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CONTINUED FRACTION EXPRESSION OF THE MATHIEU SERIES

XIAODONG CAO, YOSHIO TANIGAWA AND WENGUANG ZHAI

(Communicated by J. Pečarić)

Abstract. In this paper, we represent a continued fraction expression of the Mathieu series by a
continued fraction formula of Ramanujan. As applications, we obtain some new bounds for the
Mathieu series.

1. Introduction

The infinite series

S(r) :=
∞

∑
m=1

2m
(m2 + r2)2 , (r > 0) (1)

is called a Mathieu series. It was introduced and studied by Émile Leonard Math-
ieu in his book [19] devoted to the elasticity of solid bodies. Since his introduction,
the series S(r) and its various generalizations have attracted many researchers, who
established some remarkable properties of these series including the various integral
representations, the asymptotic expansions, lower and upper estimates, see e.g. Cerone
and Lenard [8], Frontczak [14], Milovanović and Pogány [20], Pogány et al. [22], and
references quoted therein.

An integral representation for the Mathieu series (1) is given by Emersleben [13]
as

S(r) =
1
r

∫ ∞

0

x
ex −1

sin(rx)dx. (2)

The integral representation was used by Elbert [12] to derive the asymptotic expansion
of S(r) :

S(r) =
∞

∑
m=0

(−1)m B2m

r2m+2 =
1
r2 −

1
6r4 ±·· · , (r → ∞), (3)
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where B2n denote the even indexed Bernoulli numbers defined by the generating func-
tion

x
ex −1

=
∞

∑
n=0

Bn
xn

n!
, |x| < 2π .

Throughout the paper, we always use notation ψ(z) = Γ′(z)
Γ(z) . Let (an)n�1 and

(bn)n�0 be two sequences of real (or complex) numbers with an �= 0 for all n ∈ N .
The generalized continued fraction

τ = b0 +
a1

b1 + a2

b2+
. . .

= b0 + a1 a2

b1 + b2 + · · · = b0 +
∞
K
n=1

(
an

bn

)
(4)

is defined as the limit of the n th approximant

An

Bn
= b0 +

n

K
k=1

(
ak

bk

)
(5)

as n tends to infinity. The numerators An and denominators Bn of the approximants
satisfy the recurrence relations

An+2 = bn+2An+1 +an+2An, Bn+2 = bn+2Bn+1 +an+2Bn (6)

with initial values A0 = b0,B0 = 1,A1 = b0b1 + a1 and B1 = b1 , see Berndt [5, p.
105]. For the theory of continued fraction, see Cuyt et al. [9] or Lorentzen and Waade-
land [17].

Let r > 0 and ℜx > 1
2 . Let the continued fraction CF(r;x) with a parameter r be

defined by

CF(r;x) =
1(

x− 1
2

)2 + 1
4 (1+4r2)+K∞

n=1

(
κn

(x− 1
2 )

2
+λn

) , (7)

where for n ∈ N

κn = − n4
(
n2 +4r2

)
4(2n−1)(2n+1)

, λn =
1
4
(2n2 +2n+1+4r2). (8)

To the best knowledge of authors, until now no continued fraction expression was es-
tablished for the Mathieu series. In this paper we will establish the following continued
fraction formula of the Mathieu series.

THEOREM 1. Let r > 0 and CF(r;x) be defined as (7). For all positive integer
k , we have

S(r) =
k−1

∑
m=1

2m

(m2 + r2)2 +CF(r;k), (9)

where the sum for k = 1 is stipulated to be zero. In particular,

S(r) = CF(r;1). (10)
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2. The proof of Theorem 1

In order to prove Theorem 1, we will prepare some lemmas. The following con-
tinued fraction formula of Ramanujan plays an important role in the proof of Theorem
1.

LEMMA 1. Let x, l,m, and n denote complex numbers. Define

P = P(x, l,m,n)

=
Γ
(

1
2 (x+l+m+n+1)

)
Γ
(

1
2 (x+l−m−n+1)

)
Γ
(

1
2 (x−l+m−n+1)

)
Γ
(

1
2 (x−l−m+n+1)

)
Γ
( 1

2 (x−l−m−n+1)
)

Γ
( 1

2 (x−l+m+n+1)
)

Γ
( 1

2 (x+l−m+n+1)
)

Γ
( 1

2 (x+l+m−n+1)
) .

Then if either l,m, or n is an integer or if ℜx > 0 ,

1−P
1+P

=
2lmn

x2 − l2−m2−n2 +1+K∞
j=1

(
4(l2− j2)(m2− j2)(n2− j2)

(2 j+1)(x2−l2−m2−n2+2 j2+2 j+1)

) . (11)

Proof. This is Entry 35 of B. C. Berndt [5, p. 157], which was claimed first by
Ramanujan [26, 27]. The first published proof was provided by Watson [29]. For the
full proof of Entry 35, we refer the reader to L. Jacobsen’s paper [15]. �

Let us recall two definitions in the theory of the continued fraction. We say that
two continued fractions are equivalent if they have the same sequence of classical ap-
proximants. We write b0 +K(an/bn)≈ d0 +K(cn/dn) to express that b0 +K(an/bn)
and d0 +K(cn/dn) are equivalent. Also see [17, p. 73].

We will call d0 +K(cn/dn) a contraction of b0 +K(an/bn) if its classical ap-
proximants {gn} form a subsequence of the classical approximants { fn} of b0 +
K(an/bn) . In particular, we call d0 + K(cn/dn) a canonical contraction of b0 +
K(an/bn) if

Ck = Ank , Dk = Bnk for k = 0,1,2, . . . , (12)

where Cn,Dn,An and Bn are canonical numerators and denominators of d0+K(cn/dn)
and b0 +K(an/bn) respectively. See [17, p. 83].

LEMMA 2. The canonical contraction of b0 +K(an/bn) with

Ck = A2k, Dk = B2k for k = 0,1,2, . . .

exists if and only if b2k �= 0 for k = 0,1,2, . . . , and is given by

b0 + a1b2 a2a3b4 a4a5b2b6

a2 +b1b2 −a3b4 +b2(a4 +b3b4) −a5b6 +b4(a6 +b5b6) −·· ·
a2na2n+1b2n−2b2n+2

− a2n+1b2n+2 +b2n(a2n+2 +b2n+1b2n+2) −·· · .
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Proof. It follows from Theorem 12 and Eq. (2.4.3) of L. Lorentzen and H. Waade-
land [17, pp. 83–84]. For applications, interested readers may refer to Berndt [5, p.
121, Eq. (14.2)] or [5, p. 157]. �

LEMMA 3. b0+K(an/bn)≈ d0 +K(cn/dn) if and only if there exists a sequence
{rn} of complex numbers with r0 = 1,rn �= 0 for all n ∈ N , such that

d0 = b0, cn = rn−1rnan, dn = rnbn for all n ∈ N.

Proof. As to the proof consult [17, p. 73, Theorem 9]. �
Now, we will prove the following lemma, from which Theorem 1 follows readily

by the telescoping method.

LEMMA 4. Let r > 0 , ℜx > 1
2 and CF(r;x) be defined by (7), then

CF(r;x)−CF(r;x+1) =
2x

(x2 + r2)2 . (13)

Proof. Replacing x by 2x− 1 and l by 2ri in Lemma 1, respectively, we obtain
that for ℜx > 1

2

1−P
(1+P)

=
4rmni

(2x−1)2+4r2−m2−n2+1+K∞
j=1

(
4(−4r2− j2)(m2− j2)(n2− j2)

(2 j+1)((2x−1)2+4r2−m2−n2+2 j2+2 j+1)

) .

By dividing both sides by 4rmni , we have

1
4ri

1−P
mn(1+P)

=
1

(2x−1)2 +4r2−m2−n2 +1+K∞
j=1

(
4(−4r2− j2)(m2− j2)(n2− j2)

(2 j+1)((2x−1)2+4r2−m2−n2+2 j2+2 j+1)

) .

(14)

Now let m tend to zero and n tend to zero, successively. On the right hand side,
we arrive at

1

(2x−1)2 +1+4r2 +K∞
j=1

(
−4 j4( j2+4r2)

(2 j+1)((2x−1)2+2 j2+2 j+1+4r2)

) . (15)

On the other hand, from the definition of P , we see easily that limm→0 P = 1. A direct
calculation with the use of L’Hôspital’s rule gives

lim
m→0

1−P
m(1+P)

= lim
m→0

1
1+P

lim
m→0

1−P
m

=
1
2

lim
m→0

1−P
m

=
1
2

lim
m→0

∂
∂m

(1−P)

=
1
2

{
−ψ(−n

2
+ x− ri)+ ψ(

n
2

+ x− ri)+ ψ(−n
2

+ x+ ri)−ψ(
n
2

+ x+ ri)
}

. (16)



CONTINUED FRACTION EXPRESSION OF THE MATHIEU SERIES 1043

By making use of L’Hôspital’s rule again, and noting the following classical represen-
tation [1, p. 259, Eq. 6.3.16]

ψ(z+1) = −γ +
∞

∑
k=1

(
1
k
− 1

k+ z

)
, (z �= −1,−2,−3, . . .),

where γ denotes Euler-Mascheroni constant, it follows from (16) that

lim
n→0

lim
m→0

1−P
mn(1+P)

= lim
n→0

∂
∂n

(
lim
m→0

1
m

1−P
1+P

)

=
1
2

(
ψ ′(x− ri)−ψ ′(x+ ri)

)
=

1
2

(
∞

∑
k=0

1
(x− ri+ k)2 −

∞

∑
k=0

1
(x+ ri+ k)2

)

=2ri
∞

∑
k=0

x+ k

((x+ k)2 + r2)2 . (17)

Combining (15) and (17), we get that for ℜx > 1
2

∞

∑
k=0

2(x+ k)

((x+ k)2 + r2)2 =
4

(2x−1)2 +1+4r2 +K∞
j=1

(
−4 j4( j2+4r2)

(2 j+1)((2x−1)2+2 j2+2 j+1+4r2)

)
=CF(r;x). (18)

Here we used Lemma 3 in the last equality. It is not difficult to check that for ℜx > 1
2

CF(r;x)−CF(r;x+1) =
∞

∑
k=0

2(x+ k)

((x+ k)2 + r2)2 −
∞

∑
k=0

2(x+ k+1)

((x+ k+1)2 + r2)2

=
2x

(x2 + r2)2 . (19)

This completes the proof of Lemma 4. �

REMARK 1. In fact, Lemma 4 was guessed first by the multiple-correction method
developed in [6, 7]. We stress that Lemma 4 gives a continued fraction solution of the
following difference equation

y(x)− y(x+1) =
2x

(x2 + r2)2 .

Mortici [21] made an important contribution in this direction.
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3. Some new inequalities for the Mathieu series

The bounds for the Mathieu series attracted many mathematicians like Schröder
[28], Emersleben [13], Makai [18] and Diananda [10]. In the past twenty years, many
authors like Alzer, Bagdasaryan, Brenner, Guo, Lampret, Milovanović, Mortici, Pogány,
Qi, Ruehr, Srivastava, Tomovski, etc. have made important contributions to this re-
search topic, see e.g. [2, 3, 11, 16, 20, 21, 22, 23, 24, 25] and references therein. Let us
briefly recall some simple results.

Mathieu [19] himself conjectured only the upper bound S(r) < r−2 , r > 0, proved
first by Berg [4]. Makai [18] showed the double sided inequalities

1

r2 + 1
2

< S(r) <
1

r2 + 1
6

. (20)

Alzer et al. [2] improved the lower bound to

1

r2 + 1
2ζ (3)

< S(r) <
1

r2 + 1
6

, (21)

where the constant 1/(2ζ (3)) and 1/6 are sharp.
Milovanović and Pogány [20] stated a composite upper bound of simple structure,

S(r) �

⎧⎨
⎩

1
r2+ 1

4
, 0 � r �

√
3

2 ,

1√
1+4r2−1

, r >
√

3
2 ,

(22)

which is superior to (21) in the interval [0,
√

(5+2
√

3)/6) = [0,1.18772 . . .) .

Let a1 = 1, b1 =
(
x− 1

2

)2 − 1
4 + r2 , for n ∈ N

a2n+1 =
n
(
n2 +4r2

)
2(2n+1)

, a2n =
n3

2(2n−1)
, (23)

and

b2n+1 =
(

x− 1
2

)2

− 1
4

+
r2

2n+1
, b2n = 1. (24)

By Lemma 2, it is not difficult to prove that

CF(r;x) =
∞
K
n=1

(
an

bn

)
. (25)

We let z = (x− 1
2)2 − 1

4 , c1 = 2, d1 = 2z+2r2 , for n ∈ N{
c2n+1 = n(n2 +4r2), c2n = n3,

d2n+1 = 2(2n+1)z+2r2, d2n = 1.
(26)

It follows easily from Lemma 3 that
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LEMMA 5. Let r > 0 and ℜx > 1
2 . With the above notation, we have

CF(r;x) =
∞
K
n=1

(
an

bn

)
≈

∞
K
n=1

(
cn

dn

)
. (27)

LEMMA 6. Assume that r > 0 and x > 1
2 . Let two sequences (an)n�1 ,(bn)n�1 be

defined by (23) and (24), respectively. For all positive integer l , we have

2l

K
n=1

(
an

bn

)
< CF(r;x) <

2l−1

K
n=1

(
an

bn

)
. (28)

Proof. Let Am and Bm be the numerators and denominators of the k th approxi-
mant of K∞

n=1 (an/bn) . As the partial coefficients of the continued fraction K∞
n=1 (an/bn)

are positive, it follows from the theory of the continued fraction that the sequence
(A2l−1/B2l−1)l�1 is strictly decreasing, (A2l/B2l)l�1 is strictly increasing. Now the
bounds (28) are deduced readily from the first equality in Lemma 5.

Let the error term Em(x) :=CF(r;x)−Km
n=1 (an/bn) . By the recurrence relations

(6) and induction, we deduce that

Am+1

Bm+1
− Am

Bm
=

(−1)m ∏m+1
j=1 a j

Bm+1Bm
. (29)

Combining (27) and (29), we find that

|Em(x)| <
∣∣∣∣∣
m+1

K
n=1

(
an

bn

)
−

m

K
n=1

(
an

bn

)∣∣∣∣∣
=
∣∣∣∣Am+1

Bm+1
− Am

Bm

∣∣∣∣= ∏m+1
j=1 a j

Bm+1Bm
. (30)

We observe that both B2l−1 and B2l ( l ∈ N) are polynomials of degree 2l in x . Thus,
for odd m

limsup
x→∞

x4m |Em(x)| � Cm, (31)

and for even m

limsup
x→∞

x4m+2 |Em(x)| � Cm, (32)

where Cm is a computable constant. The above two results show that the error term
Em(x) has a better convergence for large “x”. �

Motivated by Mortici [21], the following theorem tells us how to obtain the double
sided inequalities of continued fraction structure for the Mathieu series.
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THEOREM 2. Let r > 0 , k, l ∈ N , and and CF(r;x) be defined as (7). Let two
sequences (an)n�1 ,(bn)n�1 be defined by (23) and (24) with x = k , respectively. Then

k−1

∑
m=1

2m

(m2 + r2)2 +
2l

K
n=1

(
an

bn

)
< S(r) <

k−1

∑
m=1

2m

(m2 + r2)2 +
2l−1

K
n=1

(
an

bn

)
, (33)

where the sum for k = 1 is stipulated to be zero. In particular,

2
(1+ r2)2 +

1
5/2+ r2 < S(r) <

2
(1+ r2)2 +

1
2+ r2 , (34)

2
(1+ r2)2 +

4
(4+ r2)2 +

1
13/2+ r2 < S(r) <

2
(1+ r2)2 +

4
(4+ r2)2 +

1
6+ r2 . (35)

Proof. (33) follows readily from Theorem 1 and Lemma 6. Taking (k, l) = (2,1)
and (k, l) = (3,1) in (33), respectively, we can obtain (34) and (35). �

REMARK 2. For comparison, our upper bound in (34) improves (22) when 0 �
r <

√
−2+

√
7 ≈ 0.803587. It is not hard to check that if

r ∈
⎛
⎝√ −6+5ζ (3)

2+
√
−2+11ζ (3)−5ζ 2(3)

,

√
2+
√
−2+11ζ (3)−5ζ 2(3)

ζ (3)−1

⎞
⎠

=(0.0507 . . . ,4.4490 . . .),

then our lower bound in (34) is superior to Alzer’s in (21). In addition, the bounds in
(35) are always superior to the bounds in (34) for all r > 0.

REMARK 3. Taking k = 2 in Theorem 1, letting r tend to zero, and then apply-
ing the second equality in Lemma 5, we can obtain the following continued fraction
representation for Apéry number ζ (3)

ζ (3) = 1+
1 13 13 23 23

22 ·1 +1 + 22 ·3 + 1 + 22 ·5 + · · · .

Also see Berndt [5, p. 155].

OPEN PROBLEM. For r2 ∈ Q , the Mathieu series S(r) is an irrational number.

Acknowledgements. The authors would like to thank the referee for his/her careful
reading of the manuscript and insightful comments which led to improvement of our
original manuscript, especially the referee proposed the above open problem.
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matemática Argentina, 55, 2 (2014), 1–10.
[17] L. LORENTZEN AND H. WAADELAND, Continued fractions with applications, Studies in Computa-

tional Mathematics, 3. North-Holland Publishing Co., Amsterdam, 1992.
[18] E. MAKAI, On the inequality of Mathieu, Publ. Math. Debrecen, 5, (1957), 204–205.
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