λ |2α+1dλ � C
1
γs

,

for all s > 0.

Using the last inequality and the relation (18), we deduce that

s
∫
|λ |γ |F ( f )(λ )|>s

|λ |−r′γ dλ
|c(λ )|2 � ‖ f‖A,1,

which means that T is of weak type (1,1).
Now we apply the Marcinkiewicz interpolation theorem ([11], p. 184). By taking

t = 1/q−1/p′ , the real numbers rt and st , defined by

1
rt

=
1− t

r
+ t, and

1
st

=
1− t
r′

+ t,

satisfy rt = p and st = q. Thus T is of type (p,q) . So the equality

qγ − r′γ = (2α +2)(pq− p−q)/p

gives the result. �
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4. Weighted inequalities for the generalized transform

In this section, we will prove a weighted inequality for the generalized Fourier
transform. First, we need the following lemma

LEMMA 1. Let V : A → B be a bijective and measurable function such that
A⊂ R , B ⊂ [0 , +∞) and V−1 is measurable. If f is a nonzero and integrable function
on R with respect to a positive measure ν , then for all 0 < k < ‖ f‖1,ν , there exists
Rk > 0 such that ∫

2V (x)<Rk

| f (x)|dν(x) = k,

Proof. Let f ∈ L1(R, dν). Define h : [0,∞) −→ [0,‖ f‖1,ν ] by

h(r) =
∫
|y|<r/2

| f ◦V−1(y)|dνV (y) =
∫
|V (x)|<r/2

| f (x)|dν(x) � ‖ f‖1,ν

where dνV be the image measure of ν by the function V. By using the theorem of
continuity in sign integral we can easily prove that the function h is continuous on
[0,∞) , then for 0 < k < ‖ f‖1,ν , there exist Rk such that

h(Rk) = k,

that is ∫
2V (x)<Rk

| f (x)|dν(x) = k

and this completes the proof. �

THEOREM 2. Let 1 < p � 2 , p � q � p′ , γ = (2α + 2)(pq− p− q)/p, r > 0 ,
U be a nonnegative functions on R , V as in Lemma 1 and there is a positive constant
M1 , independent of r , such that[∫

{|λ |−γU(λ )}
p′
q >r

U(λ )
dλ

|c(λ )|2
][∫

V (x)<rp−1
V (x)

−1
p−1 A(x)dx

]q/p′
� M1, (21)

then we have[∫
R

|F f (λ )|qU(λ )
dλ

|c(λ )|2
]1/q

�
[∫

R

| f (x)|pV (x)A(x)dx
]1/p

. (22)

Proof. Let 1 < p � q � p′, γ = (2α +2)(pq− p−q)/p and for all j ∈ Z,

Ej = {λ ∈ R\{0}, 2 jq/p′ |λ |γ < U(λ ) � 2 jq/p′+1|λ |γ}. (23)

We denote by

I1 = ∑
j∈Z

∫
Ej

∣∣∣∫
V (x)�2 j(p−1)−1

f (x)φλ (x)A(x)dx
∣∣∣qU(λ )

dλ
|c(λ )|2 (24)
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and

I2 = ∑
j∈Z

∫
Ej

∣∣∣∫
V (x)<2 j(p−1)−1

f (x)φλ (x)A(x)dx
∣∣∣qU(λ )

dλ
|c(λ )|2 . (25)

So, by using the convexity of the function x �→ xq , we obtain that∫
R

|F f (λ )|qU(λ )
dλ

|c(λ )|2 � 2q−1(I1 + I2),

We need to prove that I1 and I2 are bounded by[∫
R

| f (x)|pV (x)A(x)dx
]q/p

. (26)

To estimate the relation (24), we can see that

I1 � ∑
j∈Z

2 jq/p′+1
[∫

R

∣∣∣F ( f χ{x∈R,V (x)�2 j(p−1)−1})(λ )
∣∣∣q|λ |γ dλ

|c(λ )|2
]
.

From the theorem 1, we can see that the right side is bounded by

2 ∑
j∈Z

2 jq/p′
[∫

R

| f χ{x∈R,V (x)�2 j(p−1)−1}(x)|pA(x)dx
]q/p

.

Since q/p � 1, we obtain

I1 � 2
[∫

R

| f (x)|ph(x)A(x)dx
]q/p

, (27)

where
h(x) = ∑

j∈Z

2 jp/p′χ{x∈R,V (x)�2 j(p−1)−1}(x). (28)

Now for a given x , let J is the largest integer satisfying 2J(p−1) � 2V(x). So

h(x) = ∑
j�J

2 j(p−1) =
1

1−21−p2J(p−1) � cV (x).

This completes the proof of the first part.
Next, to estimate the relation (25), observe first that from (23), we can write

I2 �
∫

R

[∫
2V (x)<[(U(λ )|λ |−γ)

p′
q ]p−1

| f (x)|A(x)dx
]q

U(λ )
dλ

|c(λ )|2 . (29)

Now let J be the least integer such that 2J � ‖ f‖1,A , and let rJ = ∞. We apply the
Lemma 1 with k = 2 j, for j < J . Let r j be chosen so that∫

2V (x)<rp−1
j

| f (x)|A(x)dx = 2 j. (30)
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Then from the relation (29), we deduce that

I2 � ∑
j�J

∫
r j−1<

(
|λ |−γU(λ )

)p′/q
�r j

∣∣∣∫
2V (x)<rp−1

j

| f (x)|A(x)dx
∣∣∣qU(λ )

dλ
|c(λ )|2 (31)

using the relation (30) and the definition of rJ , we have for j � J,∫
2V (x)<rp−1

j

| f (x)|A(x)dx = 2 j = 4
∫

Dj

| f (x)|A(x)dx, (32)

where Dj = {x ∈ R, rp−1
j−2 � 2V (x) < rp−1

j−1 }. Furthermore, by using the relations (32)
and (31), we have

I2 � ∑
j∈Z

[∫
r j−1<

(
|λ |−γU(λ )

)p′/q
�r j

U(λ )
dλ

|c(λ )|2
][∫

Dj

[| f (x)|V (x)1/p]V (x)−1/pA(x)dx
]q

.

(33)
By Hölder’s inequality[∫

Dj

[
| f (x)|V (x)

1
p

]
V (x)

−1
p A(x)dx

]q

�
[∫

2V (x)<rp−1
j−1

V (x)
−p′

p A(x)dx

] q
p′

×
[∫

Dj

| f (x)|pV (x)A(x)dx

] q
p

. (34)

Then since q/p � 1 and by using the hypothesis (21), we conclude that

I2 �
[

∑
j∈Z

∫
Dj

| f (x)|pV (x)A(x)dx
]q/p

.

Now, we get the result by using the fact taht the sets Dj are disjoints. �

REMARK 2. For α > 0 and ρ = 0 or α > −1/2 and ρ > 0, we have the follow-
ing result which is the analogue of the Pitt’s theorem.

THEOREM 3. 1 < p � q � p′. Put U(λ )= |λ |−aq , V (x) = |x|bp with a and b are

such that (2α +2)(1/q−/p′) < a < min(2α+2 ,3)
q and b = a+(2α +2)(1/p′ −1/q) .

Then for all f in Lp(R, |x|bpA(x)dx) , we have[∫
R

∣∣∣F ( f )(λ )
∣∣∣q|λ |−aq dλ

|c(|λ |)|2
]1/q

�
[∫

R

∣∣∣ f (x)∣∣∣p|x|bpA(x)dx
]1/p

.

Proof. With the choice of a and b , we can see that the hypothesis of theorem 2 is
satisfied. �

REMARK 3. In the case ρ = 0 and α > 0, if we take A(x) = |x|2α+1 , we obtain
the Dunkl operator with parameter (α + 1/2) associated with the reflection group Z2

on R and in this case S. Ben Farah and M. Mili [4], proved that the condition on a and
b which we make in the Theorem 3 is optimal.
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Cité Taffala, 4003 Sousse, Tunisia

e-mail: maher.mili@fsm.rnu.tn

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


