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Abstract. In this paper we present some new inequalities of Young’s type and Saitoh’s type for
the Hartley-Fourier cosine polyconvolution. The inequalities of these types hold true for the
Fourier convolution, but not for any convolutions or polyconvolutions, which are very few in the
literature. We then use these inequalities to estimate the solution of certain integral equations
and differential equations.

1. Introduction

The theory of the convolutions for integral transforms has been developed for a
long time and is applied in various branches of mathematics [5, 6, 8, 14, 15]. In 1997,
Kakichev [6] proposed general definition of a polyconvolution: the polyconvoluton of
n functions f1, f2, ..., fn for n + 1 arbitrary integral transforms T,T1,T2, ...,Tn (n ∈
N, n � 3) with a weight-function γ(x) is

γ∗( f1, f2, ..., fn)(x) such that the following
factorization identity holds

T [
γ∗( f1, f2, . . . , fn)](y) = γ(y)(T1 f1)(y)(T2 f2)(y) · · · (Tn fn)(y). (1)

In recent years, the polyconvolutions for different integral transforms and their
applications attracted great attention of many researchers. Several new polyconvolu-
tions for the Fourier, Fourier sine, Fourier cosine, Kontorovich-Lebedev transforms
have been introduced (see, e.g. [3, 4, 6, 7, 16, 17] and the references there-in). Their es-
timations in the various function spaces have been proved, for example in [7, 11, 12, 13].

In this paper, after reviewing the new polyconvolution [∗( f ,g,h)](x) namely Hart-
ley-Fourier cosine polyconvolution, which was introduced in, we consider about some
inequalities such as Young’s type inequality, Saitoh’s type inequality, and its applica-
tions.

The paper consists of four sections and it is organized as follows. In section 2, we
briefly introduce the definition of the Hartley-Fourier cosine polyconvolution [18], its
factorization identities and two known inequalities. In section 3, we prove some new
inequalities of Young’s type and Saitoh’s type on various function spaces. In the last
section, we apply these inequalities to estimate the solution to a class of the integral
equations and the differential equations in function spaces.
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2. Preliminaries

First, we recall the definition of the Hartley-Fourier cosine polyconvolution of
three functions f ,g,h [18]:

[∗( f ,g,h)](x) :=
1
4π

∞∫
−∞

f (u)[k1(x−u)+ k2(x+u)]du, x ∈ R, (2)

where k1,k2 have the forms

k1(t) :=
∞∫

0

g(v)[h(−t + v)+h(t− v)+h(−t− v)+h(t + v)]dv, t ∈ R, (3)

k2(t) :=
∞∫

0

g(v)[−h(t + v)+h(−t− v)−h(t− v)+h(−t + v)]dv, t ∈ R. (4)

We see that the kernels in the expression (2) are Toeplitz plus Hankel kernels. Here
the Toeplitz kernel k1 is an even function. Using this polyconvolution, one can solve a
class of integral equation of Toeplitz plus Hankel form.

For convenience for the proofs in the next section, we rewrite the polyconvolution
(2) in the form

[∗( f ,g,h)](x) :=
1
4π

∞∫
−∞

∞∫
0

f (u)g(v)θh(x,u,v)dvdu, (5)

where

θh(x,u,v) =h(−x+u+ v)+h(x−u− v)−h(x+u+ v)+h(−x−u− v)
+h(−x+u− v)+h(x−u+ v)−h(x+u− v)+h(−x−u+ v). (6)

It is shortly written in the form “H -Fc polyconvolution”.
Further, we recall the Hartley transforms [2], which are defined by

(H1 f )(y) =
1√
2π

∞∫
−∞

f (x)cas(xy)dx ; (H2 f )(y) =
1√
2π

∞∫
−∞

f (x)cas(−xy)dx,

where y ∈ R and casu = cosu + sinu and the Fourier cosine transform defined by
[9, 10]

(Fc f )(y) =

√
2
π

∞∫
0

f (x)cos(yx)dx.

The following results have been proved in [18].
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LEMMA 1. Suppose that f ,h ∈ L1(R) and g ∈ L1(R+) . Then, the polyconvolu-
tion [∗( f ,g,h)](x) , belongs to space L1(R) and the following factorization identities
hold,

H1[∗( f ,g,h)](y) = (H1 f )(y)(Fcg)(y)(H2h)(y), (7)

H2[∗( f ,g,h)](y) = (H2 f )(y)(Fcg)(y)(H1h)(y), ∀y ∈ R. (8)

Moreover, in case of h ∈ L2(R)∩L1(R) , we obtain the Parseval equalities,

[∗( f ,g,h)](x) =
1√
2π

∞∫
−∞

(H1 f )(y)(Fcg)(y)(H2h)(y)cas(xy)dy, (9)

[∗( f ,g,h)](x) =
1√
2π

∞∫
−∞

(H2 f )(y)(Fcg)(y)(H1h)(y)cas(−xy)dy.

The expression (9) can be alternatively rewritten as,

[∗( f ,g,h)](x) = H1 [(H1 f )(y)(Fcg)(y)(H2h)(y)](x), (10)

[∗( f ,g,h)](x) = H2 [(H2 f )(y)(Fcg)(y)(H1h)(y)](x).

Also in [18], two inequalities for the H -Fc polyconvolution have been proved:
First, we have the inequality for the H -Fc polyconvolution in the space L1(R) .

THEOREM 1. Assume that f ,h ∈ L1(R) and g ∈ L1(R+) . Then the H -Fc poly-
convolution ∗( f ,g,h)(x) belongs to L1(R) and satisfies the following inequality

‖ ∗ ( f ,g,h)‖L1(R) � 2
π
‖ f‖L1(R)‖g‖L1(R+)‖h‖L1(R). (11)

Next, we present the corresponding inequalities in another function space Lα ,β ,γ
s (R) ,

which consists of all functions f (x) such that

∞∫
−∞

|x|αe−β |x|γ | f (x)|sdx < ∞,

with the parameters α > −1, β > 0, γ > 0, s > 1, and endowed by the norm

‖ f‖
Lα,β ,γ

s (R)
=

⎛
⎝ ∞∫
−∞

|x|αe−β |x|γ | f (x)|sdx

⎞
⎠

1
s

.

THEOREM 2. Suppose that f ∈Lp(R) , g∈Lq(R+) and h∈Lr(R) , where p,q,r >
1 and 1

p + 1
q + 1

r = 2 . Then the H -Fc polyconvolution ∗( f ,g,h) is bounded in the space

Lα ,β ,γ
s (R) , with s > 1 , α > −1 , β > 0 , γ > 0 , and the following inequality holds

‖ ∗ ( f ,g,h)‖
Lα,β ,γ

s (R)
� C‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R), (12)
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where

C =
21+ 1

s

πγ
1
s

β− α+1
γs Γ

1
s

(
α +1

γ

)
.

In the next section we prove some new inequalities for the H -Fc polyconvolution
(5) in various function spaces.

3. Some new inequalities for the H -Fc polyconvolution

Young’s inequality was first introduced for the Fourier convolution [1], it gives the
estimation about the norm for the Fourier convolution in the space Ls(R) , s > 1. In this
section, we shall study the inequality of Young’s type for the H -Fc polyconvolution.

THEOREM 3. (Inequality of Young’s type) Assume that p,q,r,s > 1 with
1
p

+
1
q

+

1
r

+
1
s

= 3 and f ∈ Lp(R) , g ∈ Lq(R+) , h ∈ Lr(R) , k ∈ Ls(R) . Then,

∣∣∣∣∣∣
∞∫

−∞

[∗( f ,g,h)](x)k(x)dx

∣∣∣∣∣∣ �
2
π
‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R)‖k‖Ls(R). (13)

Proof. From the definition of the polyconvolution (5), it follows that∣∣∣∣∣∣
∞∫

−∞

[∗( f ,g,h)](x)k(x)dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∞∫
−∞

⎛
⎝ 1

4π

∞∫
−∞

∞∫
0

f (u)g(v)θh(x,u,v)dvdu

⎞
⎠k(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1
4π

∞∫
−∞

∞∫
−∞

∞∫
0

f (u)g(v)θh(x,u,v)k(x)dvdudx

∣∣∣∣∣∣
�

8

∑
k=1

Ik, (14)

where Ik , k = 1,2, ...,8, is the integral obtained by expanding θh(x,u,v) into the sum
(6). Without loss of generality, we only estimate the integral I1 , the estimate for the
remaining integrals Ik is similar. We have

I1 =
1
4π

∣∣∣∣∣∣
∞∫

−∞

∞∫
−∞

∞∫
0

f (u)g(v)h(−x+u+ v)k(x)dvdudx

∣∣∣∣∣∣. (15)

Let p1,q1,r1,s1 , respectively, be the conjugate exponentials of p,q,r,s , it means

1
p

+
1
p1

=
1
q

+
1
q1

=
1
r

+
1
r1

=
1
s

+
1
s1

= 1.
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For simplicity, we denote Ω = R×R×R+ and

U(x,u,v) = |g(v)|q/p1 |h(−x+u+ v)|r/p1|k(x)|s/p1 ∈ Lp1(Ω),

V (x,u,v) = |h(−x+u+ v)|r/q1|k(x)|s/q1 | f (u)|p/q1 ∈ Lq1(Ω),

P(x,u,v) = |k(x)|s/r1 | f (u)|p/r1 |g(v)|q/r1 ∈ Lr1(Ω),

Q(x,u,v) = | f (u)|p/s1 |g(v)|q/s1 |h(−x+u+ v)|r/s1 ∈ Ls1(Ω).

Then

UVPQ = | f (u)||g(v)||h(−x+u+ v)||k(x)|. (16)

In the function space Lp1(Ω) , we have

‖U‖p1
Lp1(Ω) =

∞∫
−∞

∞∫
−∞

∞∫
0

|U(x,u,v)|p1dvdudx

=
∞∫

−∞

∞∫
−∞

∞∫
0

|g(v)|q|h(−x+u+ v)|r|k(x)|sdvdudx

�

⎛
⎝ ∞∫

0

|g(v)|qdv

⎞
⎠
⎛
⎝ ∞∫
−∞

|h(t)|rdt

⎞
⎠
⎛
⎝ ∞∫
−∞

|k(x)|sdx

⎞
⎠

= ‖g‖q
Lq(R+)‖h‖r

Lr(R)‖k‖s
Ls(R). (17)

Similarly, we obtain

‖V‖q1
Lq1 (Ω) � ‖ f‖p

Lp(R)‖h‖r
Lr(R)‖k‖s

Ls(R), (18)

‖P‖r1
Lr1(Ω) � ‖ f‖p

Lp(R)‖g‖q
Lq(R+)‖k‖s

Ls(R), (19)

‖Q‖s1
Ls1(Ω) � ‖ f‖p

Lp(R)‖g‖
q
Lq(R+)‖h‖r

Lr(R). (20)

From (15)–(16), it follows that

I1 � 1
4π

∞∫
−∞

∞∫
−∞

∞∫
0

| f (u)||g(v)||h(−x+u+ v)||k(x)|dvdudx

=
1
4π

∞∫
−∞

∞∫
−∞

∞∫
0

UVPQdvdudx.

The assumption
1
p

+
1
q

+
1
r

+
1
s

= 3 implies that
1
p1

+
1
q1

+
1
r1

+
1
s1

= 1. Using the

Hölder inequality for four functions U,V,P,Q on the corresponding function spaces,
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we get

I1 � 1
4π

·
⎛
⎝ ∞∫
−∞

∞∫
−∞

∞∫
0

|U |p1dvdudx

⎞
⎠

1/p1

·
⎛
⎝ ∞∫
−∞

∞∫
−∞

∞∫
0

|V |q1dvdudx

⎞
⎠

1/q1

×
⎛
⎝ ∞∫
−∞

∞∫
−∞

∞∫
0

|P|r1dvdudx

⎞
⎠

1/r1

·
⎛
⎝ ∞∫
−∞

∞∫
−∞

∞∫
0

|Q|s1dvdudx

⎞
⎠

1/s1

=
1
4π

‖U‖Lp1(Ω)‖V‖Lq1 (Ω)‖P‖Lr1(Ω)‖Q‖Ls1 (Ω).

By the given conditions, we obtain

p

(
1
q1

+
1
r1

+
1
s1

)
= q

(
1
p1

+
1
r1

+
1
s1

)
= r

(
1
p1

+
1
q1

+
1
s1

)
= s

(
1
p1

+
1
q1

+
1
r1

)
= 1.

(21)
From the estimations (17)–(21), we get

I1 � 1
4π

(
‖g‖q/p1

Lq(R+)‖h‖
r/p1
Lr(R)‖k‖

s/p1
Ls(R)

)(
‖ f‖p/q1

Lp(R)‖h‖
r/q1
Lr(R)‖k‖

s/q1
Ls(R)

)
×
(
‖ f‖p/r1

Lp(R)‖g‖
q/r1
Lq(R+)‖k‖

s/r1
Ls(R)

)(
‖ f‖p/s1

Lp(R)‖g‖
q/s1
Lq(R+)‖h‖

r/s1
Lr(R)

)

=
1
4π

‖ f‖p
(

1
q1

+ 1
r1

+ 1
s1

)
Lp(R) ‖g‖q

(
1
p1

+ 1
r1

+ 1
s1

)
Lq(R+) ‖h‖r

(
1
p1

+ 1
q1

+ 1
s1

)
Lr(R) ‖k‖s

(
1
p1

+ 1
q1

+ 1
r1

)
Ls(R)

=
1
4π

‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R)‖k‖Ls(R).

Similarly, we obtain

Ik � 1
4π

‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R)‖k‖Ls(R), k = 2,3, ...,8. (22)

From (14) and (22), it follows that∣∣∣∣∣∣
∞∫

−∞

[∗( f ,g,h)](x)k(x)dx

∣∣∣∣∣∣ �
2
π
‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R)‖k‖Ls(R).

So, the proof is completed. �
Next, in a special case of parameters p,q,r,s > 1, we get the Young type inequality

for the H -Fc polyconvolution. This inequality generalizes a result of (11) with p = q =
r = 1.

COROLLARY 1. Assume that p,q,r,s > 1 and satisfying
1
p

+
1
q

+
1
r

= 2 +
1
s

.

Then, for all functions f ∈ Lp(R) , g ∈ Lq(R+) and h ∈ Lr(R) , the polyconvolution
[∗( f ,g,h)](x) belongs to the space Ls(R) and

‖ ∗ ( f ,g,h)‖Ls(R) � 2
π
‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R). (23)
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Proof. By the assumptions f ∈ Lp(R) , g ∈ Lq(R+) , h ∈ Lr(R) and Definition 5,
it follows that the polyconvolution [∗( f ,g,h)](x) is determined for x ∈ R . Let s1 be

the conjugate exponential of s , i.e.
1
s

+
1
s1

= 1. The condition
1
p

+
1
q

+
1
r

= 2 +
1
s

follows that
1
p

+
1
q

+
1
r

+
1
s1

= 3, so p,q,r,s1 satisfy the hypothesis of Theorem 3.

Now, we choose the function k(x) = [∗( f ,g,h)]α (x) , where α is a some constant such
that k ∈ Ls1(R) . Then ∗( f ,g,h) will be in the function space Lαs1 and we have

‖k‖Ls1 (R) =

⎛
⎝ ∞∫
−∞

|k(x)|s1dx

⎞
⎠

1/s1

=

⎛
⎝ ∞∫
−∞

|[∗( f ,g,h)]α (x)|s1dx

⎞
⎠

1/s1

=

⎛
⎝ ∞∫
−∞

|[∗( f ,g,h)](x)|αs1dx

⎞
⎠

1
αs1

α

= ‖ ∗ ( f ,g,h)‖α
Lαs1 (R).

Putting this k in the expression (13), we obtain∣∣∣∣∣∣
∞∫

−∞

[∗( f ,g,h)]α+1(x)dx

∣∣∣∣∣∣�
2
π
‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R)‖k‖Ls1 (R).

Hence,∣∣∣∣∣∣
∞∫

−∞

[∗( f ,g,h)](αs1) α+1
αs1 (x)dx

∣∣∣∣∣∣�
2
π
‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R)‖ ∗ ( f ,g,h)‖α

Lαs1(R).

(24)

If we choose α such that
α +1
αs1

= 1, then the left hand side of the above expression

has the form∣∣∣∣∣∣
∞∫

−∞

[∗( f ,g,h)](α .s1) α+1
αs1 (x)dx

∣∣∣∣∣∣=
∣∣∣∣∣∣

∞∫
−∞

[∗( f ,g,h)](αs1)(x)dx

∣∣∣∣∣∣= ‖ ∗ ( f ,g,h)‖αs1
Lαs1 (R).

Thus, the inequality (24) is equivalent to the following one

‖ ∗ ( f ,g,h)‖αs1
Lαs1 (R) � 2

π
‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R)‖ ∗ ( f ,g,h)‖α

Lαs1 (R).

Thus,

‖ ∗ ( f ,g,h)‖αs1−α
Lαs1 (R) � 2

π
‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R). (25)

The condition
α +1
αs1

= 1 follows that α =
1

s1−1
. Since

1
s

+
1
s1

= 1, it implies that

s1 =
s

s−1
, α =

1
s

s−1 −1
= s−1, αs1 = (s−1)

s
s−1

= s, and αs1 −α = 1. Thus the
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function space Lαs1(R) is exactly the function space Ls(R) . Therefore, [∗( f ,g,h)] ∈
Ls(R) and

‖ ∗ ( f ,g,h)‖Ls(R) � 2
π
‖ f‖Lp(R)‖g‖Lq(R+)‖h‖Lr(R).

The proof is completed. �

We can see that in the inequality (12), the parameter s only satisfies the inequality
s > 1, but in the inequality (23) the parameter s depends on p,q,r by 1

p + 1
q + 1

r =
2+ 1

s . Another different thing is the constant C . In the inequality (12), C depends on
α,β ,γ and s , so we can choose the suitable parameters to get the best constant C for
our purpose. However in (23), the constant C is fixed by 2

π .
Although Young’s inequality for the H -Fc polyconvolution is simple, it is not true

in the typical case p = q = r = 2. In [11, 12, 13], Saitoh and his co-authors introduced
a new type inequality for the Fourier convolution in the function space Lp(R,ρ) with
non-vanished weight ρ for which the inequality still holds in L2 space. The space
Lp(R,ρ) consists of all p -order integrable functions such that

∞∫
−∞

| f (x)|pρ(x)dx < ∞,

and the norm of a function f (x) in Lp(R,ρ) is defined by

‖ f‖Lp(R,ρ) :=

⎛
⎝ ∞∫
−∞

| f (x)|pρ(x)dx

⎞
⎠

1
p

.

THEOREM 4. (Inequality of Saitoh’s type) Assume that ρi , i = 1,2,3 are posi-
tive, bounded functions such that [∗(ρ1,ρ2,ρ3)] exists. Then, for all the functions
F1 ∈ Lp(R,ρ1) , F2 ∈ Lp(R+,ρ2) and F3 ∈ Lp(R,ρ3) (p > 1) , we have the follow-
ing inequality for the Hartley-Fourier cosine polyconvolution

‖[∗(F1ρ1,F2ρ2,F3ρ3)][∗(ρ1,ρ2,ρ3)]
1
p−1‖Lp(R)

� 2
π
‖F1‖Lp(R,ρ1)‖F2‖Lp(R+,ρ2)‖F3‖Lp(R,ρ3). (26)

Proof. By definition of the norm in the space Lp(R) , we have

‖[∗(F1ρ1,F2ρ2,F3ρ3)][∗(ρ1,ρ2,ρ3)]
1
p−1‖p

Lp(R)

=
∞∫

−∞

|∗(F1ρ1,F2ρ2,F3ρ3)(x)|p |∗(ρ1,ρ2,ρ3)(x)|1−p dx
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=
1
4π

∞∫
−∞

∣∣∣∣∣∣
∞∫

−∞

∞∫
0

(F1ρ1)(u)(F2ρ2)(v)θF3ρ3(x,u,v)dvdu

∣∣∣∣∣∣
p

×
∣∣∣∣∣∣

∞∫
−∞

∞∫
0

ρ1(u)ρ2(v)θρ3(x,u,v)dvdu

∣∣∣∣∣∣
1−p

dx. (27)

Denote

A :=

∣∣∣∣∣∣
∞∫

−∞

∞∫
0

(F1ρ1)(u)(F2ρ2)(v)θF3ρ3(x,u,v)dvdu

∣∣∣∣∣∣ ,

t1 := −x+u+ v t2 := x−u− v t3 := x+u+ v t4 := −x−u− v
t5 := −x+u− v t6 := x−u+ v t7 := x+u− v t8 := −x−u+ v.

and

Ai :=
∞∫

−∞

∞∫
0

|(F1ρ1)(u)| |(F2ρ2)(v)| |(F3ρ3)(ti)|dvdu, i = 1,8.

Then,

A �
8

∑
i=1

Ai.

Now, we estimate the norm for A1 . Using the Hölder inequality, we have

A1 :=
∞∫

−∞

∞∫
0

|(F1ρ1)(u)| |(F2ρ2)(v)| |(F3ρ3)(−x+u+ v)|dvdu

�

⎛
⎝ ∞∫
−∞

∞∫
0

|F1(u)|pρ1(u)|F2(v)|pρ2(v)|F3(−x+u+ v)|pρ3(−x+u+ v)dvdu

⎞
⎠

1
p

×
⎛
⎝ ∞∫
−∞

∞∫
0

ρ1(u)ρ2(v)ρ3(−x+u+ v)dvdu

⎞
⎠

1
q

=

⎛
⎝ ∞∫
−∞

∞∫
0

|F1(u)|pρ1(u)|F2(v)|pρ2(v)|F3(t1)|pρ3(t1)dvdu

⎞
⎠

1
p

×
⎛
⎝ ∞∫
−∞

∞∫
0

ρ1(u)ρ2(v)ρ3(t1)dvdu

⎞
⎠

1
q

. (28)
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Similarly, we obtain expressions for Ai , i = 2, . . . ,8,

Ai �

⎛
⎝ ∞∫
−∞

∞∫
0

|F1(u)|pρ1(u)|F2(v)|pρ2(v)|F3(ti)|pρ3(ti)dvdu

⎞
⎠

1
p

×
⎛
⎝ ∞∫
−∞

∞∫
0

ρ1(u)ρ2(v)ρ3(ti)dvdu

⎞
⎠

1
q

. (29)

Since (28), (29) we get the following estimation for A

A �
8

∑
i=1

⎛
⎝ ∞∫
−∞

∞∫
0

|F1(u)|pρ1(u).|F2(v)|pρ2(v).|F3(ti)|pρ3(ti)dvdu

⎞
⎠

1
p

×
⎛
⎝ ∞∫
−∞

∞∫
0

ρ1(u)ρ2(v)ρ3(ti)dvdu

⎞
⎠

1
q

.

Now, using the inequality of the form
m
∑
i=1

a
1
p
i .b

1
q
i �

(
m
∑
i=1

ai

) 1
p

.

(
m
∑
i=1

bi

) 1
q

, where ai,bi ,

i = 1,2, ...,m , (m ∈ N) are the nonnegative numbers, p > 1 and
1
p

+
1
q

= 1. Then, we

have

A �

⎛
⎝ 8

∑
i=1

∞∫
−∞

∞∫
0

|F1(u)|pρ1(u)|F2(v)|pρ2(v)|F3(ti)|pρ3(ti)dvdu

⎞
⎠

1
p

×
⎛
⎝ 8

∑
i=1

∞∫
−∞

∞∫
0

ρ1(u)ρ2(v)ρ3(ti)dvdu

⎞
⎠

1
q

=

⎛
⎝ ∞∫
−∞

∞∫
0

|F1(u)|pρ1(u)|F2(v)|pρ2(v)

[
8

∑
i=1

|F3(ti)|pρ3(ti)

]
dvdu

⎞
⎠

1
p

×
⎛
⎝ ∞∫
−∞

∞∫
0

ρ1(u)ρ2(v)

[
8

∑
i=1

ρ3(ti)

]
dvdu

⎞
⎠

1
q

. (30)
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Putting (30) to (27), and noticing
8
∑
i=1

ρ3(ti) = θρ3(x,u,v) , we get

‖[∗(F1ρ1,F2ρ2,F3ρ3)][∗(ρ1,ρ2,ρ3)]
1
p−1‖p

Lp(R)

� 1
4π

∞∫
−∞

⎛
⎝ ∞∫
−∞

∞∫
0

|F1(u)|pρ1(u)|F2(v)|pρ2(v)

[
8

∑
i=1

|F3(ti)|pρ3(ti)

]
dvdu

⎞
⎠

×
⎛
⎝ ∞∫
−∞

∞∫
0

ρ1(u)ρ2(v)

[
8

∑
i=1

ρ3(ti)

]
dvdu

⎞
⎠

p
q
⎛
⎝ ∞∫
−∞

∞∫
0

ρ1(u)ρ2(v)θρ3(x,u,v)dvdu

⎞
⎠

1−p

dx

=
1
4π

∞∫
−∞

⎛
⎝ ∞∫
−∞

∞∫
0

|F1(u)|pρ1(u)|F2(v)|pρ2(v)

[
8

∑
i=1

|F3(ti)|pρ3(ti)

]
dvdu

⎞
⎠dx.

Expanding the integral into the sum of 8 integrals, using Fubini’s theorem to change the
order of the integration and the differentiation, and changing variables t := ti, i = 1,8
to compute dx by dt , we obtain

‖[∗(F1ρ1,F2ρ2,F3ρ3)][∗(ρ1,ρ2,ρ3)]
1
p−1‖p

Lp(R)

� 1
4π

.8

∞∫
−∞

∞∫
0

∞∫
−∞

|F1(u)|pρ1(u)|F2(v)|pρ2(v)|F3(t)|pρ3(t)dtdvdu

=
2
π

⎛
⎝ ∞∫
−∞

|F1(u)|pρ1(u)du

⎞
⎠
⎛
⎝ ∞∫

0

|F2(v)|pρ2(v)dv

⎞
⎠
⎛
⎝ ∞∫
−∞

|F3(t)|pρ3(t)dt

⎞
⎠

=
2
π
‖F1‖p

Lp(R,ρ1)
‖F2‖p

Lp(R+ ,ρ2)
‖F3‖p

Lp(R,ρ3)
. (31)

So, the proof is completed. �
Below we specify this inequality for some concrete cases of the functions ρ1,ρ2

and ρ3 .

COROLLARY 2. Suppose that ρ1 ∈ L1(R) , ρ2 ∈ L1(R+) are positive functions
ρ3 = 1 , then the formula (26) becomes

‖[∗(F1ρ1,F2ρ2,F3)]‖Lp(R)

� 2

π2− 1
p

‖ρ1‖
1− 1

p

L1(R)‖ρ2‖
1− 1

p

L1(R+)‖F1‖Lp(R,ρ1)‖F2‖Lp(R+,ρ2)‖F3‖Lp(R). (32)

Proof. Under the hypothesis on the functions ρi , i = 1,2,3, we have θρ3(x,u,v) =
4 and

[∗(ρ1,ρ2,ρ3)](x) =
1
4π

∞∫
−∞

∞∫
0

ρ1(u)ρ2(v)4dvdu =
1
π
‖ρ1‖L1(R)‖ρ2‖L1(R+).



1060 PHI THI VAN ANH AND NGUYEN XUAN THAO

Then the left hand side of the inequality (26) becomes

‖[∗(F1ρ1,F2ρ2,F3)][∗(ρ1,ρ2,ρ3)]
1
p−1‖Lp(R)

=

⎛
⎝ ∞∫
−∞

|[∗(F1ρ1,F2ρ2,F3)](x)|p |[∗(ρ1,ρ2,ρ3)](x)|1−p dx

⎞
⎠

1
p

=

⎛
⎝ ∞∫
−∞

|[∗(F1ρ1,F2ρ2,F3)](x)|p
(

1
π
‖ρ1‖L1(R)‖ρ2‖L1(R+)

)1−p

dx

⎞
⎠

1
p

=
(

1
π
‖ρ1‖L1(R)‖ρ2‖L1(R+)

) 1
p−1
⎛
⎝ ∞∫
−∞

|[∗(F1ρ1,F2ρ2,F3)](x)|p dx

⎞
⎠

1
p

=
(

1
π
‖ρ1‖L1(R)‖ρ2‖L1(R+)

) 1
p−1

‖[∗(F1ρ1,F2ρ2,F3)]‖Lp(R).

Returning to the inequality (26), we obtain

(
1
π
‖ρ1‖L1(R).‖ρ2‖L1(R+)

) 1
p−1

‖[∗(F1ρ1,F2ρ2,F3)]‖Lp(R)

� 2
π
‖F1‖Lp(R,ρ1)‖F2‖Lp(R+,ρ2)‖F3‖Lp(R),

or

‖[∗(F1ρ1,F2ρ2,F3)]‖Lp(R) �C‖ρ1‖
1− 1

p

L1(R)‖ρ2‖
1− 1

p

L1(R+)‖F1‖Lp(R,ρ1)‖F2‖Lp(R+,ρ2)‖F3‖Lp(R),

where the constant C =
2

π2− 1
p

=
2

π1+ 1
q

< 1. The proof is completed. �

EXAMPLE 1. Choose ρ1 = e−|x| , ρ2 = e−2|x| , ρ3 = 1. Then

‖ρ1‖L1(R) =
∞∫

−∞

|e−|u||du = 2; ‖ρ2‖L1(R+) =
∞∫

0

e−2vdv =
1
2
.

Also

[∗(ρ1,ρ2,ρ3)](x) =
1
π

∞∫
−∞

∞∫
0

e−|u|e−2|v|dvdu

=
1
π

⎛
⎝ ∞∫
−∞

e−|u|du

⎞
⎠
⎛
⎝ ∞∫

0

e−2|v|dv

⎞
⎠=

1
π
·2 · 1

2
=

1
π

.
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If we choose p = 2 then the inequality (32) can be written

‖[∗(F1e
−|u|,F2e

−2|v|,F3)]‖L2(R) � 2

π 3
2

‖F1‖L2(R,e−|x|)‖F2‖L2(R+,e−2|x|)‖F3‖L2(R). (33)

COROLLARY 3. If the functions ρ1,ρ3 ∈ L1(R) are positive functions and ρ2 = 1 ,
then the inequality (26) has the form

‖[∗(F1ρ1,F2,F3ρ3)]‖Lp(R)

�
(

2
π

)2− 1
p

‖ρ1‖
1− 1

p

L1(R)‖ρ3‖
1− 1

p

L1(R)‖F1‖Lp(R,ρ1)‖F2‖Lp(R)‖F3‖Lp(R,ρ3). (34)

Proof. Under the assumption on ρi , i = 1,2,3, we have

|[∗(ρ1,ρ2,ρ3)](x)|

=
∣∣∣ 1
4π

∞∫
−∞

∞∫
0

ρ1(u) [ρ3(−x+u+ v)+ ρ3(x−u− v)−ρ3(x+u+ v)

+ ρ3(−x−u− v)+ ρ3(−x+u− v)+ ρ3(x−u+ v)−ρ3(x+u− v)

+ρ3(−x−u+ v)]dvdu
∣∣∣

� 2
π

⎛
⎝ ∞∫
−∞

|ρ1(u)|du

⎞
⎠
⎛
⎝ ∞∫

0

|ρ3(v)|dv

⎞
⎠� 2

π

⎛
⎝ ∞∫
−∞

ρ1(u)du

⎞
⎠
⎛
⎝ ∞∫
−∞

ρ3(v)dv

⎞
⎠

=
2
π
‖ρ1‖L1(R).‖ρ3‖L1(R).

Then the left hand side of (26) is

‖[∗(F1ρ1,F2,F3ρ3)][∗(ρ1,ρ2,ρ3)]
1
p−1‖Lp(R)

=

⎛
⎝ ∞∫
−∞

|[∗(F1ρ1,F2,F3ρ3)](x)|p |[∗(ρ1,ρ2,ρ3)](x)|1−p dx

⎞
⎠

1
p

�

⎛
⎝ ∞∫
−∞

|[∗(F1ρ1,F2ρ2,F3)](x)|p
(

2
π
‖ρ1‖L1(R)‖ρ3‖L1(R)

)1−p

dx

⎞
⎠

1
p

=
(

2
π
‖ρ1‖L1(R)‖ρ3‖L1(R)

) 1
p−1

.

⎛
⎝ ∞∫
−∞

|[∗(F1ρ1,F2,F3ρ3)](x)|p dx

⎞
⎠

1
p

=
(

2
π
‖ρ1‖L1(R)‖ρ3‖L1(R)

) 1
p−1

‖[∗(F1ρ1,F2,F3ρ3)]‖Lp(R).
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Putting it into (26), we get

(
2
π
‖ρ1‖L1(R)‖ρ3‖L1(R)

) 1
p−1

‖[∗(F1ρ1,F2,F3ρ3)]‖Lp(R)

� 2
π
‖F1‖Lp(R,ρ1)‖F2‖Lp(R+)‖F3‖Lp(R,ρ3),

or

‖[∗(F1ρ1,F2,F3ρ3)]‖Lp(R)

�
(

2
π

)2− 1
p

‖ρ1‖
1− 1

p

L1(R)‖ρ3‖
1− 1

p

L1(R)‖F1‖Lp(R,ρ1)‖F2‖Lp(R)‖F3‖Lp(R,ρ3).

The proof is completed. �

EXAMPLE 2. Choose ρ1 = e−x2
, ρ2 = 1, ρ3 = e−|x| . Then their norms in the

corresponding function spaces are

‖ρ1‖L1(R) =
∞∫

−∞

|e−u2 |du =
√

π; ‖ρ3‖L1(R) =
∞∫

−∞

e−|v|dv = 2.

If p = 2, then the inequality (32) has the form

‖[∗(F1e
−u2

,F2,F3e
−|t|)]‖L2(R) � 2

π 3
2

‖F1‖L2(R,e−x2 )‖F2‖L2(R+)‖F3‖L2(R,e−|x|). (35)

If p = 3, then the inequality (32) has the form

‖[∗(F1e
−u2

,F2,F3e
−|t|)]‖L3(R) � 2

π
5
3

‖F1‖L3(R,e−x2 )‖F2‖L3(R+)‖F3‖L3(R,e−|x|). (36)

4. Applications

In this section, we look for the solution to a class of integral equations and a
class of differential equations, after that we use the above inequalities to estimate their
solution. In doing so, we need the notion of a generalized convolution (· ∗

HFc
·) related

to the Hartley, Fourier cosine transforms [19]:

(p ∗
HFc

q)(x) :=
1√
2π

∞∫
0

p(u)[q(x+u)+q(x−u)]du,

with its factorization identities

Hk(p ∗
HFc

q) = (Fcp)(|y|)(Hkg)(y), k = 1,2,y ∈ R.
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4.1. A class of integral equations

Consider the equation

f (x)+ [∗( f ,ϕ ,ψ)](x) = (p ∗
HFc

q)(x), x ∈ R, (37)

where f is an unknown function, ψ ,q ∈ L1(R) , ϕ , p ∈ L1(R+) , and (· ∗
HFc

·) is a

generalized convolution for the Hartley, Fourier cosine transforms.

THEOREM 5. The condition 1+(Fcϕ)(|y|)(H2ψ)(y) �= 0 is the sufficient condi-
tion for the equation (37) has a unique solution in the space L1(R) . The solution has
the form

f = (p ∗
HFc

q)(x)− [∗(q, p, l)](x), (38)

and satisfies the estimate

‖ f‖L1(R) � ‖p‖L1(R+)‖q‖L1(R)[1+
2
π
‖l‖L1(R)], (39)

where l ∈ L1(R) such that

(H2l)(y) =
H2(ϕ ∗

HFc
ψ)(y)

1+H2(ϕ ∗
HFc

ψ)(y)
.

Proof. Applying the Hartley H1 transform to both sides of the equation (37), then
respectively using the factorization identity for the convolution and polyconvolution,
we obtain

(H1 f )(y)+ (H1 f )(y)(Fcϕ)(|y|)(H2ψ)(y) = (Fcp)(|y|)(H1q)(y).

Hence,

(H1 f )(y)[1+(Fcϕ)(|y|)(H2ψ)(y)] = (Fcp)(|y|)(H1q)(y).

Since 1+(Fcϕ)(|y|)(H2ψ)(y) = 1+H2(ϕ ∗
HFc

ψ)(y) �= 0, we get

(H1 f )(y) =
(Fcp)(|y|)(H1q)(y)

1+(Fcϕ)(|y|)(H2ψ)(y)
= (Fcp)(|y|)(H1q)(y)

[
1− (Fcϕ)(|y|)(H2ψ)(y)

1+(Fcϕ)(|y|)(H2ψ)(y)

]

= (Fcp)(|y|)(H1q)(y)

⎡
⎢⎣1−

H2(ϕ ∗
HFc

ψ)(y)

1+H2(ϕ ψ
HFc

)(y)

⎤
⎥⎦ .
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The hypothesis of the theorem implies that (ϕ ∗
HFc

ψ)(x)∈L1(R) . By using the Wiener-

Lévy theorem for the Hartley transform as in the reference [19], we see that the condi-
tion 1+H2(ϕ ∗

HFc
ψ)(y) �= 0 is the necessary and sufficient condition for the existence

of a function l ∈ L1(R) such that

(H2l)(y) =
H2(ϕ ∗

HFc
ψ)(y)

1+H2(ϕ ∗
HFc

ψ)(y)
.

Thus,

(H1 f )(y) = (Fcp)(|y|)(H1q)(y)[1− (H2l)(y)]
= (Fcp)(|y|)(H1q)(y)− (H1q)(y)(Fcp)(|y|)(H2l)(y)
= H1(p ∗

HFc
q)(y)−H1[∗(q, p, l)](y)

= H1((p ∗
HFc

q)(x)− [∗(q, p, l)](x))(y), ∀y ∈ R.

It implies that

f = (p ∗
HFc

q)(x)− [∗(q, p, l)](x).

Using the norm estimation in the space L1(R) , we have

‖ f‖L1(R) � ‖(p ∗
HFc

q)‖L1(R) +‖ ∗ (q, p, l)‖L1(R)

� ‖p‖L1(R+)‖q‖L1(R) +
2
π
‖q‖L1(R)‖p‖L1(R+)‖l‖L1(R)

� ‖p‖L1(R+)‖q‖L1(R)[1+
2
π
‖l‖L1(R)].

The proof is completed. �

4.2. A class of differential equations

Consider the following differential equation:(
n

∑
k=0

(−1)kak
d2k

dx2k

)
f (x) = [(gρ1) ∗

HFc
(hρ2)](x), (40)

where g,h,ρ1,ρ2 are given functions such that g∈L1(R,ρ1)∩Lp(R,ρ1) , h∈L1(R,ρ2)
∩Lp(R,ρ2) , p > 1 and ρ1,ρ2 ∈ L1(R+) , and the remaining function f is an unknown
function. Also the coefficients ak satisfy a0 = 1, ak ∈ R (k = 1,n) such that there
exists a function Q ∈ L1(R+)∩Lp(R+) determined by

(H2Q)(y) =
1

n
∑

k=0
aky2k

, y > 0. (41)
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We need to find the solution of the equation (40) which satisfies the following boundary
condition

dk

dxk f (x) → 0 as x → ∞, k = 0,1, ...,2n−1.

To deal this problem under the given hypothesis, we apply the Hartley transform
H1 to both sides of the equation (40)

H1

[(
n

∑
k=0

(−1)kak
d2k

dx2k

)
f (x)

]
(y) = H1[(gρ1) ∗

HFc
(hρ2)](y)

n

∑
k=0

aky
2k(H1 f )(y) = (Fcgρ1)(y)(H1hρ2)(y)

From (41),

(H1 f )(y) =
(Fcgρ1)(y)(H1hρ2)(y)

n
∑

k=0
aky2k

= (Fcgρ1)(y)(H1hρ2)(y)(H2Q)(y)

= H1[∗(hρ2,gρ1,Q)](y).

This expression holds for all y ∈ R , so we obtain the solution f ∈ L1(R) in the form

f (x) = [∗(hρ2,gρ1,Q)](x), x ∈ R.

Using the inequality (32), we get the estimate

‖ f‖Lp(R) = ‖[∗(hρ2,gρ1,Q)]‖Lp(R)

� 2
1
p .31− 1

p

π2− 1
p

.‖ρ1‖1− 1
p

L1(R)‖ρ2‖1− 1
p

L1(R+)‖h‖Lp(R,ρ1)‖g‖Lp(R+,ρ2)‖Q‖Lp(R).
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