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CALDERÓN–HARDY SPACES WITH VARIABLE EXPONENTS AND

THE SOLUTION OF THE EQUATION ΔmF = f FOR f ∈ Hp(·)(Rn)

PABLO ROCHA

(Communicated by J. Soria)

Abstract. In this article we define the Calderón-Hardy spaces with variable exponents on Rn ,

H
p(.)

q,γ (Rn) , and we show that for m∈N the operator Δm is a bijective mapping from H
p(.)

q,2m(Rn)
onto Hp(.)(Rn) .

1. Introduction

Given a measurable function p(·) : Rn → (0,∞) such that

0 < inf
x∈Rn

p(x) � sup
x∈Rn

p(x) < ∞,

let Lp(·)(Rn) denote the space of all measurable functions f such that for some λ > 0,

∫
Rn

∣∣∣∣ f (x)λ

∣∣∣∣
p(x)

dx < ∞.

We set

‖ f‖p(·) = inf

{
λ > 0 :

∫
Rn

∣∣∣∣ f (x)λ

∣∣∣∣
p(x)

dx � 1

}
.

We see that
(
Lp(·)(Rn),‖.‖p(·)

)
is a quasi normed space. These spaces are referred to

as the Lebesgue spaces with variable exponents. In the last years many authors have
extended the machinery of classical harmonic analysis to these spaces. See, for example
[2], [3], [4], [5], [8].

In the celebrate paper [6], C. Fefferman and E. M. Stein defined the Hardy Spaces
Hp(Rn) , 0 < p < ∞ , with the norm given by

‖ f‖Hp =

∥∥∥∥∥sup
t>0

sup
φ∈FN

|t−nφ(t−1.)∗ f |
∥∥∥∥∥

p

,
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for suitable family FN . In the paper [9], E. Nakai and Y. Sawano defined the Hardy
spaces with variable exponents Hp(.)(Rn) , replacing Lp by Lp(.) in the above norm
and they investigate their several properties.

Let Lq
loc(R

n) , 1 < q < ∞ , be the space of all measurable functions f on Rn that
belong locally to Lq for compact sets of Rn . We endowed Lq

loc(R
n) with the topology

generated by the seminorms

| f |q,Q =
(
|Q|−1

∫
Q
| f (x)|q dx

)1/q

,

where Q is a cube in R
n and |Q| denotes its Lebesgue measure.

For f ∈ Lq
loc(R

n) , we define a maximal function ηq,γ( f ;x) as

ηq,γ( f ;x) = sup
r>0

r−γ | f |q,Q(x,r),

where γ is a positive real number and Q(x,r) is the cube centered at x with side length
r .

Let k a non negative integer and Pk the subspace of Lq
loc(R

n) formed by all the
polynomials of degree at most k . We denote by Eq

k the quotient space of Lq
loc(R

n) by
Pk . If F ∈ Eq

k , we define the seminorm ‖F‖q,Q = inf
{| f |q,Q : f ∈ F

}
. The family of

all these seminorms induces on Eq
k the quotient topology.

Given a positive real number γ , we can write γ = k+ t , where k is a non negative
integer and 0 < t � 1. This decomposition is unique.

For F ∈ Eq
k , we define a maximal function Nq,γ (F ;x) as

Nq,γ(F ;x) = inf
{

ηq,γ( f ;x) : f ∈ F
}

.

This type of maximal function was introduced by A. P. Calderón in [1].
Let p(.) : Rn → (0,∞) be a measurable function such that 0 < p− � p+ < ∞ ,

we say that an element F ∈ Eq
k belongs to the Calderón-Hardy space with variable

exponents H
p(.)

q,γ (Rn) if the maximal function Nq,γ (F ; ·) ∈ Lp(.)(Rn) . The “norm” of

F in H
p(.)

q,γ (Rn) is defined as ‖F‖
H

p(.)
q, γ (Rn)

= ‖Nq,γ(F ; ·)‖p(.) .

The Calderón-Hardy spaces were defined in the setting of the classical Lebesgue
spaces by A. B. Gatto, J. G. Jiménez and C. Segovia in [7], they characterize the solu-
tions of ΔmF = f , m ∈ N , for f ∈ Hp(Rn) . Moreover, they proved that the operator
Δm is a bijective mapping from the Calderón-Hardy spaces onto Hp(Rn) . In this work
we show that this result holds in the context of the Lebesgue spaces with variable expo-
nents. In [10], S. Ombrosi studied the weighted version of the Calderón-Hardy spaces.
The Calderón-Hardy spaces were mentioned for first time with this name in [12]. A.
Perini studied in [13] the boundedness of one-sided fractional integrals on these spaces.
In [11], S. Ombrosi, A. Perini and R. Testoni obtain a complex interpolation theorem
between weighted Calderón-Hardy spaces for weights in a Sawyer class.

Given a function p(·) : Rn → (0,∞) we say that p(·) is locally log-Hölder con-
tinuous, and denote this by p(·) ∈ LH0(Rn) , if there exists a positive constant C0 such
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that

|p(x)− p(y)| � C0

− log |x− y| , |x− y|< 1
2
.

We say that p(·) is log-Hölder continuous at infinity, and denote this by p(·)∈LH∞(Rn)
if there exists a positive constant C∞ such that

|p(x)− p(y)|� C∞

log(e+ |x|) , |y| � |x| .

We note that the condition log-Hölder continuous at infinity is equivalent to the exis-
tence of constants C∞ and p∞ such that

|p(x)− p∞| � C∞

log(e+ |x|) , x ∈ R
n.

As usual we will denote p+ = supx∈Rn p(x) , p− = infx∈Rn p(x) , p = min{p−,1} and
Δ stands for the Laplacian.

Let F ∈ Eq
2m−1 and f ∈ F . Since f belongs to Lq

loc(R
n) , Δm f is defined in

sense of distributions. On the other hand, since any two representatives of F differ
in a polynomial of degree smaller than 2m , we get that Δm f is independent of the
representative f ∈ F chosen. Therefore, for F ∈ Eq

2m−1 , we shall define ΔmF as the
distribution Δm f , where f is any representative of F .

Our main result is contained in the following

THEOREM 1. Let p(.) be a function that belongs to LH0(Rn)∩ LH∞(Rn) , 1 <
q < ∞ and m∈N such that 0 < p− � p+ < ∞ and n(2m+n/q)−1 < p. Then for q suf-

ficiently large the operator Δm is a bijective mapping from H
p(.)

q,2m(Rn) onto Hp(.)(Rn) .
Moreover, there exist two positive constant c1 and c2 such that

c1‖F‖H
p(.)

q,2m
� ‖ΔmF‖Hp(.) � c2‖F‖H

p(.)
q,2m

hold for all F ∈ H
p(.)

q,2m(Rn) .

The case p+ � n(2m+n/q)−1 is trivial.

THEOREM 2. If p(.) is a positive measurable function such that p+ � n(2m +
n/q)−1 , then H

p(.)
q,2m(Rn) = {0}.

In Section 2 we state some auxiliary lemmas and propositions to get the main
results. We also recall the definition and atomic decomposition of the Hardy spaces
with variable exponents given in [9]. In Section 3 we give the proofs of Theorem 1 and
Theorem 2.

NOTATION. The symbol A � B stands for the inequality A � cB for some con-
stant c. We denote by Q(x0,r) the cube centered at x0 ∈ Rn with side lenght r.
Given a cube Q = Q(x0,r) , we set δQ = Q(x0,δ r) and l (Q) = r. For a measur-
able subset E ⊆ R

n we denote by |E| and χE the Lebesgue measure of E and the
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characteristic function of E respectively. For a function p(.) : Rn → (0,∞) we de-
fine p+ = supx∈Rn p(x) , p− = infx∈Rn p(x) and p = min{p−,1} . As usual we denote
with S(Rn) the space of smooth and rapidly decreasing functions, with S′(Rn) the dual
space and Δ stands for the Laplacian. If α is the multiindex α = (α1, ...,αn) then
|α| = α1 + ...+ αn.

Throughout this paper, c will denote a positive constant, not necessarily the same
at each occurrence.

2. Preliminaries

The function p(.) : Rn → (0,∞) is called the variable exponent. Here we adopt
the standard notation in variable exponents. We write

p− = inf
x∈Rn

p(x), p+ = sup
x∈Rn

p(x), and p = min{p−,1} .

Recall that we assumed 0 < p− � p+ < ∞ .
For measurable function f , let

‖ f‖p(·) = inf

{
λ > 0 :

∫
Rn

∣∣∣∣ f (x)λ

∣∣∣∣
p(x)

dx � 1

}
,

it not so hard to see the following
1. ‖ f‖p(·) � 0, and ‖ f‖p(·) = 0 if and only if f ≡ 0.
2. ‖c f‖p(·) = |c|‖ f‖p(·) for c ∈ C .

3. ‖ f +g‖p
p(·) � ‖ f‖p

p(·) +‖g‖p
p(·) .

A direct consequence of p -triangle inequality is the quasi-triangle inequality

‖ f +g‖p(·) � 21/p−1 (‖ f‖p(·) +‖g‖p(·)
)
,

for all f , g ∈ Lp(·)(Rn) .
The following lemmas are crucial to get the principal result.

LEMMA 3. (Lemma 6 in [1]) The maximal function Nq;γ(F ;x) associated with a
class F in Eq

k is lower semicontinuous.

LEMMA 4. Let F ∈ Eq
k with Nq,γ(F ;x0) < ∞, for some x0 ∈ Rn . Then:

(i) There exists a unique f ∈F such that ηq,γ ( f ;x0)< ∞ and, therefore, ηq,γ( f ;x0)
= Nq,γ(F ;x0) .

(ii) For any cube Q , there is a constant c depending on x0 and Q such that if f
is the unique representative of F given in (i) , then

‖F‖q,Q � | f |q,Q � cηq,γ ( f ;x0) = cNq,γ (F ;x0).

The constant c can be chosen independently of x0 provided that x0 varies in a
compact set.
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Proof. The proof is similar to that of Lemma 3 in [7]. �

COROLLARY 5. If {Fj} is a sequence of elements of Eq
k converging to F in

H
p(·)

q,γ (Rn) , 0 < p− � p+ < ∞ , then {Fj} converges to F in Eq
k .

Proof. For any cube Q , by (ii) of Lemma 4, we have

‖F −Fj‖q,Q � c‖χQ‖−1
p(.)‖χQ Nq,γ (F −Fj; ·)‖p(·) � c‖F −Fj‖H

p(·)
q, γ

,

which proves the corollary. �

LEMMA 6. Let {Fj} be a sequence in Eq
k such that for a given point x0 , the series

∑ j Nq,γ (Fj; x0) is finite. Then
(i) The series ∑ j Fj converges in Eq

k to an element F and

Nq,γ (F ; x0) � ∑
j

Nq,γ(Fj; x0).

(ii) If f j is the unique representative of Fj satisfying ηq,γ ( f j;x0) = Nq,γ(Fj;x0) ,
then ∑ j f j converges in Lq

loc(R
n) to a function f that is the unique representative of F

satisfying ηq,γ( f ;x0) = Nq,γ (F ;x0)

Proof. The proof is similar to that of Lemma 4 in [7]. �
On the set of the all measurable function f we define the modular function ρp(.)

by

ρp(.)( f ) =
∫

Rn
| f (x)|p(x) dx.

It is well known that if 0 < p− � p+ < ∞ and 0 
= f ∈ Lp(·)(Rn) , then

ρp(.)

(
‖ f‖−1

p(.) f
)

=
∫

Rn

(
| f (x)|
‖ f‖p(.)

)p(x)

dx = 1.

LEMMA 7. Let p(.) a measurable function such that 0 < p− � p+ < ∞ . Then
f ∈ Lp(.)(Rn) if and only if ρp(.)( f ) < ∞ .

Proof. Clearly, if ρp(.)( f ) < ∞ , then f ∈ Lp(.)(Rn) . Conversely, if f ∈ Lp(.)(Rn) ,
then we have that ρp(.)( f/λ ) < ∞ for some λ > 1. Then

ρp(.)( f ) =
∫

Rn

∣∣∣∣λ f (x)
λ

∣∣∣∣
p(x)

dx � λ p+ρp(.)( f/λ ) < ∞. �

LEMMA 8. Let p(.) a measurable function such that 0 < p− � p+ < ∞ . If { f j}
is a sequence of measurable functions such that ρp(.)( f j) → 0, then ‖ f j‖p(.) → 0.
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Proof. Suppose that ρp(.)( f j) → 0. Given 0 < ε < 1 for sufficiently large j we
have ρp(.)( f j) � ε and so

ρp(.)

(
f jρp(.)( f j)−1/p+

)
� ρp(.)( f j)−1ρp(.)( f j) = 1,

from this it follows that ‖ f j‖p(.) � ρp(.)( f j)1/p+ � ε1/p+ . Thus, ‖ f j‖p(.) → 0. �

PROPOSITION 9. The space H
p(·)

q,γ (Rn) , 0 < p− � p+ < ∞ , is complete.

Proof. It is enough to show that H
p(·)

q,γ has the Riesz-Fisher property: given any

sequence {Fj} in H
p(·)

q,γ such that

∑
j
‖Fj‖p

H
p(·)

q, γ
< ∞,

the series ∑ j Fj converges in H
p(·)

q,γ .
Let 1 � l be fixed, then∥∥∥∥∥

k

∑
j=l

Nq,γ (Fj; .)

∥∥∥∥∥
p

p(.)

�
k

∑
j=l

∥∥Nq,γ(Fj; .)
∥∥p

p(.) �
∞

∑
j=l

‖Fj‖p

H
p(·)

q, γ
=: αl < ∞,

for all k � l , thus ∫
Rn

(
α−1/p

l

k

∑
j=l

Nq,γ (Fj; x)

)p(x)

dx

�
∫

Rn

⎛
⎝
∥∥∥∥∥

k

∑
j=l

Nq,γ(Fj; .)

∥∥∥∥∥
−1

p(.)

k

∑
j=l

Nq,γ (Fj; x)

⎞
⎠

p(x)

dx = 1, ∀k � l

it follows from Fatou’s lemma as k → ∞ that

∫
Rn

(
α−1/p

l

∞

∑
j=l

Nq,γ(Fj; x)

)p(x)

dx � 1

thus ∥∥∥∥∥
∞

∑
j=l

Nq,γ (Fj; ·)
∥∥∥∥∥

p

p(·)
� αl =

∞

∑
j=l

‖Fj‖p

H
p(·)

q, γ
< ∞, ∀ l � 1. (1)

Taking l = 1 in (1), from Lemma 7 it follows that ∑ j Nq,γ(Fj; x) is finite a.e. x ∈ Rn .
Then, by (i) of Lemma 6, the series ∑ j Fj converges in Eq

k to an element F . Now

Nq,γ

(
F −

k

∑
j=1

Fj;x

)
�

∞

∑
j=k+1

Nq,γ (Fj;x),
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from this and (1) we get ∥∥∥∥∥F −
k

∑
j=1

Fj

∥∥∥∥∥
p

H
p(·)

q, γ

�
∞

∑
j=k+1

‖Fj‖p

H
p(·)

q, γ
,

and since the right-hand side tends to 0 as k → ∞ , the series ∑ j Fj converges to F in

H
p(·)

q,γ (Rn) . �
In the paper [9], E. Nakai and Y. Sawano give a variety of distinct approaches,

based on differing definitions, all lead to the same notion of the variable Hardy space
Hp(.).

We recall the definition and the atomic decomposition of the Hardy spaces with
variable exponents.

Topologize S (Rn) by the collection of semi-norms {pN}N∈N given by

pN(ϕ) = ∑
|β |�N

sup
x∈Rn

(1+ |x|)N
∣∣∣∂ β ϕ(x)

∣∣∣ ,
for each N ∈N . We set FN = {ϕ ∈ S (Rn) : pN(ϕ) � 1} . Let f ∈S ′(Rn) , we denote
by MFN the grand maximal operator given by

MFN f (x) = sup
t>0

sup
ϕ∈FN

∣∣(t−nϕ(t−1·)∗ f
)
(x)
∣∣ ,

where N is a large and fix integer.
The Hardy space with variable exponents Hp(·)(Rn) is the set of all f ∈ S′(Rn)

for which MFN f ∈ Lp(·)(Rn). In this case we define ‖ f‖Hp(·) =
∥∥MFN f

∥∥
p(·) .

Let φ ∈S (Rn) be a function such that
∫

φ(x)dx 
= 0. For f ∈S ′(Rn) , we define
the maximal function Mφ f by

Mφ f (x) = sup
t>0

∣∣(t−nφ(t−1 ·)∗ f
)
(x)
∣∣ .

Theorem 1.2 in [9] asserts that the quantities ‖Mφ f‖p(·) and
∥∥MFN f

∥∥
p(·) are compa-

rable, with bounds independent of f if N is sufficiently large.

DEFINITION 10. ((p(·), p0,d)−atom) . Let p(·) : Rn → (0,∞) , 0 < p− � p+ <
p0 � ∞ and p0 � 1. Fix an integer d � dp(·) = min{l ∈ N∪{0} : p−(n+ l +1) > n} .
A function a on R

n is called an (p(·), p0,d)-atom if there exists a cube Q such that
a1) supp(a) ⊂ Q,

a2) ‖a‖p0
� |Q|

1
p0

‖χQ‖p(·)
,

a3)
∫

a(x)xαdx = 0 for all |α| � d.

REMARK 11. Let a be an (p(·), p0,d)− atom and 1 < s < p0 , then Hölder’s

inequality implies ‖a‖s � |Q|1/s

‖χQ‖p(·)
.
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DEFINITION 12. For sequences of nonnegative numbers
{
k j
}∞

j=1 and cubes{
Qj
}∞

j=1 and for a function p(·) : Rn → (0,∞) , we define

A
({

k j
}∞

j=1 ,
{
Qj
}∞

j=1 , p(·)
)

=

∥∥∥∥∥∥
{

∞

∑
j=1

(
k jχQj∥∥χQj

∥∥
p(·)

)p} 1
p
∥∥∥∥∥∥

p(·)
.

The space Hp(·),p0,d
atom (Rn) is the set of all distributions f ∈ S′(Rn) such that it can

be written as

f =
∞

∑
j=1

k ja j (2)

in S′(Rn), where
{
k j
}∞

j=1 is a sequence of non negative numbers, the a j‘s are

(p(·), p0,d)-atoms and A
({

k j
}∞

j=1 ,
{
Qj
}∞

j=1 , p(·)
)

< ∞. One defines

‖ f‖
H

p(·),p0,d
atom

= infA
({

k j
}∞

j=1 ,
{
Qj
}∞

j=1 , p(·)
)

where the infimun is taken over all admissible expressions as in (2).

Theorem 4.6 in [9] asserts that the quantities ‖ f‖
H

p(·),p0,d
atom

and ‖ f‖Hp(·) are com-

parable. Moreover, f admits an atomic decomposition f =
∞
∑
j=1

k ja j such that

A
({

k j
}∞

j=1 ,
{
Qj
}∞

j=1 , p(·)
)

� c‖ f‖Hp(·) .

Let h be the function defined by

h(x) =

{ |x|2m−n ln |x|, if n is even and 2m−n � 0

|x|2m−n, otherwise
. (3)

It is well known that if a is a bounded function with compact support, its potential
b , defined as

b(x) =
∫

Rn
h(x− y)a(y)dy,

is a locally bounded function and Δmb = a in the sense of distributions. For these
potentials, we have the following

LEMMA 13. Let a(·) be an (p(·), p0,d)-atom with d = max{dp(·),2m− 1} and
assume that Q(x0,r) is the cube containing the support of a(.) in the definition of
(p(·), p0,d)-atom. If

b(x) =
∫

Rn
h(x− y)a(y)dy,

then for |x− x0| �
√

nr and every multiindex α , there exists cα such that

|(∂ αb)(x)| � cα r2m+n‖χQ‖−1
p(·)|x− x0|−n−α

holds.
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Proof. Since a(·) has vanishing moments up to the order d � 2m−1, we have

(∂ αb)(x) =
∫

Q(x0,r)
(∂ αh)(x− y)a(y)dy

=
∫

Q(x0,r)

[
(∂ αh)(x− y)− ∑

|β |�2m−1

(∂ α+β h)(x− x0)
(x0 − y)β

β !

]
a(y)dy

=
∫

Q(x0,r)

[
∑

|β |=2m

(∂ α+β h)(x− ξ )
(x0− y)β

β !

]
a(y)dy

where ξ is a point between y and x0 . If |x− x0| � √
nr it follows that |x−ξ |� |x−x0|

2

since |x0−ξ |�
√

n
2 r . Taking into account that for |β |= 2m , ∂ α+β h is a homogeneous

function of degree −n−α , we obtain

|(∂ αb)(x)| � cr|β |
∫

Q(x0,r)
|x− ξ |−n−α|a(y)|dy

� cr|β |‖a‖p0|Q|1−1/p0|x− x0|−n−α � cr2m+n‖χQ‖−1
p(·)|x− x0|−n−α . �

LEMMA 14. (Lemma 8 in [7]) If h is the kernel defined in (3) and |α| =
2m , then (∂ αh)(x) is a C∞ homogeneous function of degree −n on Rn \ {0} , and∫
|x|=1 (∂ αh)(x)dx = 0.

We conclude this preliminaries with the following

PROPOSITION 15. Let a(·) be an (p(·), p0,d)-atom with d = max{dp(·),2m−
1} , p0 > 1 , and assume that Q = Q(x0,r) is the cube containing the support of a(·)
in the definition of (p(·), p0,d)-atom. If b(x) =

∫
Rn h(x− y)a(y)dy, then for all x ∈ Rn

and all 0 < μ < 2m

Nq,2m(B;x) � ‖χQ‖−1
p(·) [M(χQ)(x)]

2m+n/q−μ
n + χ4

√
nQ(x)M(a)(x) (4)

+χ4
√

nQ(x)[M(Mq(a))(x)]1/q + χ4
√

nQ(x) ∑
|α |=2m

T ∗
α (a)(x),

where B is the class of b in Eq
2m−1 , T ∗

α (a)(x) = supε>0

∣∣∣∫|x−y|>ε (∂ αh)(x− y)a(y)dy
∣∣∣

and M is the Hardy-Littlewood maximal operator.

Proof. For an (p(·), p0,d) - atom a satisfying the hypothesis of Proposition, we
set

R(x,z) = b(x+ z)− ∑
|α |�2m−1

(∂ αb)(x)zα/α!

= b(x+ z)− ∑
|α |�2m−1

[∫
Q(x0,r)

(∂ αh)(x− y)a(y) dy

]
zα

α!
.
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We shall estimate |R(x,z)| considering the cases |x− x0| � 2
√

nr and |x− x0| <
2
√

nr , and then we will obtain the estimate (4).

Case: |x− x0| � 2
√

nr .
For |x− x0| � 2

√
nr , |z| < 1

2 |x− x0| and 0 < θ < 1, we have |x + θ z− x0| �
|x− x0|− |z|� 1

2 |x− x0| �
√

nr . Then, by the mean value theorem and Lemma 13, we
get

|R(x,z)| � ∑
|α |=2m

|(∂ αb)(x+ θ z)| |z|
|α |

α!
� c‖χQ‖−1

p(·)

(
r

|x− x0|
)2m+n

|z|2m, (5)

for |x− x0| � 2
√

nr and |z| < 1
2 |x− x0| .

Now, let |z| � 1
2 |x− x0| . We have

|R(x,z)| � |b(x+ z)|+ ∑
|α |�2m−1

|(∂ αb)(x)||z|α/α!.

Since |x− x0| > 2
√

nr , by Lemma 13, and observing that |z|/|x− x0| > 1/2, we
have

|(∂ αb)(x)| |z|
|α |

α!
� c‖χQ‖−1

p(·)

(
r

|x− x0|
)2m+n

|z|2m.

As for the other term, |b(x + z)| , we consider the cases |x + z− x0| >
√

nr and
|x + z− x0| � √

nr . In the case |x + z− x0| > √
nr , we apply Lemma 13 for α = 0,

obtaining

|b(x+ z)|� c‖χQ‖−1
p(·)r

2m+n|x+ z− x0|−n.

Then

|R(x,z)| � ‖χQ‖−1
p(·)r

2m+n|x+ z− x0|−n +‖χQ‖−1
p(·)

(
r

|x− x0|
)2m+n

|z|2m, (6)

holds if |x− x0| � 2
√

nr , |z| � |x− x0|/2 and |x+ z− x0| >
√

nr .
For |x+ z− x0| �

√
nr , we consider the cases n even and 2m−n � 0, and n odd

or 2m−n < 0. In the first case, we have that |x|2m−n is a polynomial of degree smaller
than 2m , and since a(·) is an (p(·), p0,d)-atom, we have

|b(x+ z)| =
∣∣∣∣
∫

Q(x0,r)
|x+ z− y|2m−n [ln(|x+ z− y|)− ln(|x− x0|)]a(y)dy

∣∣∣∣
� ‖a‖p0

(∫
Q(x0,r)

|x+ z− y|(2m−n)p′0(ln(|x− x0|/|x+ z− y|))p′0dy

)1/p′0
.

Since |x+ z− y|/|x− x0| < 1, ln(t) � μ−1tμ for any 0 < μ and t � 1, and observing
that Q(x0,r) ⊂ {y : |x + z− y| < 3

2

√
nr} , we take 0 < μ < 2m− n if 2m− n > 0 or
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0 < μ < n/p′0 if 2m−n = 0, to get

|b(x+ z)|� ‖χQ‖−1
p(·)r

n/p0 |x− x0|μ
(∫

|x+z−y|< 3
2
√

nr
|x+ z− y|(2m−n−μ)p′0dy

)1/p′0

� r2m ‖χQ‖−1
p(·)

(
r

|x− x0|
)−μ

.

For the case n odd and 2m− n � 0, the proof is simpler since no logarithm appears,
and the estimates obtained hold with μ = 0. For the case 2m−n < 0, we take n/2m <
s < p0 thus 0 < (2m−n)s′+n , from Hölder’s inequality and Remark 11 it follows the
estimate with μ = 0.

Since |x− x0| � 2
√

nr we can conclude that

|R(x,z)| � r2m ‖χQ‖−1
p(·)

(
r

|x− x0|
)−μ

+‖χQ‖−1
p(·)

(
r

|x− x0|
)2m+n

|z|2m, (7)

for all μ > 0, |z| � |x− x0|/2 and |x+ z− x0| � √
nr .

Let us the estimate

δ−2m
(
|Q(0,δ )|−1

∫
Q(0,δ )

|R(x,z)|qdz

)1/q

, δ > 0.

For them, we split the domain of integration into three subsets:

D1 = {z ∈ Q(0,δ ) : |z| < |x− x0|/2},
D2 = {z ∈ Q(0,δ ) : |z| � |x− x0|/2, |x+ z− x0| >

√
nr},

and
D3 = {z ∈ Q(0,δ ) : |z| � |x− x0|/2, |x+ z− x0| �

√
nr}.

According to the estimates obtained for |R(x,z)| above, we use on D1 the estimate (5),
on D2 the estimate (6) and on D3 the estimate (7) to get

δ−2m
(
|Q(0,δ )|−1

∫
Q(0,δ )

|R(x,z)|qdz

)1/q

� ‖χQ‖−1
p(·)

(
r

|x− x0|
)2m+n/q−μ

.

Thus, for 0 < μ < 2m we have

Nq,2m(B,x) � ‖χQ‖−1
p(·)

(
r

|x− x0|
)2m+n/q−μ

� ‖χQ‖−1
p(·) [M(χQ)(x)]

2m+n/q−μ
n , (8)

if |x− x0| � 2
√

nr .

Case: |x− x0| < 2
√

nr .
We have

R(x,z) =
∫ [

h(x+ z− y)− ∑
|α |�2m−1

(∂ αh)(x− y)zα/α!

]
a(y)dy

=
∫
|x−y|<2|z|

+
∫
|x−y|�2|z|

= I1(x,z)+ I2(x,z).
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Without loss of generality we can assume that y does not belong to the segment [x,x+
z] , so we can write

U = h(x+ z− y)− ∑
|α |�2m−1

(∂ αh)(x− y)zα/α!

= (2m−1) ∑
|α |=2m−1

(zα/α!)
∫ 1

0
(∂ αh)(x+ tz− y)(1− t)2m−2dt

− ∑
|α |=2m−1

(∂ αh)(x− y)zα/α!

Since for |α|= 2m−1 the derivatives ∂ αh are homogeneous functions of degree −n+
1, we get

|U | � c

(∫ 1

0
|x+ tz− y|−n+1(1− t)2m−2dt + |x− y|−n+1

)
|z|2m−1.

Observing that |x− y|< 2|z| implies |x+ tz− y|< 3|z| , we obtain

|I1(x,z)| �
∫
|x−y|<2|z|

|U ||a(y)|dy

� |z|2m−1
∫ 1

0
(1− t)2m−2

(∫
|x+tz−y|<3|z|

|x+ tz− y|−n+1|a(y)|dy

)
dt

+ |z|2m−1
∫
|x−y|<2|z|

|x− y|−n+1|a(y)|dy

= |z|2m−1
∫ 1

0
(1−t)2m−2

(
∞

∑
k=0

∫
3−k|z|�|x+tz−y|<3−(k−1)|z|

|x+tz−y|−n+1|a(y)|dy

)
dt

+ |z|2m−1
∞

∑
k=0

∫
2−k|z|�|x−y|<2−(k−1)|z|

|x− y|−n+1|a(y)|dy

� |z|2m
(∫ 1

0
(1− t)2m−2M(a)(x+ tz)dt + M(a)(x)

)
.

To estimate I2(x,z) , we write

U =

[
h(x+ z− y)− ∑

|α |�2m

(∂ αh)(x− y)zα/α!

]
+ ∑

|α |=2m

(∂ αh)(x− y)zα/α!

= U1 +U2.

We have for some 0 < s < 1

|U1| � ∑
|α |=2m+1

|(∂ αh)(x+ sz− y)| |z|2m+1/α!.

Since |x−y|� 2|z| implies |x+ sz−y| � |x−y|/2, and recalling that for |α| = 2m+1
the derivatives ∂ αh are homogeneous functions of degree −n−1, we get |U1| � c|x−
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y|−(n+1)|z|2m+1 . Therefore,

|I2(x,z)| � |z|2m+1
∫
|x−y|�2|z|

|x− y|−(n+1)|a(y)|dy+
∣∣∣∣
∫
|x−y|�2|z|

U2 a(y)dy

∣∣∣∣
� |z|2m

(
M(a)(x)+ ∑

|α |=2m

T ∗
α (a)(x)

)
,

where T ∗
α (a)(x) = supε>0

∣∣∣∫|x−y|>ε (∂ αh)(x− y)a(y)dy
∣∣∣ .

Now, let us estimate δ−2m
(
|Q(0,δ )|−1 ∫

Q(0,δ ) |I1(x,z)|qdz
)1/q

. We apply Min-

kowski’s inequality for integrals to get

δ−2m
(
|Q(0,δ )|−1

∫
Q(0,δ )

|I1(x,z)|qdz

)1/q

� δ−2m
∫ 1

0
(1− t)2m−2

(
|Q(0,δ )|−1

∫
Q(0,δ )

|z|2mqMq(a)(x+ tz)dz

)1/q

dt

+M(a)(x)δ−2m
(
|Q(0,δ )|−1

∫
Q(0,δ )

|z|2mqdz

)1/q

� [M(Mq(a))(x)]1/q +M(a)(x).

It is easy to check that

δ−2m
(
|Q(0,δ )|−1

∫
Q(0,δ )

|I2(x,z)|qdz

)1/q

� M(a)(x)+ ∑
|α |=2m

T ∗
α (a)(x).

So

δ−2m
(
|Q(0,δ )|−1

∫
Q(0,δ )

|R(x,z)|qdz

)1/q

� [M(Mq(a))(x)]1/q +M(a)(x)+ ∑
|α |=2m

T ∗
α (a)(x).

This estimate is global, in particular we have

Nq,2m(B;x) � [M(Mq(a))(x)]1/q +M(a)(x)+ ∑
|α |=2m

T ∗
α (a)(x), (9)

for all x ∈ 4
√

nQ . Finally, the estimates (8) and (9) for Nq,2m(B;x) allow us to obtain
(4). �
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3. Proofs of the results

Proof of Theorem 1. Let F ∈ H
p(·)

q,2m(Rn) . Since Nq,2m(F ;x) is finite a.e. x ∈
Rn , by corollary 3 in [7], the unique representative f of F satisfying ηq,2m( f ;x) =
Nq,2m(F ;x) is a function in Lq

loc(R
n)∩S ′(Rn) . Thus, if φ ∈S (Rn) and

∫
φ(x)dx 
= 0,

from Lemma 6 in [7] we get

Mφ (ΔmF)(x) � c p2m+n(φ)Nq,2m(F ;x).

Thus ΔmF ∈ Hp(·)(Rn) and ‖ΔmF‖Hp(·) � c‖F‖
H

p(·)
q,2m

.

Now we shall see that the operator Δm is onto. By Theorem 4.6 in [9], given f ∈
Hp(·)(Rn) there exists a sequence of nonnegative numbers {k j}∞

j=1 and a sequence of
cubes {Qj}∞

j=1 and (p(·), p0,d) - atoms a j supported on Qj , such that f = ∑∞
j=1 k ja j

and
A
({

k j
}∞

j=1 ,
{
Qj
}∞

j=1 , p(·)
)

� ‖ f‖Hp(·) .

For each j ∈ N we put b j(x) =
∫
Rn h(x− y)a j(y)dy, from Proposition 15 we have

Nq,2m(Bj;x) � ‖χQj‖−1
p(·)
[
M(χQj )(x)

] 2m+n/q−μ
n + χ4

√
nQj

(x)M(a j)(x)

+χ4
√

nQj
(x)[M(Mq(a j))(x)]1/q + χ4

√
nQj

(x) ∑
|α |=2m

T ∗
α (a j)(x).

So

∞

∑
j=1

k jNq,2m(Bj;x) �
∞

∑
j=1

k j

[
M(χQj )(x)

] 2m+n/q−μ
n

‖χQj‖p(·)
+

∞

∑
j=1

k jχ4
√

nQj
(x)M(a j)(x)

+
∞

∑
j=1

k jχ4
√

nQj
(x)[M(Mq(a j))(x)]1/q

+
∞

∑
j=1

k jχ4
√

nQj
(x) ∑

|α |=2m

T ∗
α (a j)(x)

= I + II + III + IV.

To study I , by hypothesis, we have that (2m+n/q)p > n , thus we can choose 0 < μ <
2m such that (2m+n/q− μ)p> n . Then

‖I‖p(·) =

∥∥∥∥∥
∞

∑
j=1

k j‖χQj‖−1
p(·)
[
M(χQj )(·)

] 2m+n/q−μ
n

∥∥∥∥∥
p(·)

=

∥∥∥∥∥∥
{

∞

∑
j=1

k j‖χQj‖−1
p(·)
[
M(χQj )(·)

] 2m+n/q−μ
n

} n
2m+n/q−μ

∥∥∥∥∥∥
2m+n/q−μ

n

2m+n/q−μ
n p(·)
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�

∥∥∥∥∥∥
{

∞

∑
j=1

k j‖χQj‖−1
p(·)χQj(·)

} n
2m+n/q−μ

∥∥∥∥∥∥
2m+n/q−μ

n

2m+n/q−μ
n p(·)

=

∥∥∥∥∥
∞

∑
j=1

k j‖χQj‖−1
p(·)χQj (·)

∥∥∥∥∥
p(·)

�

∥∥∥∥∥∥
{

∞

∑
j=1

(
k j‖χQj‖−1

p(·)χQj (·)
)p
}1/p

∥∥∥∥∥∥
p(·)

= A
({

k j
}∞

j=1 ,
{
Qj
}∞

j=1 , p(·)
)

� ‖ f‖Hp(·) ,

where the first inequality follows from Lemma 2.4 in [9], since (2m+n/q− μ)p > n .

The embedding l p = lmin{p−,1} ↪→ l1 gives the second inequality.
To study II , we have that the maximal operator M is bounded on Lp0 for each

1 < p0 < ∞ , thus

‖M(a j)‖Lp0(4
√

nQj) � ‖a j‖p0 � |Qj|1/p0

‖χQj‖p(·)
� |4√nQj|1/p0

‖χ4
√

nQj
‖p(·)

,

the third inequality holds since the quantities ‖χ4
√

nQj
‖p(·) and ‖χQj‖p(·) are compara-

ble (see Lemma 2.2 in [9]). Now if ‖M(a j)‖Lp0 (4
√

nQj) 
= 0 we obtain

‖II‖p(·) =

∥∥∥∥∥
∞

∑
j=1

k jχ4
√

nQj
(·)M(a j)(·)

∥∥∥∥∥
p(·)

�
∥∥∥∥∥

∞

∑
j=1

k j

χ4
√

nQj
(·)M(a j)(·)|4√nQj|1/p0

‖M(a j)‖Lp0 (4
√

nQj) ‖χ4
√

nQj
‖p(·)

∥∥∥∥∥
p(·)

�

∥∥∥∥∥∥
{

∞

∑
j=1

(
k j

χ4
√

nQj
(·)M(a j)(·)|4√nQj|1/p0

‖M(a j)‖Lp0 (4
√

nQj) ‖χ4
√

nQj
‖p(·)

)p}1/p
∥∥∥∥∥∥

p(·)

now take p0 > 1 sufficiently large such that δ = 1
p0

satisfies the hypothesis of Lemma
4.11 in [9] to get

� A
({

k j
}∞

j=1 ,
{
4
√

nQj
}∞

j=1 , p(·)
)

� A
({

k j
}∞

j=1 ,
{
Qj
}∞

j=1 , p(·)
)

� ‖ f‖Hp(·) ,

where the fourth inequality follows from Lemma 4.8 in [9].
To study III , we consider 2q < p0 , then by Hölder’s inequality and Remark 11

we obtain

‖[M(Mq(a j))]1/q‖Lq(4
√

nQj) � ‖M(Mq(a j))‖1/q
2 |4√nQj|1/2q

� ‖Mq(a j)‖1/q
2 |4√nQj|1/2q = ‖M(a j)‖2q|4

√
nQj|1/2q

� ‖a j‖2q|4
√

nQj|1/2q � |4√nQj|1/q

‖χQj‖p(·)
� |4√nQj|1/q

‖χ4
√

nQj
‖p(·)

.
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Now, if ‖[M(Mq(a j))]1/q‖Lq(4
√

nQj) 
= 0 and taking q > 1 sufficiently large such that

δ = 1
q satisfies the hypothesis of Lemma 4.11 in [9], a similar computation to done in

the estimate of II allows us to get

‖III‖p(·) =

∥∥∥∥∥
∞

∑
j=1

k jχ4
√

nQj
(·)[M(Mq(a j))(·)]1/q

∥∥∥∥∥
p(·)

�

∥∥∥∥∥∥
{

∞

∑
j=1

(
k j

χ4
√

nQj
(·)[M(Mq(a j))(·)]1/q|4√nQj|1/q

‖[M(Mq(a j))(·)]1/q‖Lp0 (4
√

nQj) ‖χ4
√

nQj
‖p(·)

)p}1/p
∥∥∥∥∥∥

p(·)
� ‖ f‖Hp(·) .

To study IV , by Lemma 14 and Theorem 4 in [14] p. 42, we have that the operator
T ∗

α is bounded on Lp0 for each 1 < p0 < ∞ , so

‖T ∗
α (a j)‖Lp0 (4

√
nQj) � ‖a j‖p0 � |Qj|1/p0

‖χQj‖p(·)
� |4√nQj|1/p0

‖χ4
√

nQj
‖p(·)

.

Now, if ‖T ∗
α (a j)‖Lp0(4

√
nQj) 
= 0 we take p0 > 1 sufficiently large such that δ = 1

p0
satisfies the hypothesis of Lemma 4.11 in [9], once again a similar computation to done
in the estimate of II , we get

‖IV‖p(·) =

∥∥∥∥∥
∞

∑
j=1

k j ∑
|α |=2m

χ4
√

nQj
(·)T ∗

α (a j)(·)
∥∥∥∥∥

p(·)

� ∑
|α |=2m

∥∥∥∥∥∥
{

∞

∑
j=1

(
k j

χ4
√

nQj
(·)T ∗

α (a j)(·)|4√nQj|1/p0

‖T ∗
α (a j)‖Lp0 (4

√
nQj) ‖χ4

√
nQj

‖p(·)

)p}1/p
∥∥∥∥∥∥

p(·)
� ‖ f‖Hp(·) .

Thus we have ∥∥∥∥∥
∞

∑
j=1

k jNq,2m(Bj; ·)
∥∥∥∥∥

p(·)
� ‖ f‖Hp(·) .

By Lemma 7, we obtain ρp(·)
(

∑∞
j=1 k jNq,2m(Bj; ·)

)
< ∞ . Hence

∞

∑
j=1

k jNq,2m(Bj;x) < ∞ a.e.x ∈ R
n (10)

and

ρp(·)

(
∞

∑
j=M+1

k jNq,2m(Bj; ·)
)

→ 0, as M → ∞. (11)

From (10) and Lemma 6, there exists a function F such that ∑∞
j=1 k jB j = F in Eq

2m−1
and

Nq,2m

((
F −

M

∑
j=1

k jB j

)
; x

)
� c

∞

∑
j=M+1

k jNq,2m(Bj;x).
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This estimate together with (11) and Lemma 8 implies∥∥∥∥∥F −
M

∑
j=1

k jB j

∥∥∥∥∥
H

p(·)
q,2m

→ 0, as M → ∞.

By proposition 9, we have that F ∈ H
p(·)

q,2m(Rn) and F = ∑∞
j=1 k jB j in H

p(·)
q,2m(Rn) .

Since Δm is a continuous operator from H
p(·)

q,2m(Rn) into Hp(·)(Rn) , we get

ΔmF = ∑
j

k jΔmBj = ∑
j

k ja j = f ,

in Hp(·)(Rn) . This shows that Δm is onto Hp(·)(Rn) . Moreover,

‖F‖
H

p(·)
q,2m

=

∥∥∥∥∥
∞

∑
j=1

k jB j

∥∥∥∥∥
H

p(·)
q,2m

�
∥∥∥∥∥

∞

∑
j=1

k jNq,2m(Bj; ·)
∥∥∥∥∥

p(·)
� ‖ f‖Hp(·) = ‖ΔmF‖Hp(·) .

For to conclude the proof, we will show that the operator Δm is injective on H
p(·)

q,2m .
Let O = {x : Nq,2m(F ;x) > 1} . The set O is open because of that Nq,2m(F; ·) is lower
semicontinuous. We take a constant r > 0 such that r � {q, p+} . Since Nq,2m(F ; ·) ∈
Lp(·)(Rn) it follows that |O| is finite and Nq,2m(F ; ·) ∈ Lr(Rn \O) thus F ∈ N r,q

2m ,
(for the definition of the space N r,q

2m see p. 564 in [1]). Finally, the injectivity of the
operator Δm it follows from Lemma 9 in [1]. �

Proof of Theorem 2. Let F ∈ H
p(·)

q,2m(Rn) and assume F 
= 0. Then there exists
g∈ F that is not a polynomial of degree less or equal to 2m−1. It is easy to check that
there exist a positive constant c and a cube Q = Q(0,r) with r > 1 such that∫

Q
|g(y)−P(y)|dy � c > 0,

for every P ∈ P2m−1 .
Let x be a point such that |x| > √

nr and let δ = 4|x| . Then Q(0,r) ⊂ Q(x,δ ) . If
f ∈ F , then f = g−P for some P ∈ P2m−1 and

δ−2m| f |q,Q(x,δ ) � c|x|−2m−n/q.

So Nq,2m(F ;x) � c |x|−2m−n/q , for |x| > √
nr . Since p+ � n(2m+n/q)−1 , we have

ρp(·)(Nq,2m(F ; ·)) � c
∫
|x|>√

nr
|x|−(2m+n/q)p+ dx = ∞.

In view of Lemma 7, we get a contradiction. Thus H
p(·)

q,2m(Rn) = {0} , if p+ � n(2m+
n/q)−1 . �

REMARK 16. Theorem 1 does not hold in general for H
p(·)

q,γ (R) when γ is not a
natural number. In [10], S. Ombrosi gives an example which Theorem 1 is not true for
H p

q,γ(R) and the operator
(

d
dx

)γ
, when 0 < γ < 1 and (γ +1/q)p > 1.
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