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(Communicated by J. Pečarić)

Abstract. In this paper, we present the best possible upper and lower bounds for the Sándor-Yang
mean in terms of the power mean.

1. Introduction

For r ∈ R , the Sándor-Yang mean B(a,b) [12] and r th power mean Mr(a,b) of
two distinct positive real numbers a and b are respectively defined by

B(a,b) = Q(a,b)eA(a,b)/T(a,b)−1 (1.1)

and

Mr(a,b) =

⎧⎨
⎩
(

ar+br

2

)1/r
, r �= 0,√

ab, r = 0,
(1.2)

where Q(a,b) =
√

(a2 +b2)/2, A(a,b) = (a + b)/2 and T (a,b) = (a − b)/
[2arctan((a−b)/(a+b))] are respectively the quadratic, arithmetic and Seiffert mean
of a and b .

It is well known that Mr(a,b) is continuous and strictly increasing with respect to
r ∈ R for fixed a,b > 0 with a �= b . Many classical means are the special cases of the
power mean, for example, M−1(a,b) = 2ab/(a+ b) = H(a,b) is the harmonic mean,
M0(a,b) =

√
ab = G(a,b) is the geometric mean, M1(a,b) = (a+b)/2 = A(a,b) and

M2(a,b) =
√

(a2 +b2)/2 = Q(a,b) . The main properties for the power mean are given
in [3].

Recently, the bounds for certain bivariate means in terms of the power mean have
attracted the attention of many mathematicians [1, 2, 4, 5, 6, 7, 8, 16]. Yang et. al. [14]
proved that

M1(a,b) < B(a,b) < M2(a,b) (1.3)
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for all a,b > 0 with a �= b .
Motivated by inequality (1.3), it is natural to ask what are the greatest value p and

the least value q such that the double inequality

Mp(a,b) < B(a,b) < Mq(a,b)

holds for all a,b > 0 with a �= b? The main purpose of this paper is to answer this
question.

2. Lemmas

In order to prove our main results we need several lemmas, which we present in
this section.

LEMMA 2.1. (See [13, Lemma 7]) Let {ak}∞
k=0 be a nonnegative real sequence

with am > 0 and ∑∞
k=m+1 ak > 0 , and

P(t) =
m

∑
k=0

akt
k −

∞

∑
k=m+1

akt
k

be a convergent power series on the interval (0,∞) . Then there exists t∗ ∈ (0,∞) such
that P(t∗) = 0 , P(t) > 0 for t ∈ (0,t∗) and P(t) < 0 for t ∈ (t∗,∞) .

LEMMA 2.2. (See [11, Lemma 6]) The function r → 21/rMr(a,b) is strictly de-
creasing and log-convex on (0,∞) for all a,b > 0 with a �= b.

LEMMA 2.3. Let t > 0 , p ∈ R and

f1(t, p) = −arctan(tanh(t))+ sinh(t)cosh(t)− tanh(pt)sinh2(t). (2.1)

Then the following statements are true:
(i) if p � 1 , then f1(t, p) is strictly increasing with respect to t on (0,∞);
(ii) if p � 4/3 , then f1(t, p) is strictly decreasing with respect to t on (0,∞);
(iii) if p ∈ (1,4/3) , then there exists t1 ∈ (0,∞) such that f1(t, p) is strictly

increasing with respect to t on (0,t1) and strictly decreasing with respect to t on
(t1,∞) .

Proof. Let
un(p) = (2− p)2n− p2n +(1− p)22n +2p, (2.2)

f2(t, p) = 4sinh2(t)cosh2
( pt

2

)
−4pcosh(t)sinh2

( t
2

)
− sinh(2t)sinh(pt).

Then simple computations lead to

u1

(
4
3

)
= 0, un

(
4
3

)
= −42n−22n

32n − 22n−8
3

< 0 (n � 2), (2.3)
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∂ f1(t, p)
∂ t

= − 1
cosh(2t)

+ cosh(2t)− psinh2(t)
cosh2(pt)

− tanh(pt)sinh(2t)

=
f2(2t, p)

4cosh(2t)cosh2(pt)
, (2.4)

f2(t, p) = cosh[(p−2)t]− cosh(pt)+ (1− p)cosh(2t)+2pcosh(t)− p−1

=
∞

∑
n=1

un(p)
(2n)!

t2n, (2.5)

∂ f2(t, p)
∂ p

= 2cosh(t)− cosh(2t)+ t sinh[(p−2)t]− t sinh(pt)−1

= −2[cosh(t)−1]cosh(t)−2t sinh(t)cosh[(p−1)t] < 0. (2.6)

(i) If p � 1, then equations (2.5) and (2.6) lead to

f2(t, p) � f2(t,1) = 2[cosh(t)−1] > 0. (2.7)

Therefore, Lemma 2.3(i) follows easily from (2.4) and (2.7).
(ii) If p � 4/3, then from (2.3), (2.5) and (2.6) we have

f2(t, p) � f2

(
t,

4
3

)
=

∞

∑
n=1

un(4/3)
(2n)!

t2n < 0. (2.8)

Therefore, Lemma 2.3(ii) follows easily from (2.4) and (2.8).
(iii) If p ∈ (1,4/3) , then from (2.4) it is enough to prove that there exists t1 ∈

(0,∞) such that f2(t, p) > 0 for t ∈ (0,t1) and f2(t, p) < 0 for t ∈ (t1,∞) .
It follows from (2.2) that

u1(p) = 2(4−3p) > 0, lim
n→∞

un(p)
22n = 1− p < 0, (2.9)

un+1(p)−un(p) = −(p−1)
[
(3− p)(2− p)2n +3×22n+(p+1)p2n]< 0 (2.10)

for all n � 1.
Therefore, the desired result follows from (2.5), (2.9), (2.10) and Lemma 2.1. �

LEMMA 2.4. Let t > 0 , p ∈ R and f1(t, p) be defined by (2.1). Then
(i) f1(t, p) > 0 for all t ∈ (0,∞) if and only if p � 1 ;
(ii) f1(t, p) < 0 for all t ∈ (0,∞) if and only if p � 4/3 ;
(iii) there exists t0 ∈ (0,∞) such that f1(t0, p) = 0 , f1(t, p) > 0 for t ∈ (0,t0) and

f1(t, p) < 0 for t ∈ (t0,∞) if p ∈ (1,4/3) .

Proof. (i) If p � 1, then Lemma 2.3(i) and (2.1) lead to the conclusion that
f1(t, p) > f1(0, p) = 0 for all t ∈ (0,∞) .
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If f1(t, p) > 0 for all t ∈ (0,∞) , then limt→∞ f1(t, p) � 0. We claim that p � 1.
Indeed, if p > 1, then from (2.1) we have

lim
t→∞

f1(t, p) = lim
t→∞

[
−arctan(tanh(t))+

sinh(t)cosh((p−1)t)
cosh(pt)

]

= lim
t→∞

[
−arctan(tanh(t))+

1− e−2t

2
1+ e−2|p−1|t

1+ e−2|p|t e(1+|p−1|−|p|)t
]

=− π
4

+
1
2

< 0.

(ii) If p � 4/3, then Lemma 2.3(ii) and (2.1) imply that f1(t, p) < f1(0, p) = 0
for all t ∈ (0,∞) .

If f1(t, p) < 0 for all t ∈ (0,∞) , then we clearly see that

lim
t→0

f1(t, p)
t3

� 0. (2.11)

It follows from (2.1), (2.2), (2.4) and (2.5) that

lim
t→0

f1(t, p)
t3

= lim
t→0

∂ f1(t, p)/∂ t
3t2

= lim
t→0

1

3cosh(2t)cosh2(pt)
× lim

t→0

f2(2t, p)
(2t)2

=
1
3
× 1

2
u1(p) = −

(
p− 4

3

)
. (2.12)

Inequality (2.11) and equation (2.12) lead to the conclusion that p � 4/3.
(ii) If p ∈ (1,4/3) , then from Lemma 2.3(iii) and the facts that f1(0, p) = 0 and

limt→∞ f1(t, p) = −π/4+1/2 < 0 we clearly see that there exists t0 ∈ (0,∞) such that
f1(t0, p) = 0, f1(t, p) > 0 for t ∈ (0,t0) and f1(t, p) < 0 for t ∈ (t0,∞) . �

LEMMA 2.5. Let t > 0 , p ∈ (−∞,0)∪ (0,∞) and

F(t, p) =
1
2

log[cosh(2t)]+
arctan(tanh(t))

tanh(t)
− 1

p
log[cosh(pt)]−1. (2.13)

Then
(i) F(t, p) is strictly increasing with respect to t on (0,∞) if and only if p � 1 ;
(ii) F(t, p) is strictly decreasing with respect to t on (0,∞) if and only if p � 4/3 ;
(iii) there exists t0 ∈ (0,∞) such that f1(t0, p) = 0 , F(t, p) is strictly increasing

with respect to t on (0,t0) and strictly decreasing with respect to t on (t0,∞) , where
f1(t, p) is defined by (2.1).

Proof. It follows from (2.13) that

∂F(t, p)
∂ t

=
−arctan(tanh(t))+ sinh(t)cosh(t)− tanh(pt)sinh2(t)

sinh2(t)
=

f1(t, p)
sinh2(t)

.

(2.14)
Therefore, Lemma 2.5 follows from Lemma 2.4 and (2.14). �
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3. Main results

THEOREM 3.1. The inequality

B(a,b) < Mp(a,b) (3.1)

holds for all a,b > 0 with a �= b if and only if p � 4/3 . Moreover, the inequality

B(a,b) > λpMp(a,b) (3.2)

holds for all a,b > 0 and a �= b with the best possible parameter λp = eπ/4−121/p−1/2

if p � 4/3 .

Proof. Since B(a,b) and M(a,b) are symmetric and homogeneous of degree 1,
without loss of generality, we assume that b > a > 0. Let t = log

√
b/a > 0, p ∈ R

and p �= 0, f1(t, p) and F(t, p) be defined by (2.1) and (2.13), respectively. Then (1.1),
(1.2), (2.1), (2.12), (2.13) and (2.14) lead to

Mp(a,b) =
√

abcosh1/p(pt), T (a,b) =
√

ab
sinh(t)

arctan[tanh(t)]
,

B(a,b) =
√

abcosh1/2(2t)earctan(tanh(t))/ tanh(t)−1,

log[B(a,b)]− log[Mp(a,b)] = F(t, p), (3.3)

F(0+, p) = 0, (3.4)

lim
t→0+

F(t, p)
t2

= lim
t→0+

∂F(t, p)/∂ t
2t

= lim
t→0+

f1(t, p)
2t sinh2(t)

= −1
2

(
p− 4

3

)
, (3.5)

lim
t→∞

F(t, p)

= lim
t→∞

[(
1− |p|

p

)
t +

1
2

log

(
1+ e−4t

2

)
+

arctan(tanh(t))
tanh(t)

− 1
p

log

(
1+ e−2|p|t

2

)
−1

]

=
1
4

π − 1
2

log2+
1
p

log2−1 = log(λp) (p > 0). (3.6)

If B(a,b) < Mp(a,b) , then (3.3) and (3.5) lead to p � 4/3.
If p � 4/3, then from (3.4) and (3.6) together with Lemma 2.5(ii) we clearly see

that
log(λp) = lim

t→∞
F(t, p) < F(t, p) < F(0+, p) = 0 (3.7)

for all t > 0 with the best possible parameter λp .
Therefore, the double inequality

λpMp(a,b) < B(a,b) < Mp(a,b)

holds for all a,b > 0 and a �= b with the best possible parameter λp follows from (3.3)
and (3.7). �
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Note that

λpMp(a,b) =
√

2
2

eπ/4−1
(
21/pMp(a,b)

)
, lim

p→∞
Mp(a,b) = max{a,b}. (3.8)

Let p = 4/3, 3/2, 2,3, · · · ,∞ . Then from Lemma 2.2, (3.1), (3.2) and (3.8) to-
gether with the monotonicity of the function p → Mp(a,b) we get Corollary 3.1.

COROLLARY 3.1. The inequalities

λ∞ max{a,b} < · · · < λ2M2(a,b) < λ3/2M3/2(a,b) < λ4/3M4/3(a,b)

< B(a,b) < M4/3(a,b) < M3/2(a,b) < M2(a,b) < · · · < max{a,b}
hold for all a,b > 0 and a �= b with the best possible parameters λ∞ =

√
2

2 eπ/4−1 =
0.5705 · · ·, λ2 = eπ/4−1 = 0.8068 · · · , λ3/2 = 21/6eπ/4−1 = 0.9056 · · · and λ4/3 =
21/4eπ/4−1 = 0.9595 · · ·.

THEOREM 3.2. Let p0 = 4log2/(4+2log2−π)= 1.2351 · · ·. Then the inequal-
ity

B(a,b) > Mp(a,b) (3.9)

holds for all a,b > 0 with a �= b if and only if p � p0 .

Proof. If B(a,b) > Mp(a,b) , then (3.3) and (3.6) lead to p � p0 .
If p = p0 , then (3.4), (3.6) and Lemma 2.5(iii) lead to the conclusion that

F(0+, p0) = lim
t→∞

F(t, p0) = 0 (3.10)

and there exists t0 ∈ (0,∞) such that the function t → F(t, p0) is strictly increasing on
(0,t0) and strictly decreasing on (t0,∞) .

Therefore,
B(a,b) > Mp0(a,b) > Mp(a,b)

for all p � p0 follows easily from (3.3) and (3.10) together with the piecewise mono-
tonicity of the function t →F(t, p0) and the monotonicity of the function p→Mp(a,b) .

�

COROLLARY 3.2. Let f1(t, p) , F(t, p) and λp be respectively defined by (2.1),
(2.13) and Theorem 3.1, and p0 = 4log2/(4 + 2log2− π) = 1.2351 · · · . Then the
inequality

B(a,b) < λpMp(a,b) (3.11)

holds for all a,b > 0 and a �= b with the best possible parameter λp if p ∈ (0,1] , and
the inequality

B(a,b) � eF(t0,p)Mp(a,b) (3.12)

holds for all a,b > 0 and a �= b with the best possible parameter eF(t0,p) if p∈ (1, p0] ,
where t0 is the unique solution of the equation f1(t, p) = 0 on the interval (0,∞) . In
particular, Numerical computations show that eF(t0,p0) = 1.012 · · · .
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Proof. If p∈ (0,1] , then inequality (3.11) holds for all a,b > 0 and a �= b with the
best possible parameter λp follows from (3.3) and (3.6) together with Lemma 2.5(i) .

If p ∈ (1, p0] , then inequality (3.12) holds for all a,b > 0 and a �= b with the best
possible parameter eF(t0,p) follows from (3.3) and Lemma 2.5(iii) . �

Let p ∈ R , b > a > 0, Lp(a,b) =
(
ap+1 +bp+1

)
/(ap +bp) be the p th Lehmer

mean of a and b , f1(t, p) be defined by (2.1), and t = log
√

b/a > 0. Then f1(t, p)
can be rewritten as

f1(t, p) = −arctan(tanh(t))+ sinh(t)
cosh((p−1)t)

cosh(pt)
(3.13)

=
arctan(tanh(t))cosh((p−1)t)

cosh(pt)

(
sinh(t)

arctan(tanh(t))
− cosh(pt)

cosh((p−1)t)

)

=
arctan(tanh(t))cosh((p−1)t)√

abcosh(pt)
(T (a,b)−Lp−1(a,b)) .

Lemma 2.4 and (3.13) lead to Corollary 3.3 immediately.

COROLLARY 3.3. (See [9, Theorem 2.2]) The double inequality

Lp(a,b) < T (a,b) < Lq(a,b)

holds for all a,b > 0 with a �= b if and only if p � 0 and q � 1/3 .

COROLLARY 3.4. The double inequality

λL1/3(a,b) < T (a,b) < μL0(a,b)

holds for all a,b > 0 with a �= b if and only if λ � 2/π and μ � 4/π .

Proof. Without loss of generality, we assume that b > a > 0. Let t = log
√

b/a >
0. Then simple computations lead to

T (a,b)
L1/3(a,b)

=
sinh(t)cosh

(
t
3

)
cosh

( 4t
3

)
arctan(tanh(t))

,
T (a,b)
L0(a,b)

=
sinh(t)

cosh(t)arctan(tanh(t))
, (3.14)

lim
t→∞

sinh(t)cosh
(

t
3

)
cosh

(
4t
3

)
arctan(tanh(t))

=
2
π

, lim
t→∞

sinh(t)
cosh(t)arctan(tanh(t))

=
4
π

. (3.15)

The log-convexity of the function r → 21/rMr(a,b) given by Lemma 2.2 implies
that (

23/5M5/3(a,b)
)3/4 (

23M1/3(a,b)
)1/4

> 23/4M4/3(a,b),

which can be rewritten as

28/5

π
M5/3(a,b) >

2
π

M4/3
4/3(a,b)

M1/3
1/3(a,b)

=
2
π

L1/3(a,b). (3.16)
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Yang et. al. [15] and Witkowski [10] proved that

28/5

π
M5/3(a,b) < T (a,b) <

4
π

A(a,b) =
4
π

L0(a,b). (3.17)

Therefore, Corollary 3.4 follows from (3.14)–(3.17). �
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